6711 Ratio Test

One of the easiest ways to tell if an infinite series is convergent is to use
the ratio test. The down side of the ratio test is that it often fails to tell
us if the series is convergent or if it is divergent. In many problems we are
unable to reach any conclusion after applying the ratio test.

o0
Theorem. The Ratio Test. Given the infinite series Z an, let L denote the
=1
limit
. Ap
L= lim |2t

n—oc {I,n

1. It 0 < L <1, then the series Z a, 18 convergent.

n=1

2. If L > 1 or L = co, then the series Z a, 1s divergent.

n=1

3. If L =1, the test gives no information about convergence. Test fails.

We could now prove that the ratio test theorem is a true statement. We
would only need the idea of absolute convergence and theorems which we
have already stated. However, the proof is long and so we choose to omit

it.

2n+5)

Example 1. Is the series Z convergent or divergent? Justify

your answer.

Solution. Apply the ratio test. The first step is to find the ratio a,.1/an,.
In order to find the ratio we need a,, and a,,;. We obtain a,.; by replacing
n with n 4 1 in the expression for a,. For this problem

n(2n + 5)
omn

(n+1)2n+7)
ont '

Upn =

The ratio is found by dividing a,+1 by a,. In order to divide the fraction
an+1 by the fraction a, we invert the fraction a, and multiply. The ratio
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is
ant1 _ (n+1)2n+7)  n(2n+5)

Qr, In+1 AL
~(n 1)(2?1—!—7). 2" (n+1)2n+7)
2n+1 n(2n + 5) 2n(2n+5)

When we simplified we used the fact that 2" /2" = 1/2. We did this
by subtracting powers. Next find L which is the limit of the ratio. Since
all these numbers are positive we do not need to worry about taking the

absolute value.

L= lim PA D@D L (0 +1)20+ 7)(1/n?)
T h—e0 2n(2?l + 5) T nooo (2’?'1)(21”1 ey 5)(1/n2)

5 1+1/n)24+7/n) 1
~ siea 2(2+5/n) 2

Note that we multiplied the numerator and denominator both by the same
number (1/n?). This did not change the value of the fraction. Replacing L

2n+ 5
by 1/2 and a, by n( ;: ) in Part 1 of the Ratio Test, we get the following
true statement:

—~n(2n+5
If1/2 < 1, then Z n( ;:I_ ) converges.

n=1

Clearly 1/2 < 1 is true. Therefore, we are able to conclude that

co

(44 n(2n + 5) 94 .
E converges™ 1s true.
2?1

=1

. l)n-—l an
2n2 45

o0
Example 2. Is the series Z ( convergent or divergent?

n=1

Solution. We want to use the ratio test. First, find the ratio which is
Gn+1/an. Note that




Remember that in order to divide by the fraction a,, we invert and multiply.
Inverting a,, and multiplying we get the ratio

Gnt1 (17371 2n2 45 3(2n2 + 5)

—

a, 2n2+4+4n+7 (=1)""13"  2n2+4n+ 7

When simplifying this fraction we used the fact that (-1)?/(—1)""1 = —1
and 3"7! /3™ = 3 which we get by subtracting powers. Next we take the

absolute value and then find the limit. We get

. An41 3(2?12 -+ 5)
L= ] = [
ngga Gn nLn;:: 2n2 + 4n + 7
6+ 1 6
= m T 5/n = —i==ig

n—oo 24+4/n+T7/n2 2

( 1)n~—13n
Replacing L by 3 and a, by 2
2n 4+ 5

Test Theorem, we get the following true statement:

in the second part of the Ratio

t:x:; 1)r—13n
If 3 > 1, then ﬂ%i ( 2?1)2 5 is divergent.
)n—lgn
Clearly 3 > 1. Therefore, we are able to conclude that Z 5 is
n=1 2n + 2
divergent.
Example 3. Apply the ratio test to the series i(—l)’”*:l i e :
n? + 10

n=1
Solution. First, we have
(=1)"*(3n + 5) (—=1)"(3n + 8)
™2 + 10 e+ 14dn+ 17

The ratio is an 41 divided by a,. In order to divide we invert and multiply.
After inverting the fraction a,, we compute the ratio as follows:

