0.1 Pythagorean triples

A Pythagorean triple (PT) is an ordered triplet of positive integers (a, b, ¢)
such that
a® +b*=c

Clearly they correspond to the right triangles with legs of length a,b and
hypotenuse c, such that a, b, c are integers. The simplest example is the fa-
miliar (3,4,5) triangle, where 3% 4+ 42 = 52. Since the time of Pythagoras
people have been interested in classifying all such triples. There are many
known solutions but none are more straightforward than the solution pre-
sented here. First of all, note that for a classification the order of a and b
makes no difference. Furthermore, if (a,b,c) is a Pythagorean triple then so
is (ad, bd, cd) for any positive integer d. Thus the real problem reduces to
finding those triples (a, b, c) such that a,b, ¢ are relatively prime, i.e., they
have no common integer factor > 1. We now limit ourselves to this case.

We can connect this problem to calculus by noting that each such PT
corresponds to a rational point (z,y) on the unit circle centered at the origin.

Indeed, set

a b
rT=—-, y=-.
c c

If (a,b,c) is a PT then 2 +5y? = (a®>+b?)/c* = 1, so (z,y) is a rational point
on the unit circle (in the first quadrant). On the other hand, suppose (z,¥)
is a rational point on the first quadrant of the unit circle. Then we can write
x = mq/ny, y = my/ny where the m;, n; are positive integers and each pair
my,ny and mg, ny is relatively prime. Now we observe that © = a/c, y = b/c
where
a=ming, b=many, c=niny
and
a® 4+ b = mins +min] = (2° +9°)c® = .

Furthermore a, b, ¢ are relatively prime. Thus the problem of finding PT’s
is essentially equivalent to finding the points on the unit circle with rational
coordinates (z,y).

Conventionally, we parameterize the unit circle by using the rotation angle
f that the radius vector r = x i+y j makes with the z-axis, where € increases
in the counterclockwise direction. Thus (z,y) = (cosf,sinf) and we sweep
out the unit circle as @ varies in the domain —7 < # < 7. Thus the PT



problem is the same as finding the angles # such that cosf, sinf are both
rational numbers.

A solution of the problem can be obtained from a different parameteriza-
tion of the unit circle, namely

1= () = 2t
T1xe T e

() (1)

see problem 12 on page 591 of your text.

Problem 1 Verify that for each real number t the corresponding point (z,y)
lies on the unit circle.

Problem 2 Verify that t and 6 can be related by the formula

t = tan —.
an 5
(Note: You can either verify this geometrically, as on page 591 of your text,
or by using half-angle formulas.) Conclude that each point (z,y) on the unit
circle is the image of a unique t, except the point (—1,0).

Problem 3 What is the range of values of t such that (z(t),y(t)) covers
every point in the first quadrant of the unit circle, i.e., every point such that
z(t) >0, y(t) > 07

It is evident that for each rational ¢ = m/n the corresponding pair (z,y)
is rational. For example, if ¢ = 1/2 then z = 3/5, y = 4/5 and we find
the PT (3,4,5). If t = 2/3 then = = 5/13, y = 12/13 and we find the PT
(5,12,13). What is amazing is that the converse is true:

Problem 4 Show that if the point (x,y) on the unit circle is rational and
(z,y) # (—1,0) then t is rational.

Problem 5 Show that the Pythagorean triple (a,b,c) can be generated by the
rational number t = b/(a + ¢). Verify this by finding the parameters corre-
sponding to the PTs (7,24,25), (16, 63,64), (20,21,29) and (19,180, 181).

Thus the parameterization (1) basically solves the PT classification problem.
There are an infinite number of relatively prime integer solutions (a, b, ¢) of



the equation a? + b*> = ¢? and we obtain the solutions by choosing rational
values for the parameter t.

It is worth pointing out how amazing and special this parameterization
happens to be. A closely related problem in number theory is to find all
integer triples (a, b, ¢) such that

a"+ bt =c" (2)

where n is a fixed integer > 2. The celebrated “Fermat’s last Theorem”
is the conjecture that (2), in distinction to a® + b*> = ¢?, has no nontrivial
solutions. After stumping mathematicians for more than a century this result
was proved in the last decade by Andrew Wiles.

0.2 The integration of rational trigonometric
expressions

To connect PTs with calculus directly we consider the problem of evaluating
integrals of the form

/R(cos 6,sin 6) do (3)

where R is a rational function of its arguments. We have already seen, in
principle, how to evaluate analytically all integrals of the form

[ 1 at

where f is a rational function. However, (3) is not obviously of this form.
Again, it is amazing that the special parameterization (1), i.e.,

11— 2t
cosf = P sinf = T

(4)
with inverse ¢t = tan(6/2) comes to our rescue.

