Name:

Section:

Math 1571H. Practice Midterm Exam III November 29, 2006

There are a total of 100 points on this exam, plus one 5 -point extra credit problem that you should only work if you complete the rest of the exam. To get full credit for a problem you must show the details of your work. Answers unsupported by by an argument will get little credit.

Problem
1. \quad Score

2. \longrightarrow
3.
4. \qquad
5. \qquad
6. \qquad
Extra credit \qquad

Total: \qquad

Problem 1 (15 points) Find the derivative $f^{\prime}(x)$ and simplify.

1. $f(x)=\ln (\sec x+\tan x)$
2. $f(x)=\int_{\sin x}^{6}(\cos t)^{t} d t$
3. $f(x)=(\sin x)^{2 \tan x}$ Don't simplify in this case.

Problem 2 (15 points) Find the volume swept out when the area under the top half of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

is rotated about the x-axis.

Problem 3 (15 points) Find the volume swept out when the area under the curve

$$
y=\sin \left(x^{2}\right), \quad 0 \leq x \leq \sqrt{\pi}
$$

is rotated about the y-axis.

Problem 4 (20 points) Find the length of the curve with vector equation

$$
\mathbf{R}(t)=e^{t} \sin t \mathbf{i}+e^{t} \cos t \mathbf{j}
$$

between $t_{0}=0$ and $t_{1}=\frac{1}{2} \ln 2$.

Problem 5 (15 points) A spring has a natural length of 15 in. and a 10 lb. weight stretches it 2 in . How much work is done in stretching the spring from -2 in. to +3 in.?

Problem 6 (20 points) A dam has a vertical side in the shape of a right triangle with vertex at the bottom, height of 10 ft . and width of 12 ft . at the top. The water (density $62.5 \mathrm{lbs} . / \mathrm{ft}^{3}{ }^{3}$) behind the dam is 8 feet deep. Compute the total force of the water against the dam.

Problem 7 (EXTRA CREDIT, 5 points) The function

$$
f(x)=|(x+2)(x-1)|
$$

is continuous everywhere, so it has an antiderivative. Compute the antiderviative $F(x)$ on the domain $x>0$ such that $F(1)=0$. Simplify your answer!

Brief solutions.

1. 2) $\left.\sec x, 2)-(\cos [\sin x])^{\sin x} \cos x, \quad 3\right)$

$$
(\sin x)^{2 \tan x}\left[2 \sec ^{2} x \ln (\sin x)+2\right]
$$

2. $\frac{4 \pi a b^{2}}{3}$
3. 2π
4. $2-\sqrt{2}$
5. 12.5 in-lbs.
6. 6400 lbs .
7.

$$
f(x)= \begin{cases}\frac{1}{3}(x-1)^{3}+\frac{3}{2}(x-1)^{2}, & x \geq 1 \\ -\frac{1}{3}(x-1)^{3}-\frac{3}{2}(x-1)^{2}, & 0<x<1\end{cases}
$$

