0.1 Hyperbolic trajectories

As we have shown, in the standard perifocal frame (i.e., special coordinate
system with the line through the perigee and the focus as the z-axis [called
the apse axis by rocket scientists]|, and the focus as the origin) the differen-
tial equation for a hyperbolic trajectory solution of Newton’s gravitational
equation takes the form

do

i B(1 — ecosh)?

where 3 = k?/¢3, and / is the angular momentum of the trajectory. Also
recall that the polar coordinates describing the trajectory are [r, 6] where

ep

"= 1 —ecosf

and ep = (?/k. The constant of the motion £ is related to the eccentricity
e > 1 via &€ = ek. The origin of coordinates is at the focus closest to
perihelion (which occurs for # = 7). For trajectory plotting it will be simpler
to introduce the angle ¢ = 6 — w so that perihelion occurs at ¢ = 0. Since

cosf = cos(¢p+ m) = —cos¢, sinf =—sing

we have x = —rcos ¢,, y = —rsin ¢ and
2k
r=--—
1+ecos¢

Recall that the constants of the motion always satisfy the relation e?k? =
20?E+k?, so the energy is E = k?(e?—1)/2¢? which is positive for a hyperbolic
trajectory. On the other hand, at any point on the trajectory £ = v?/2—k/r
where v is the speed at that point. Thus as r — 00, v — Ve, Where

. kve? —1

Uea:c - E

is the hyperbolic excess velocity, i.e., the speed in excess of the minimum
required to escape the gravitational pull of the more massive body.

A very special point on a hyperbolic trajectory is the perigee (about the
Earth), perihelion (about the Sun), or periapsis (the general term), the point



on the trajectory closest to the focus. The perigee distance is rp, and it occurs
for true anomaly ¢ = 0, so

rp = /k(1+e).

Perigee is the only point on the trajectory where the velocity is perpendicular

to the radius (or position) vector: r, -, = 0. Thus the angular momentum

is given by ¢ = r,v, where v, is the speed at perigee. Note also that F =
v2 — k/rp.

Problem 1 A meteoroid is first observed approaching the Farth when it is
402,000 km. from the center of the FEarth with a true anomaly of ¢ = 150°.
If the speed of the meteoroid at that time is 2.23 km./s., find the following:

a. The eccentricity of the trajectory. (ans. e = 1.086)
b. The altitude at perigee. (ans. 5,088 km.)

¢ The speed at perigee. (ans. 8.516 km./s.)

0.2 The Kepler equation

As in the elliptic orbit case, for astronomers and rocket scientists it is crit-
ical to know the function ¢(¢). To find this function we need to solve the
differential equation (noting that ¢ =60 — 7 )

d k?
d—(f = €—3(1 +ecosp)?,  ¢(0) =0 (1)
where we have chosen the initial position to be at perihelion.
Separating variables in the trajectory equation we obtain the formal so-

lution 12y s ”
A " — 2
03 /0 (1+ ecos¢)? @)

Thus our problem reduces to evaluating the integral

_ d¢
I_/(1+ecos¢)2’ e>1

We have earlier evaluated this integral, but for a different range of values
of e. We can use some of our original calculation that uses the fact that the
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integrand is a rational function of cos ¢. However, at crucial points we will
need to modify the argument to take into account the new range of values
for e. We make the substitution

—u? 2u

- S. —
1+ u?’ in ¢ 1+ u?

cos ¢ =

with inverse u = tan(¢/2). Then we find

_ do B 1+ u?
I_/(1+ecosgb)2_2/(1+e+(1—e)u2)2du
2 1+ u?

- (e+1)2/(1—7u2)2du

where v = (e—1)/(e+1). We simplify the problem slightly by rewriting the
integral in the form

1= R S
T+ 1= T @ — e |
or, with the substitution v = 7/%u,
-1 1
2 = +1
I= / z 7 gy, 3
V26 + 1)2 [1 2 + (1 - v2)2 v (3)

To evaluate this integral and obtain the time development of the trajecto-
ries it is very convenient (though not necessary) to make use of the definitions
and properties of the hyperbolic functions.

