0.1 Conic sections

We choose a standard Cartesian coordinate system with coordinates (z,y).

0.1.1 The parabola

The parabola can be characterized as the locus of points equidistant from
the focus F'(0,0) and the directriz, the line x = —p. Thus z + p = /2?2 + y?
or

y> = p(2z + p).

0.1.2 The ellipse

Definition 1. The ellipse can be characterized as the locus of points the
sum of whose distances from the two foci F(—c,0) and F'(c,0) is 2a,
where a > ¢ > 0. Thus

\/(x+c)2+y2+\/(:v—c)2+y2=2a

or

Here a is called the semi-major axis, b > 0 is the semi-minor azis and
e = < is the eccentricity. Note that 0 < e < 1.

Definition 2. The ellipse can be characterized as the locus of points whose
distance from the focus F(0, 0) is e times the distance from the directrix

x = —p. Thus e(z +p) = V22 + 32 or
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Note that this is just a translated version of the result in Definition 1,
where the focus F'(—c,0) in the 2,3’ coordinates has been moved to

F(0,0) in the z,y coordinates.



0.1.3 The hyperbola

Definition 1. The hyperbola can be characterized as the locus of points the
difference of whose distances from the two foci F'(—c,0) and F'(c,0) is
+2a, where ¢ > a > 0. Thus \/(:16-1—0)2-1-1112 — \/(x— c)?+y?==42a
or
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Here e = £ is the eccentricity. Note that 1 <ee.

b? = c? — 2.

Definition 2. The right-hand branch of the hyperbola can be characterized
as the locus of points whose distance from the focus F'(0,0) is e times
the distance from the directrix £ = —p. Thus e(x + p) = V22 + y? or
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Note that this is a translated version of the result in Definition 1, where
the focus F(—c,0) in the z',y’ coordinates has been moved to F'(0,0)
in the x,y coordinates.

0.2 Conic sections in polar coordinates

We use Definition 2 for the ellipse and the hyperbola and our standard def-
inition of the parabola. Thus a focus is at the origin, F(0,0), and in each
case the equation of the conic section is

e(x +p) =22+ 2
Now change to polar coordinates [r, 6]:

r=rcost, y=rsinb,



so that

r’=z*+y°, tanf= Y
x

Then the equation for the conic sections is

or

e(rcos +p) =r,
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Special cases:

1. e = 0 and ep — ry. This is the circle of radius ry: r = ry.

2. 0 < e < 1. The ellipse. The closest approach of the ellipse to the

focus, perihelion is r = ep/(1 + e) and occurs for cos@ = —1. The
greatest distance from the focus, aphelion is r = ep/(1 — e) and occurs
for cosf = —1.

. e = 1. The parabola. As cosf — 1 the point on the parabola recedes

arbitrarily far from the focus. The closes approach is a distance p/2
and occurs for cos = —1.

. 1 < e. The hyperbola. The closest approach of the hyperbola to the

focus is 7 = ep/(1 + e) and occurs for cosf = —1. As cosf — 1/e
from below, the point on the hyperbola recedes arbitrarily far from the
focus.

0.3 Kepler’s laws of planetary motion

Kepler’s 1st law: The orbit of each planet is an ellipse with the Sun at one

focus.

Kepler’s 2nd law: The line segment joining a planet to the Sun sweeps out

equal areas in equal times.

Kepler’s 3rd law: The square of the period of revolution of a planet is

proportional to the cube of the semi-major axis of the planet’s elliptical
orbit. (The proportionality constant is independent of the planetary
size and the eccentricity of the orbit.)



0.4 How Newton could derive the gravita-
tional force from Kepler’s laws

The gravitational force F exerted on a body of mass m by a body of mass
M is given by
GmM ., GmM
F = r = r
r2 r3
where r is the vector with initial point at the center of the mass m body and
terminal point at the center of the mass M body, and

P -
r=lell, #=-, [lf]=1.

Here (G is the gravitational constant, a universal constant that must be mea-
sured, i.e., there is no accepted theory that enables one to compute G from
more basic principles. Most calculus treatments of the gravitational force,
including the one in our text, show how Kepler’s laws can be derived from
the gravitational force. This, however, doesn’t show that it is impossible
to obtain Kepler’s laws from some other force directed between the bodies.
Here we demonstrate that Kepler’s laws are exactly what is needed to de-
rive Newton’s formula for the gravitational force and a way, using modern
methods and notation, that he could have discovered the force.

