Name:

Section:

Math 1571H. Final Exam December 14, 2006

There are a total of 235 points on this exam. It is a 3 hour exam with caculators encouraged, but no notes or text. No other electronic devices such as cell phones, headphones, etc. are permitted. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit.
Problem $1 . \quad$ Score
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad
13. \qquad
Total: \qquad

Problem 1 (20 points) Find the length of the curve $y=\ln (\cos x)$ between $x=0$ and $x=\frac{\pi}{4}$.

Problem 2 (20 points) A cylindrical tank of diameter 4 feet is lying on its side. If the tank is half full of rum having a density of $60 \mathrm{lbs} . / \mathrm{ft}^{3}$, what is the force on one vertical end of the tank?

Problem 3 Identify the graphs of the given curves expressed in polar coordinates. Be as specific as you can.

1. (5 points)

$$
r=5 / \sin \theta
$$

2. (5 points)

$$
r=2 /\left(1-\frac{1}{2} \cos \theta\right)
$$

Problem 4 (20 points) Find the arc length of the curve $\mathbf{r}(t)=t^{3} \mathbf{i}+t^{2} \mathbf{j}$ between $t=1$ and $t=2$.

Problem 5 (15 points) Make the substitution $\sin \theta=3 x$ to evaluate the indefinite integral

$$
\int \sqrt{1-9 x^{2}} d x
$$

Show the details of your work.

Problem 6 (20 points) Find the local maxima, the local minima, and the inflection points of the function $f(x)=e^{x}-3 e^{-x}-4 x$.

Problem 7 (20 points) Solve the differential equation with initial condition

$$
\frac{d y}{d x}=\frac{2 y+3}{x+5}, \quad y(0)=1
$$

Problem 8 (20 points) Suppose the region under the graph of the curve

$$
y=\frac{1}{3}\left(x^{2}+2\right)^{\frac{3}{2}}, \quad 1 \leq x \leq 3
$$

is rotated about the y-axis. Find the volume of the solid generated.

Problem 9 (20 points) Find the equation of the plane containing the point $P(0,1,-1)$ and the line with vector equation

$$
\mathbf{R}(t)=(3+t) \mathbf{i}+(1+t) \mathbf{j}+(2-t) \mathbf{k} .
$$

Problem 10 (10 points)

$$
F(x)=\int_{5 x^{2}-1}^{1} \sin \left(t^{3}\right) d t
$$

Compute $F^{\prime}(x)$.

Problem 11 (20 points) Given that $\sum_{j=1}^{n} j^{3}=\frac{n^{2}(n+1)^{2}}{4}$, use Riemann sums to compute the area of the region bounded by the curve $y=x^{3}$, the x axis and the line $x=1$.

Problem 12 (20 points) In a laboratory there are 10 grams of a radioactive substance with a half-life of 20 years. How many grams of the substance will remain after 25 years?

Problem 13 (20 points) The front of a tank which is full of water has the shape of a regular trapezoid. In a suitable Cartesian coordinate system (x, y) the coordinates of the vertices of the top of the trapezoid are $(-4,10)$ and $(4,10)$, and the vertices of the bottom are $(-12,0)$ and $(12,0)$. Find the hydrostatic force exerted by the water on this tank front. The lengths are in feet and the water density is $62.5 \mathrm{lb} / \mathrm{ft}^{3}$.

Brief solutions:

1. $\ln (1+\sqrt{2})$
2. 320 lbs .
3. 4) vertical line $y=5,2$) ellipse in standard position $e=\frac{1}{2}, p=4$.
1.

$$
\frac{1}{27}(40 \sqrt{40}-13 \sqrt{13})
$$

5.

$$
\frac{1}{6} \arcsin (3 x)+\frac{x}{2} \sqrt{1-9 x^{2}}+c
$$

6. local max. at $x=0$, local min. at $x=\ln 3$, inflection pt. at $x=\frac{1}{2} \ln 3$
7.

$$
y=\frac{1}{10}(x+5)^{2}-\frac{3}{2}
$$

8.

$$
\frac{2 \pi}{15}\left(11^{\frac{5}{2}}-3^{\frac{5}{2}}\right)
$$

9.

$$
x-2 y-z=-1
$$

10.

$$
-10 x \sin \left[\left(5 x^{2}-1\right)^{3}\right]
$$

11. $1 / 4$
12. $5 \times 2^{-1 / 4} \approx 4.204$ grams
13.

$$
\frac{35}{6} 10^{4} \mathrm{lbs} .
$$