Problem 6 Verify that
2 dt

= .




Thus with this substitution we find

1—12 2t ) dt
14127141271+ ¢2

/R(cos 6,sinf) df = 2/R(

where the integrand of the transformed integral is a rational function of t.
This means that, in principle, we can evaluate explicitly all integrals of the
form (3). (We should note that in practice it is often easier to evaluate such
integrals by another method. However, when all else fails we can always fall
back on this method with the assurance that it will work.)

Problem 7 Use the substitution (4) to evaluate the following integrals,

1.
/ df
1+ cosf
2.
/ do
2 +sind
3.
/sec0 do

0.3 Integration of the orbital equations

Recall that the differential equation for planetary orbits takes the form

df

i B(1 — ecosf)?

where 3 = k¥/2/(a(1 — €2)%? = 27 /(T(1 — €?)3/?), a is the semimajor axis, e
is the eccentricity (0 < e < 1) and T is the period. Also recall that the polar
coordinates describing the orbit are [r, §] where

ep

"= 1 —ecosf

and the directrix is given by p = ﬂlg—ezl The origin of coordinates is at the
focus closest to perihelion, so aphelion corresponds to # = 0, and perihelion



to @ = . (Frequently, astronomers adopt coordinates [r, é] related to ours
by 8 = 6 4+ 7 so that # = 0 at perihelion and

r= p
1 —|—ecos§'

This is only a minor difference.)

For astronomers it is usually the angle  that can be observed or computed
directly, not the distance r. Thus it is critical to know the function #(¢), called
the true anomaly, i.e., the deviation from aphelion. To find this function we

need to solve the differential equation
do
5= B(1 —ecosh)?, 0(0)=0 (5)

where we have chosen the initial position to be at aphelion. (Note that here
the parameter ¢ is time, not to be confused with the parameterization of the
unit circle.)

Separating variables in the orbital equation we obtain the formal solution

0 do
/0 (1 —ecosh)? (6)

Thus our problem reduces to evaluating the integral

do
N L —
/ (1 —ecosf)?

This is a nontrivial integral. Rather than look for special tricks we will use
the fact that the integrand is a rational function of cosf. Thus the method
of the last section applies. We make the substitution

Nl

T=0-¢)

1 —u? . 2u
cosf = 158 sinf = Y

with inverse u = tan(f/2). Then we find

df 1+ u?
I=[a—s=2]
(1= ecos0)? et +ep™
2

2y / 1+ u? p
- (1+e)? (1+7u2)2”
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where v = (1+e¢)/(1 —e). We can simplify the problem slightly by rewriting
the integral in the form

R [l + | d

= u
(1+e)? T+yu? (14 vyu?)?

or, with the substitution v = 7/?u,

1

v 0l

dv.
1+v2+(1—|—122)2 v

3
1= 2 /
(1+e)?

This breaks up into two integrals, the first of which is just the integral for
the arctangent. To evaluate the second integral we use the trigonometric
substitution v = tan ¢. Then

¢

/(L:/cosz¢d¢:isin2¢+§+0.

1+v?)?

We can evaluate this last expression because sin 2¢ = 2sin ¢ cos ¢ = v/(1+v?)
and ¢ = arctanv We conclude that

1—2,/1_‘_6 ! arctan 1+etang + esinf +C
SV 1—e(l+e)2(1—¢) l—e 2] (1—-e)(14+e€)(l—ecosf)

hence

2t l+e 0 sin 6
= = 2arct tan — VIi-et————. 7
T arcan( . ean >+e el—ecos@ (7)

This solution is fairly complicated but quite explicit. Unfortunately, it gives
t(#) and we want 6(t), the inverse of the relation. Beginning with Kepler
himself, a great deal of effort has gone into inverting this equation. (Note
that the inverse 0(¢) can be defined for all ¢ through the relation 0(t + 7T) =
0(t) + 2m.)

The explicit expression (7) suggests a change of dependent variable to a
new angle v, called the eccentric anomaly:

1 6
tan% S tan —. (8)
2 1—-e 2




Then using our earlier parameterization formulas (but now applied to tan %)
we find

sin 6 1 .
1—ecos msmdj
SO 5
T =y tesing, ()

an equation with much simpler form. This is Kepler’s equation. (The term
on the left, 27t /T = M is called the mean anomaly. It measures the angular
deviation of a planet in a circular orbit and period 7.) Thus our problem
reduces to inverting Kepler’s equation to obtain ¢ (t), or ¢)[M]. Once we have
this function we can easily obtain 6(¢) via

6(t) = 2 arctan ( 1 ;Ztan(f)) .