an41 il (—1)”(3’1’1 -+ 8) . 7?12 + 10 —(35"1 + 8)(7?12 + 10)
an  Tn?+14n+17 (-1)"1(3n+5) (7Tn2+14n+17)(3n+5)
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Take the absolute value and then multiply the numerator and denominator
by 1/n3. This does not change the value of the fraction. Taking the limit,

we get

2
aa|_ o B+8/m)T+10/2)
n—oo | Qp n—oo (74 14/n+17/n2)(3 + 5/n)

We get L = 1. When L = 1, the ratio test gives no information. We must
1se some other theorem to determine if this series converges. For this series
we could use the Alternating Series Theorem to show that it converges.

Exercises
oo
_ _ 2n + 9 _ _
1. a) Consider the infinite series E ux . Find a,, and a,41 for this
“ (n+ i) 7.4 '
series.
, a
b) Find lim ||,
TL— 00 ﬂ'ﬂ

c) Substitute into the appropriate part of the Ratio Test Theorem. What
conclusions do you reach?

(_l)nﬂlgn
n?+5n+4

oo
2. a) Consider the series Z 5 . Find a,, and a1 for this series.
n=1

b) Find the limit of the absolute value of the ratio.

c) Substitute into the appropriate part of the Ratio Test Theorem. What
are you able to conclude?

. Find a,, and a,41 for this series.

> (-1
: ider the seri
3. a) Consider the series 1; 32 1 5

b) Find the limit of the absolute value of the ratio.

c) Substitute into the appropriate part of the Ratio Test Theorem. What
are you able to conclude?



4. (Consider the series Z gz : g;n

n=1
determine if this series is convergent or divergent. This means substitute

into the appropriate part of the ratio test. Show all steps.

Use the Ratio Test Theorem to

5. Consider the infinite series Z(—l)”_1 : Apply the Ratio Test

£ 2n2 + 3
to this series. Is this series convergent or divergent? Show all steps.



6713 Power Series

o0
An infinite series of the form Z b,x" is called a power series. The numbers

n=0
b,, are constants depending on n whereas x 1s an independent variable. The

variable 7 can be replaced with any real number. Consider the power series

2
adipt 4
where z is a variable. We get somewhat different series by replacing z with
o0
_ w2
different numbers. If we replace z by 2 we get the series E T4 If we

n=0

. Since we are allowed to

=, n(3/4)"
replace = by 3/4, we get the series Z 74
n=0

replace z by different numbers the series may converge when we replace
by certain numbers and diverge when we replace z by other numbers. This
means that when given a power series we ask ourselves the question: for
exactly which values of z does this series converge and for exactly which

values does it diverge?
A remark on the notation for power series. Most series considered up

o0
to this point have been written using Z The first term considered is

n=1

oo
n = 1. On the other hand, power series are usually written with Z For
n=>0
power series the first term considered is the n = 0 term. This is the usual

way to write power series since this causes the powers of z to be of the form
z". When testing a series for convergence, it makes no difference whether
we start n with n = 0 or n = 1. The tests for convergence involve lim and

nN—r0o0

do not depend on what happens with the small values of n.

. ongn

n? +1

converge?

Example 1. For what values of z does the power series

n=0

Solution. In order to determine the values of z for which a power series
converges we always apply the Ratio Test. The first step in the ratio test

1



is to find the ratio a,_; /@r. For this power series

2”$” 2n+1$n+1
and a = .

n2 + 1 M WOt D

Uyp =

Recall that in order to divide we invert and multiply. The ratio is

nt1 _ 2"TIg™l p24 1 (2 4 1)
an, né+2n+2 2ngn T p21{on 19

We simplified using the fact that z7+1 /2™ = z and 2"*1 /2" — 2. Recall
that we must take the absolute valye of the ratio when we find . The
number L in the Ratio Test is given by

n 2z(n?
L= lim |[2nH] lim et
n—oco | @, n—oo |2 + 2n 4 2

We can factor |z| out in front of the limit sign since |z| does not dépend on
n.