Kepler’s 1st law. From our treatment of conic sections we see immediately
that Kepler’s first law implies that, in the plane of the orbit of a planet,
the trajectory of the planet is given by the equation in polar coordinates

r@t) = —2 (1)

T 1- ecosO(t)

where the origin is located at the center of the Sun. Here the eccen-
tricity e and the directrix location p are to be determined, though we
know that 0 < e < 1. This gives us the path of the planet, but to
know the exact trajectory we would need to determine the angle 6 as
a function of time t¢.

Kepler’s 2nd law. The area A(t) swept out by the planet between times 0
and ¢ is given by the formula
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where 7(f) is given by (1). Kepler’s 2nd law says that

dA(2)
Cdt

:c’

a constant. Now, by the Fundamental Theorem of Calculus and the
chain rule,

dA() 1 5

independent of time. (As we will see later in the course, this formula
can be interpreted as conservation of angular momentum.)

Let’s compute c in terms of more familiar quantities. As the planet goes
through one complete rotation of the Sun the angle 6 increases by 27
radians and the time increases by the period T. Thus 6(T) = 6(0) + 2.
The area swept out by the planet in one full period is just the area of
the ellipse:

A(T) = mab

where a, b are the lengths of the semi-major and semi-minor axes, re-
spectively. Clearly,

Q@ZWW) (3)

Newton’s law says that if a force F is exerted on a body of mass m and
position r(t), the body moves according to the equation F = mr”(t).
From equation (1) in polar coordinates we see that the position vector
for the planet is

_ . . ep .
r(t) =z(t)i+y(t) j= T ocosd ecose(cosﬁ i+sind j).
Thus
—epsin 0
r'(t) = %(COSQi+sin0j)+$(—sin6’i+cos€j) g,



so, substituting (3) for #" and simplifying, we find

, 2A(T) | sinf cosf. .
t) = — -1 .
() = S |- T i (14 120

Differentiating a second time, and again substituting (3) for #' and
simplifying, we find
4A%(T)
epT?r?

4A2(T)
—_— I‘
epT?r?

r''(t) = (cosf i+sinf j) =
This shows that the acceleration of the planet is always toward the Sun
and proportional to 1/r%. It does not yet give the law of gravitation
because the proportionality constant 4A4%(T)/epT? appears to depend
on details of the orbit, such as the eccentricity and the period.

Kepler’s 3rd law. In our notation, Kepler’s 3rd law says that

3
T = «aa2

where « is independent of the eccentricity of the orbit and the size
of the planet. Recall that the semi-major and semi-minor axes of an
ellipse are related to the eccentricity and directrix via
ep ep
a=—7: b=—.
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We can solve for p from the first of these equations to get

_ a(l—e?)

b
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b=av1—e2

Writing A(T') is terms of a and e we have
A(T) = mab = ma®V/'1 — e2.

Substituting these results into the proportionality constant for the grav-
itation equation to express all orbit quantities in terms of a and e alone,
we obtain

SO
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=k,
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a constant independent of the orbital parameters. Thus

k.
r'(t) = — 3t
Now from Newton’s law of motion
mk .
F = mr"(t) = —T—Qr,

so the gravitational force depends linearly on the mass m of the planet.
From Newton’s principle that to every action there is an equal and
opposite reaction it follows that the planet exerts an equal force on the
Sun, but in the opposite direction. Thus the proportionality constant
must also depend linearly on the mass M of the sun. We conclude that
k = MG and the gravitational force is

mMG |
F=mr"(t) = — - T

Y

where G is a universal constant.

Exercises:

Problem 1 Halley’s comet has an elliptical orbit of eccentricity 0.97 with
one focus at the Sun. It was last at perihelion in 1986 and will return in
2062. The semi-major axis of the orbit has been calculated as 18.09 AU
where 1 AU (Astronomical Unit) is the mean distance from the Earth to the
Sun, about 93 million miles. Compute the polar equation of the comet’s orbit
and the mazximum distance from the comet to the Sun.

Problem 2 The speed of a planet in its orbit about the Sun is v = ||r'(t)]].

Show that 5 1
=k -2

T a

where a is the length of the semi-major axis. (In Newtonian mechanics, this
formula is an expression of conservation of energy.)
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