0.2.1 The hyperbolic functions

We will review some basic properties of the hyperbolic functions that are
directly useful in rocket science. The most important functions are

exp(x) + exp(—x) sinha — exp(z) — exp(—1)

coshz = , ,
2 2

exp(z) — exp(—x) _ sinhz

tanh x = = .
— exp(x) + exp(—z) coshz



Occasionally we use cothxz = 1/ tanh z, sech x = 1/ coshz, cothz = 1/ tanh z.
Two basic identities are

cosh?z —sinh?*z =1, 1—tanh’z = — = sech?z.
cosh” x
Furthermore
—sinhx = coshz, — coshx = sinhz.
dx dz
Problem 2 Verify that
d 1
— tanhz = ——— = sech’z.
dx cosh? z

Problem 3 Verify that
sinh 2z = 2sinh z cosh .

It is easy to check that the function y = tanh z is defined for all x and
monotone increasing with range —1 < y < 1. Thus it has a unique inverse
x = arctanh y, defined by

r = arctanh y «+— y =tanhzx, —-oco<zr<oo, —1<y<Il1.

Problem 4 Show that

1 1
arctanh y = = 1In -ty .
2 1—y
We can use these results to find alternate evaluations of some familiar
integrals:

1.
dv
1—02
We make the substitution v = tanhz. Then dv = sech?z dz and
substitution gives

11:

h%z d
Ilsz:/ dx =z + C = arctanh v + C.
sech“x



5:/&#)2.

Using the same substitution as in part 1, we find

h’z d 1 1 1
I, = / T AT _ /cosh2x dr = /(Z exp(2x)+—exp(—2x)+§)da:

sech4 4

1 x 1 x
:—h2 - :—.h h - .
4sm x+2+0 2s1n T COS x+2+0

Now note that coshz = 1/v/1 — v? and sinhz = v/y/1 — v2. Hence

1 1
I, = 3 (1 _UUQ) + éarctanh v+ C.

0.3 Evaluation of the integral for t(6).

Now we return to the evaluation of the integral (3). Using the integrals I, I
of the last section, we find

1 1 1 v
I=——— (1= Z)arctanh v+ (1 + =
(e 1 1) l( v)arc anh v + ( 7)1 —

] +C. )

We make use of the same idea for simplification as used for elliptic orbits,
i.e., we set

F e—1 0]
Gl hov— @
5 arctanh v = arctanh ( | tan 2) : (5)
SO
-1 F
¢ tan ¢ = tanh —.
e+1 2 2
Then 1
I:m[—F+esinhF]+C. (6)
Problem 5 Show how (6) follows from (4).
From (2) we have
k*t ¢ deo 1
- = = -F i .
23 /o (1+ecosp)? (e — 1)3/2( +esinh F) @
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Thus, the analogy of the Kepler equation for hyperbolic trajectories is

k2(e2 — 1)3/2¢
M, = —F + ¢ sinh F, where M, = % (8)

Problem 6 To derive the Kepler equation for the time behavior of solutions
to the Newton gravitational equation we have to evaluate the integral

_ d¢
I= / (1+ ecos ¢)?

where e is the eccentricity of the trajectory. As we have seen, for elliptical
(0 < e < 1) or hyperbolic (1 < e) trajectories this is fairly difficult and
requires use of the general substitution u = tan(¢/2). However, for parabolic
trajectories (e = 1) it is easy and can be done using the half angle formula

1
cos’ g = 5(1 + cos ).
Verify this by evaluating
[ o
(1+ cos¢)?
Solution:

d
/ﬁ = étan3(¢/2) + %tan(qﬁ/?) +C

Problem 7 The Kepler equation for parabolic trajectories is

B k2 _ 1) d¢ _ 1 1
My =55t = [ sy = @) + g tane/d) )

This is a third order polynomial in tan(¢/2) and, unlike the elliptic and
hyperbolic cases, can be solved explicitly by Cardano’s formula to express
tan(@/2) as a function of t. Verify that

tan(¢/2) = (3Mp n \/W)m B (3Mp+ \/WYIB

is the solution of equation (9).



0.4 Inversion of the Kepler equation for hy-
perbolic trajectories

Equation (8) for hyperbolic trajectories gives M}, (hence t) as a function of F
(hence ¢ or ). We want to invert this expression to get F'(M}). Numerically,
the best approach is to use Newton’s method.