2
: n°+1
=9 i = ;
] s n? 4+ 2n + 2 A=
: . ey A, :
Since L = 2|z| we replace L with 2|z| and a,, with 77 b the Ratio Test.
n

This gives us the following two true statements:

T

90 7
1) If 2|z| < 1, then E 22_T_
T

T converges.
n=1]1
o I o
2) If 2|z| > 1, then Z — < 7 diverges.

Note that “2|z| < 1” is the same as ‘z > —1/2 and z < 1/2”. The
statement “2|z| > 1”7 is the same as “z < —1/2 or z > 1/2”. Recall that
when L = 1 there is no conclusion in the Ratio Test. For this series I, = 1 is
2|z = 1, that is, 2 = —1/20r z = 1/2. We do not know from the Ratio Test
if this series converges or if it diverges when £ = —1/2 and z = 1 /2. The
valuesz = —1/2 and z = 1 /2 are known as end points for the power series.
We will not try to determine if g Power series converges or if it diverges at
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its end points. We could use other theorems and show that this particular
power series converges for z = —1/2 and z = 1/2. We will not do this.
Given a power series we will only apply the ratio test in order to find for
what values of z it converges. For a power series suppose L = |z|/R then
R is called the radius of convergence of the power series. For this series we

say that the radius of convergence is R = 1/2.

Example 2. For what values of z does the following power series converge?

n=0

Solution. We always apply the Ratio Test and only the Ratio Test to
determine the values of x for which a power series converges. For this

DOWET Series

(n + 2)2z™ 1
5n+1

1 .
= n +5n) i and @41 =

We need to find a,+; divided by a,. Recall that to divide we invert and
multiply. After inverting the fraction a,, the ratio is

Gryt + (BE2)a 5 -z (n+2)3
A, i Fn+1 (n T 1)23:11 5 (n 5 1)2 :

We used the fact that 2" /2™ = z and 5"/5"*! = 1/5. Do not forget to
take absolute value when finding L.

L= lim |= )3 |$I lim 3+ 3/0) = M

n— oo E (?1 —+ ]_) 5 Nn—r00 (1 ~T 1/‘1’1)2 5

We can factor |z|/5 out in front of the limit sign since |z|/5 does not depend

n+1)%z™ :
( ) in the ratio test, we

on n. Replacing L with |z|/5 and a, with
get the true statements

1 2
129E *‘-'-5-—‘ < 1, then Z TH_ ) canverges.
n=0



s 1 A
2. If %—I- > 1, then ﬂ;} i +5ﬂ) = diverges.
Note that lg—’ < 1 is the same as —5 < z < 5, which is the same as -5 < z
and at the same time x < 5. Also note that % > 1 is the same as “z < —5

or z > 5”. The end points for this power series are x = —5 and z = 5. We
do not try to decide if the power series is convergent for these two values
of z. The radius of convergence for this power series is 5. The interval of

convergence is —5 < z < 9.

i .
, i)
Example 3. For what values of  does the power series E 5 converge?
n!

n=0

Solution. For this power series

i gl
an = — and @peq1 =
" nl " (n+ 1)
The ratio is
Unt1 Bl opl z(n!)

an ~ (n+1) zn (n+1)!

The definition of factorial says that 4! = 1-2-3-4 and 6! = 1-2-3-4-5-6. This
means that 6! = 6(5!) and 10! = 10(9!). In general (n + 1)! = (n + 1)(n!).
This can be rewritten as

1 n!
n+1 (n+1)!

Using this we reduce the fraction as follows:

An41 .’L'(ﬂ!) T
an (41! n+1

Taking the limit of this ratio we find L:

L= lim 9n 1) = lim 2 = =],
Nn— 00 [gﬂl n—oco N+ 1



This limit is zero for all z. Replacing L by 0 and a,, by =™ /n! in the first
part of the ratio test, we get the true statement.