Here 1 is defined for all ¢ via
Yt +T) =) +2n

or Y[M + 27| = 1)[M] + 2m. There are dozens of methods for finding [ M]|
from the Kepler equation

M =1 + esinv, (10)

each with its strengths and weaknesses. Note that for fixed eccentricity e,
with 0 < e < 1, the function M (v) = ¢ + esin® is defined for all real v
and uniquely invertible. Indeed the derivative M'(¢)) = 1 + ecos ¢ is always
positive, so M (7)) is monotone increasing. By plotting a graph of ¢ versus
M we can easily generate some tables of values of i corresponding to M.
However, for rocket science we need many digits high accuracy. Also we may
want to understand the effect of varying the eccentricity of the orbit. We
consider three approaches, two numerical and one analytic.

1. Newton’s Method: This method, properly applied, always works and
enables the generation of results of any desired accuracy. Using our
study of this method in Math 1571H we can easily set up the algorithm
and establish its convergence. Suppose we are given the eccentricity e
and a number M and want to find the corresponding value of 3 such



that (10) holds. To apply Newton’s method we need to express this
problem as the location of a root of some function fj,(1)). We set

fu(W) =1 +esiny — M,

so that the desired ¢ satisfies fi;(¢)) = 0. When e = 0 the solution is
1 = M so a reasonable first guess for a root is ¢y = M. Since

fia(®) = 1+ ecosy

the update step in the Newton algorithm is

Jaa(n)

From the convergence theory for the Newton algorithm, posted online
for this course, we know that the algorithm will necessarily converge to
the root ¥ = V¥, i.e., lim, ,, ¥, = ¥ if, for some positive K < 1, we
have

_ Yntesing, - M

Yrt1 = Pn = 1+ ecos Yy,

= ¥n

n=1,2---

Fur () az(zm‘ _ ‘(wesinw —Mesiny) 1 1)

(fu(¥))? (1+ ecost)?

for all ¢/ in an open interval that includes the root ¥ and the first
guess ;. Since the denominator of this fraction never vanishes, it is
clear that such intervals always exist. In particular, if we use a graph
of the curve to find an interval that includes the root and such that
|t + esinyy — M| < (1 — e)/e then algorithm will be guaranteed to
converge if 1)1 belongs to this interval.

2. Successive approximations: This method is similar in spirit to Newton’s
method and the proof of convergence is also similar. In this case we
define an updating function 7'(¢) by

T(y) =M — esin

so that Kepler’s equation becomes 1y = T'(¢)). For given M we know
that Kepler’s equation has a unique solution Qﬁ and this is the unique
fixed point of T: T'(¢)) = . If e is 0 then this fixed point is M, so we
make the initial guess ¥y = M for the fixed point. From this we can



find a sequence of approximations to 1&: o, Y1, Yo, - - - via the update
rule

¢n+1 :T(’l/Jn), n=0,1,---.

To obtain the growth rate for the iteration we compute the derivative

of T'(y):
T' () = —ecos 1.

Since |T"(1)| = e|cos®)| < e < 1, it follows that ¢ is an attractive
fixed point of 7. In particular, the Mean Value Theorem says that
T(W)—T (o) =T'(&)(»— @) for some & between ¥ and ¢. Thus |T'(¢)) —
T(¢)| < e[t)—g| for all ¢, ¢. Hence, since b1 = T(4h) and T(1)) = 1),
we have

W1 — D] < e|thy — ] < -+ < e"fho — .

Since 0 < e < 1 it follows that 1, — 7,@ as n — 00. Thus the algorithm
always converges to the solution. However, as compared to the Newton
method the rate of convergence can be quite slow. The best that we
can guarantee is that each update will multiply the maximal error by
e, thus reducing it. If e is close to 1, such as for some comets, then
the number of required iterations to get a desired accuracy can be very
large. For Newton’s method we know that once we get sufficiently close
to the solution the number of digits of accuracy will double with each
update.