Problem 8 Show that coshx > 1 for all x and coshx = 1 if and only if

xz = 0.
Since the constant e > 1 we have
dM,
d—;:—1+e coshF >0

always, so M}, is a monotone increasing function of F. Thus this function
is uniquely invertible. To apply Newton’s method we note that the value of
F' that corresponds to a given number M}, is the single root of the equation
[, (F) = 0 where

fu, (F) =€ sinh F' — F — M),

If we make the guess F for the root then the Newton algorithm determines
update numbers given by

far, (F) esinh F,, — F,, — M,
F,. . =F, e
il " " ecoshF,—1

The theory for this algorithm guarantees that the sequence { F}, } will converge
to the root as n — oo if the initial guess and the root lie in a connected
interval such that

n=1,2,--.

(esinh F' — F — Mjy)esinh F <K
(ecosh F' — 1)? ’

where K is some positive constant with K < 1. Such an interval can always
be found.

0.5 Examples of hyperbolic trajectory calcu-
lations

We will consider a problem involving the hyperbolic trajectory of a satellite
about the Earth. (Again this problem and its solution are adapted from
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the book, Orbital Mechanics for Engineering Students by Howard D. Curtis,
Elsevier, Amsterdam, 2005.) Recall that for Earth, Newton’s equation is
r’ = kit/r® with k = 398,600 km®/s? and the radius of the Earth is about
6,378 km. In our standard coordinate system with the Earth at the origin
and the apse line (z-axis) passing through the perigee, the equation of the
trajectory is

2k

"= T+ ecos o

where £ is the angular momentum. Clearly r, = £2/k/(1+ e) (in kilometers)
where 7, is the distance from the satellite to the center of the Earth at perigee.
The angular momentum is related to the speed v, at perigee via ¢ = r,v,
The time-dependent trajectory equation is

M), = —F +esinh F'
where M, = k?(e? — 1)%/?t/¢? and

e —

e+ (10)

tan — = tanh

—_
VIS

F
7

—_

We can assume ¢ = 0 at perigee.

Problem 9 The geocentric trajectory of a satellite is 1, = 6678 km. from
the center of the Earth and has velocity v, = 15 km./s. at perigee.

1. Calculate the distance r to the Earth when the true anomaly is ¢ =
100°.

2. Find the position and speed of the satellite 3 hours after the position in
part 1.

Solution of part 1. From the data given ¢ = r,v, = 100,170 km?/s.
From the perigee equation r, = ¢2/(k(1 + e) we calculate that e = 2.7696 so
the trajectory is a hyperbola. Substituting these values and ¢ = 100° into
the (time-independent) trajectory equation we have r = 48,497 km.

Solution of part 2. We need first to compute the time ¢ at which
¢ = 100°. From (10) we have tanh(F/2) ~ 0.81652, so F' = 2.2927 radians.
Thus, M}, = —2.2927 4 2.7696 sinh 2.2827 ~ 11.279 radians. Now

23 My,

t = Ei(EQ — 1)3/2 ~~ 4141.4 s.
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Three hours later ¢ = 4141.4+-3(3600) ~ 14,941 s. or 4.15 hr. The correspond-
ing value of M}, is M}, ~ 40.690 radians. We now use Newton’s algorithm to
find F. Graphing the right-hand side of the equation M) = —F + esinh F'
we see that F' must be between 3 and 4. Thus we try 7 = 3 in the algorithm
with an error tolerance of 107. After 3 steps we find F' & 3.4631. From (10)
we obtain ¢ &~ 107.78°. From the trajectory equation we find r =~ 163,180
km. To obtain the speed v at this point on the trajectory we use the fact
that the energy is

1 1
E = 51}2 —k/r, = 51)2 —k/r
Then E =~ 52.81 and the final result is v & 10.51 km./s.

Problem 10 Recall that the hyperbolic excess velocity vey. of a object with a
hyperbolic trajectory is the limiting speed as the radius of the trajectory goes
to infinity. Suppose a spacecraft on a hyperbolic trajectory around the Earth
has a perigee radius of 7500 km. and a perigee speed of 1.1 Veyx.. Answer the
following:

a. How long does it take to fly from ¢ = —90° to ¢ = +90°% (ans. 1.14 hr.)

b. How far is the spacecraft from the center of the FEarth 24 hours after
passing through perigee? (ans. 456,000 km.)