If 0 <1, then Z %— converges.

n=0

X n
T
From this we conclude that E ] converges for all values of z.
n=0

Eixercises
. . s (2n+3)™ .
1. a) Consider the power series z E'*'; = 1;; . Find a,, and a,,,; for this
n=>0
series.
b) Find lim |2ntL|.
n—oo Ay,

c) Substitute into the Ratio Test Theorem. What conclusions do you reach?

(n? + 4)z™
3n+9

2. (a) Consider the power series Z(—l)’”‘ . Find a, and a,.;

‘ ) n=>0
for this series.

b) Next find the ratio a,41/a, and then find the limit of the absolute value
of the ratio, that is, find L.

c) Substitute into the Ratio Test Theorem. What conclusions do you reach?

gﬁn

)l Find a, and a,.; for this

oo
3. a) Consider the power series Z(—l)”
_ n=0
series.
Un+1

b) Find the ratio .
H’ﬂe

c) Find the limit of the absolute value of the ratio.

d) Substitute into the Ratio Test Theorem. What conclusions do you reach?
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4.(a) Consider the power series Z(—l)”(n +1)3"z". Find a, and ap.;

n=0
for this series.
b) Find the limit of the absolute value of the ratio.

c) Substitute into the Ratio Test Theorem. What is your conclusion?



6715 Taylor’s Series and Polynomials

We are now going to discuss: given a function f(z) find the Taylor’s
series for f(z). In order to find the Taylor’s series for f(z), the function
f(z) must have an infinite number of derivatives. You will notice that the

Taylor’s series is also a power series.

Definition. The formula for the Taylor’s series for a function f(x) about
a = 0 is given by

. )0
:anl()

ft | 1 1t 4)
1@+ L0 L0 SO, SO0y

Example 1. Find the Taylor’s series about @ = 0 (also called the Maclaurian
series) for the function f(z) = €°®.

Solution. We need to find f(™ (0) in order to substitute for it in the formula
for Taylor’s series. This means we need to find all the derivatives of the
function f(z). The first few derivatives are:

fl(x) =5e*  f'(z) =5%* ["(z) =57
(4) (3:) — H4e57 f(ﬁ) (:E) — 5557 f(ﬁ)(.’l:) — 565

We need f(™)(z). The hardest part of finding the Taylors series for a func-
tion f(z) is to find a general formula for the general nth derivative of f(z).
We do this by looking at the pattern of the first half dozen or so derivatives.
For this example note that the 4th derivative has 5* as a factor, the 5th
derivative has 5°, the 6th derivative has 5°. From this pattern we conclude
that for any 111:]1 derivative we would have 5 to nth power or 5" as the
coefficient of e®®. Therefore,

f®) () = 5%,

This says that the 15th derivative is given by f1°)(z) = 5'°¢°*. We need
the nth derivative evaluated when z = 0.

) (0) = 5% = 5™,
£(n) (0) 5"

nl  nl

1




=of@(0 .
We substitute this into Z / ‘( )$” and find Taylor’s series for e°* is
n!

n=0

We also have the question: for what values of z does this Taylor’s series
for e°* converge? Note that this Taylor’s series is a power series. We could
determine for what values of z this series converges by using the Ratio test.
Indeed we can determine for what values of z any Taylor’s series converges
by applying the ratio test. However, in a complete discussion of Taylor’s
series we do not need to apply the ratio test to determine for what values of
z the Taylor’s series converges. In fact as part of a complete discussion of
Taylor’s series we find out not only for what values of x the series converges
but also the sum of the series. Knowing the sum of the series can be very
helpful. The ratio test never tells us the sum of a power series. We will not
do a complete discussion of Taylor’s series because it is to time consuming.

