Name:

Section:

Math 1571H. Practice Midterm Exam I

There are a total of 100 points on this exam, plus a 5 point extra credit problem that should not attempt unless you have finished the rest of the exam. To get full credit for a problem you must show the details of your work. Answers unsupported by by an argument will get little credit.

Problem 1 (15 points) Given the curve $y=f(x)=-x^{2}-1$, for which values of x does the tangent line to the curve at (x, y) pass through the origin?

Problem 2 (20 points) Find the minimum distance from the origin to the plane $x+2 y+3 z=1$.

Problem 3 (20 points) Let y be a function of x such that $x^{2} y-y^{3}=1$ and the derivatives $y^{\prime}, y^{\prime \prime}$ exist at $x=0$. If $y(0)=-1$, compute $y^{\prime}(0)$ and $y^{\prime \prime}(0)$.

Problem 4 (10 points) Compute the derivative $f^{\prime}(x)$ and simplify your answer. It is important that you show your work. The answer alone is not sufficient.

$$
f(x)=\left(\frac{x^{2}-1}{x^{2}+1}\right)^{2}
$$

Problem 5 Compute the limits. It is important that you show your work. The answer alone is not sufficient.
a. (10 points)

$$
\lim _{x \rightarrow 1} \frac{2 x^{2}-3 x+1}{x^{2}-x}
$$

b. (10 points)

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x \tan x}
$$

Problem 6 Consider a 4 -sided pyramid whose rectangular base has vertices

$$
P(0,0,0), \quad Q(2,0,0), \quad R(0,4,0), \quad S(2,4,0)
$$

and whose top vertex is $T(1,2,3)$.
a. (10 points) Find the cosine of $\angle T P S$.
b. (5 points) Compute the area of $\triangle T P S$.

Problem 7 (5 points extra credit) Starting at time $t=0$ (in seconds), a particle moves along the s-axis according to the rule $s(t)=2 t^{3}-15 t^{2}+1$ where s is measured in meters. What is the furthest point to the right the particle reaches in the first 6 seconds?

Brief answers:

1. $x= \pm 1$
2. $1 / \sqrt{14}$
3. $y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=-2 / 3$
4.

$$
f^{\prime}(x)=\frac{8 x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{3}}
$$

5a. 1
5b. $1 / 2$
6a. $12 / \sqrt{154}$
6b. $\sqrt{10}$
7. $s=1$