3. Taylor series in powers of e: Newton’s method yields only a numerical
approximation of v for given values of e and M. It would be very useful
to have an analytic expression for ¢ as a function of e and M, so that
we could easily understand the effect of varying these parameters. One
approach to this problem is to employ a Taylor series expansion for
in powers of e. [Note that if the eccentricity of the orbit is 0 (circular
orbit) then ¢ = M.] We consider {e}, i.e., ¢ as a function of e, and
take the Taylor series expansion

wlel~ 3 L0} = v{0) + Luf0)e + Loy 4
= dem n! de de? 2
If e is “small” then one can expect that taking the first few terms in this

expansion (called the Lagrange series) will give a good approximation
of the exact solution. (In fact, for all planets except Mercury and



Pluto, the eccentricity is less than .1, for Mercury it is about .2 and for
Pluto about .24.) To compute the derivatives we assume that v is a
differential function of e and use the method of implicit differentiation
of the Kepler equation (10):

{0} = M,
L @ __sing
0= de +s1nw+edewcos1/1—> de  14ecost’

S0 J
%@b{()} = —sin M.

Taking the first two terms in the Taylor series we have the approxima-
tion
Y~ M — esin M.

Problem 8 Show that the next term in the Taylor series is
d2

Up to terms of third order, the Lagrange series is

2 3
Y~ M—esin M+ %sinQM — %(3sin3M — sin M).

The validity of the Lagrange expansion can be established in more

advanced analysis courses. However, the radius of convergence of the

Langrange series turns out to be |e| &~ .66, so for satellites with orbits

of eccentricity greater than this, taking more terms in the expansion

will increase rather than decrease the approximation error.

0.4 Examples of elliptic orbit calculations

We will consider a problem involving the elliptic orbit of a satellite about the
Earth. (This problem and its solution are adapted from the excellent book,
Orbital Mechanics for Engineering Students by Howard D. Curtis, Elsevier,
Amsterdam, 2005.) For orbits about the Sun, the point of closest approach
to the Sun is called the perihelion and the most distant point is the aphelion.
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For Earth orbits these points are called the perigee and apogee, respectively.
For Earth, Newton’s equation is r" = kf/r® with k& = 398, 600 km®/s?>. The
radius of the Earth is about 6,378 km. In our standard coordinate system
with the Earth at the origin and the apse line (z-axis) passing through the
perigee and apogee, the equation of the orbit is

a1 —€?)
~ 1—-ecosh’

where ¢ is the semimajor axis. Clearly a = (r, +7,)/2 (in kilometers) where
Ta, Tp are the distances of the satellite to the center of the Earth at apogee
and perigee, respectively. The period of the orbit is

T 2ma’/?
SV

in seconds. The time-dependent orbit equation is

M =1 +esiny
where M = 27t/T and
0 1—e P
tan — = tan —. 12
an 5 e a0y (12)
We can assume ¢t = 0 at apogee. The speed v = ||r'|| of the satellite at a

point in its orbit where it is » km. from the center of the Earth is given by
the equation

Problem 9 The geocentric elliptical orbit of a satellite is 9,600 km. from
the center of the Farth at perigee and 21,000 km. from the center at apogee.

1. Calculate the time to go from perigee at 6 = 180° to the true anomaly
6 = 300°.

2. Find the position and speed of the satellite 3 hours after perigee.
Solution of part 1. from the (time-independent) orbit equation we have

1—¢2 1—¢2
o= el
1—e 1+e
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so 14/rp = (1 +€)/(1 — e). Solving for the eccentricity e we find

Te —Tp
Ta +Tp

e =

Thus we can evaluate T and e from the given data to get T' ~ 18,834 s. and
e = 0.37255. For 6 = 300° we solve (12) for ¢, in radians, to get ¢ = 4.8697.
If £ is the time to go from perigee to 300° we have t = £ + T'/2 so

2n(f+7%) _ 2nt
T T

M = + 7.

On the other hand the Kepler equation gives
M = 4.8697 + 0.37255 sin(4.8697) = 4.5017.

Thus  ~ 4077 s. (1.1132 hr).

Solution of part 2. Note that 3 hrs/ is 10,800 s. Thus we want to
know the position of the satellite at time ¢t = T'/2 + 10,800 ~ 20,217 s. after
apogee. Thus M = 2nt/T ~ 8.1047 radians. Since this is greater than 27
the satellite has gone past apogee and are retracing the orbit. Thus we can
subtract 27 from M to obtain M = 0.461381 We use this value for M and
Newton’s method to solve the Kepler equation for v, and then compute 6
from (12). Starting with the guess 1; = M we obtain accuracy of 107° after
3 steps. To five digits, 1) ~ 0.33788. Then from (12) we obtain 0 ~ 13.1571°.
The radial coordinate and the speed can easily be obtained from this.
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