In general finding the Taylor’s series for a given function is a difficult
task. The difficult part is to find a formula for f(™(z). For this reason,
we will not find many Taylor’s series by directly using the formulas given
above. However, we do need to know a few basic Taylor’s series. As part of
the work in finding these Taylor’s series we could also find the sum of the
series and the values of x for which the series converge. The Taylor’s series
for a few common functions are given below.

li$=§m”:1—i—m—l—$2+$3—l—... for |z| < 1.
EE=§%=1+I :L: 3;3 ..., forall
sinng(-l)“(gifi)! =z zf | T; %-I— for all x
cosm=g(—1)”é:! 1 3;2 | :j ET ... forall x



o0 2n+1 EB 1135 I?
arctan$:2(—l)”;n+l =z 3 | = - Fow. for |z < 1.

n=0

Note that these Taylor’s series are power series. We will use the terms
Taylor’s series and power series as though they had the same meaning. In
some more advanced discussions they are used to have very slightly different
meanings. In these discussions the term “Taylor’s series” is used to indicate
that the series was originally found using the derivative formulas.

Definition. The Taylor polynomial Tn(z) of order n of the function f(z)
about the value ¢ = 0 is given by

Tﬂ(m) =f(0)+f!(0)$ | ff;(IO)$2 ', f’fr(o)

(n)
3 , f (0) n
3! E + # & a | n! :.I: =

The Taylor polynomial T,, () of order 7 for f(z) is the terms up to ™ of the
Taylor’s series for f(z). The Taylor polynomial T3(x) of order 3 for f(z) is
the terms up to z° of the Taylor’s series for f(z). The general formula for
f(0) s
TR

The Taylor polynomial T5(z) of order 5 for f(z) is the terms up to z° of
the Taylor’s series for f(z). The general formula for T5(x) is

FA0) 01 f2(0) - f®0)
3] 3 4 1 z* 4 5 z°.

Ty(z) = £(0) + f/(0)z + 2 ”2(!0) z2

Ty(@) = £0) + £/(0)e + £ 02,

Example 2. The Taylor polynomial 7} (z) of degree 4 for f(z) = e® is

Ty(z) =1+ | o

We obtain this polynomial by looking at the Taylor’s series for e and
copying down the terms up to z%.

Example 3. The Taylor polynomial T (z) of degree 6 for f(z) = cosz is




We get the polynomial T5(z) by looking at the Taylor’s series for cos z and
copying down the terms up to z°.

Example 4. Find T4(z), the Taylor polynomial of degree 4 about z = 0, for
f(z) = sin 5z + cos4z.

Solution. We are not given the Taylor’s series for this function. In order to
find this Taylor polynomial we must use the derivative formulas. We start
by finding the first four derivatives. They are
f(z) = sin b5z + cos4z
f'(x) = 5cos 5z — 4sin4x
f"(z) = —25sin 5z — 16 cos 4z
f"(z) = —125cos 5z + 64 sin 4z

£4) (z) = 625sin 5z + 256 cos 4z

Next, we evaluate these derivatives when z = 0.

7(0)=1 f0)=5  f'(0)=-16
f(0) =-125 f®(0) =256

Next divide each derivative by the appropriate factorial:
/" 0 1" 0 12 (4)
£10) _ g £70) _ 135 . f®00) 256 _32

dow 3 31" Stbalge 4 24~ 3
Substituting into the formula for the Taylor polynomial, we get the poly-

nomial for f(x) = sin 5z + cos4z.

12500, 821,

T4(:I,‘) = 1+ 5z — 822

Example 5. Find T5(z), the Taylor polynomial of degree 5, for
f(z) =In(9 + ).

Solution. Since we do not know the Taylor’s series for In(9 + ) we must
use the derivative formulas to find 75(z). In order to substitute into the
tormula for 75(z) we must find the first five derivatives of f (z) = In(9+z).

ffle)=09+z)"1  fW(z)=—-6(9+2z)*
f'(z) =(-1)9+2z)=2 fO)(z) =24(9+z)3
f(2)=2(9+z)~3 .



Next, we evaluate the given function and these derivatives when z = 0.

f(0)=Imn9  f7(0)=2(9)7"
f(0)=9""  f¥(0)=—6(9)""
fﬁ(o) — —Q—2 f(B)(G) —_ 24(9)—5'

Next divide the derivatives by the appropriate factorial:

/" _0—2 LR —4 1
f7(0) = = ot FE0) = 6(9) =
2! (2) ; 162 24(51)! ] 216244
2(9)" -
117 = s (5) — - _
f70) = =3 orgr 1 O) 5! 295, 245

Substituting into the formula for the Taylor polynomial, we get

r  z2 . 73 x4 x°
== |

0 162 2187 26244 = 295,245

T5($) =In9+

So far we have discussed two methods for finding the Taylor polynomial
of a function. First method, if we are real lucky the polynomial we want to
find is just the first few terms of a known Taylor’s series. Second method,
we can take the derivatives of the function and substitute into the general
formula for the Taylor polynomial.

There are also other methods for finding Taylor polynomials which we
are now going to discuss. We can also find the Taylor polynomial of a
function by manipulating the polynomial of a related function.

Example 6. Find the Taylor polynomial of degree 5 for sin5x and for
sin(z/3). Start with the known Taylor polynomial for sinz.

Solution. The Taylor polynomial of degree 5 for sinz is

SINT & & |

We find this polynomial by copying the terms up to z° in the power series
for sinz. Replacing x with 5z we obtain the polynomial of degree 5 for

SINn OT:
(5z)° 1 (5z)°
6 = 120

sinbx &~ b5z



The Taylor polynomial T5(x) for sinox 1s

) 12523 | 3125z°
L e SO it %

Replacing = with z/3 we obtain the polynomial of degree 5 for sin(z/3).

I ) M )
g8 6 120
T g% .
gl 162 29160

Example 7. Find the Taylor polynomial of degree 4 for f ()= (4+z)"".

Solution. We start by finding the Taylor polynomial of degree 4 for (14+z)~*.
Tt is the terms up to z* of power series for (1 + z)~! which is given above.

The Taylor polynomial is
1+z) t=~l-—z+2z° — 3 42,

Replacing z with x/4 we get the polynomial of degree 4 for 1+ (z/4)]7

1 o m|m2 $31:r4
1+ (z/4) 4 42 43 44
4 " 3:'532 :ﬂ3lm4
4+ 4 16 64 256

Dividing both sides by 4 we get

1 1 ::r::ia::2 $3|$4
) |

A+ 4 16 64 256 1024

Fourth method. We are now going to discuss a fourth method for finding a
Taylor polynomial. This method involves differentiating the function and

differentiating the corresponding polynomial.

Example 8. Find the Taylor polynomial for (4 3

6



Solution. Note that ;—(4 + )"t = (—1)(4+xz)~*. We can also differentiate
::
the polynomial for (4 4+ z)~*. Differentiating both sides gives

B - an 3° . 3
(4+z)2 16 32 256 256
1 1 r 32 z°

(4+z)2 16 32 256 256

&

Note that this is 73(z) the Taylor polynomial for (4 + z)~* of degree 3.

Fifth method. Finally, we are going to discuss a fifth method for finding
a Taylor polynomial. This method involves integrating the function and

integrating the corresponding polynomial.
Example 9. Find the Taylor polynomial for In(4 + z).
Solution. Note that [(4+z) 'dz =In(4 +z) + C. We start with

1 z 2 zt
4+z)7 ~ | | ,
(4+2)" ~ 116761 256 T 1024
which was found above. First,
/ 1 z ¢ I xt
— — — | dr
4 16 64 256 1024
o g g gt e e
~ 7 4 32 3(64) 4(256) 5(1024)
This tells us that
2 3 4 5
e AR g T T T

132 T3(64)  4(256)  5(1024)

In order to find the constant of integration C let us substitute z = 0 into
both sides. We get

Ind=C
The value of the constant of integration is C' = In 4.
I R z°

In{d+z)~Ind+ 7 — 35+ 795 ~ 7022 T 5190°

7



We can also find the value of C as follows. The expression

132 3:3 334 | 2:5

i
4 32 3(64) 4(256) 5(1024)

Gt

is the Taylor polynomial T5(z) for In(5 + z). We do not know the con-
stant term C' in this polynomial. However, the constant term in the Taylor

polynomial for f(z) is always given by f(0). It follows that C' = f(0) or
C =In(4+0) =In4.

This is T5(x), the Taylor polynomial of degree 5, for In(4 + x).

Essentially all the Taylor polynomials we have discussed so far have been
in powers of (z — 0)™. It is possible to use a center a # 0. The Taylor
polynomial Ty(z) about the general number a rather than a = 0 is

(q (3)(q (4) (g
Tu(z) = f(@)+F @)+ L2 -y + LD g L gt

Example 10. Find the Taylor polynomial Ty(z) for f(z) = /z about a = 4.

Solution. First, note that a # 0. The general formula for the Taylor
polynomial of order n when a # 0 is given above. We need to find the first

4 derivatives of f(z) = /.

; FENL R I
/() = 5272 F(z) = 5(=5)?
1 - 1 1 3 —5/2 (4) L . 3 : ~7/2
(z) = 2( 2)( 2)-’5 [ (z) = 5(—5)("5)(—5)53
We need to evaluate the given function and these derivatives for a = 4.

f(4) =v4=2
f'4) = (1/2)(4)~? =1/4
f(4) = —(1/4)(4)™3/? = —1/32
"(4) = (3/8)(4)~%* = 3/256
9 (4) = —(15/16)(4)""/ = —(15/2048)

8



Dividing by the appropriate factorial, we get

f@4) 1 f74) 1
2T 64 3t .7 512
fH4) 5
41 16,384

Substituting into the formula we get the Taylor polynomial

1 1 1

=2+ —(z—4)— —(z —4)* —4)°
5 4
To3a1 =~ 4%

The general Taylor polynomial of order 1 for f(z) about z = a is
Ti(z) = f(a) + f'(a)(z — a).

This polynomial is also known as the linearization of f(z) at z = a.

Example 11. Let f(z) = (4 + 9)3/2. Find the Taylor polynomial of order
1 for f(z) about z = 10.

Solution. We need to find f'(x).
f'(z) = (3/2)(4z + 9)'/2(4) = 6(4z + 9)*/2.
£(10) = (49)%/? = 343, and f'(10) = 6(49)/2 = 42
The Taylor polynomial is
Ti(z) = 343 + 42(x — 10).
The Taylor polynomial of order one of f(z) about z = a is also called the
linearization of f(z) at z = a. The linearization of f(z) = (4z + 9)3/2 at

r =10 is
L(z) = 343 4+ 42(z — 10).



Exercises

1. By looking at the appropriate power series find the Taylor polynomial
T4(z) for each of the following functions:

a) CosT b) arctan z c) sinx

2. Start with an appropriate easy to find Taylor polynomial and by sub-
stituting into it find the Taylor polynomial T5(z) for each of the following

functions:
1
) 1 — 2

3. Use the derivative formulas for finding a Taylor polynomial to find the
Taylor polynomial T4(z) for each of the following functions:

2

b) cos(5z) c) e ”

a) f(z) =sin3z + cosdz b) f(z) =v1+2x

4. Start with the Taylor polynomial of degree 5 for (1 — z)~! and find the
Taylor polynomial of degree 5 for f(z) = (5 + z)~ 1.

5. Start with the Taylor polynomial of degree 6 for arctan z and find the
Taylor polynomial of degree 5 for f(z) = (1 + z#)~! using differentiation.

6. The Taylor polynomial of degree 4 for (4 4+ z)~*/2 about z = 0 is

1 1$| 33}_2 5$3| 35 v
2 16~ = 256 2048~ ' 65,536 °

Starting with this polynomial find the Taylor polynomial 75(z) of degree 5
about z = 0 for the function f(z) = (4 + z)/2.

b) Starting with the given Taylor polynomial, find the Taylor polynomial
Ts(x) about z = 0 for the function g(z) = (4 + z)~3/2.

7. The Taylor polynomial of degree 4 for (8 + z)%/3 about z =0 is

r 2 * 73 Tt
3 144 2592 248832

Find the Taylor polynomial Ty (z) of degree 4 about « = 0 for (8 + xz)%/3.
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8. = i
Let f(z) = 2%/2. Find the linearization of f (z) at z =64

9. Fi '
ind the Taylor polynomial Ty(z) for f(x) = vz +1 about a =3

11



