0.1 Impulse maneuvers

Now we are ready to do some “real” rocket science and carry out orbital
maneuvers. Many such operations require firing of the rocket engines for ex-
tended periods of time and get into detailed issues of physics and engineering
that are not appropriate for a calculus course. However, there is one standard
technique that is based almost entirely on the 7 constants of the motion for
a trajectory that we have already constructed: energy (1 constant), the an-
gular momentum vector (3 constants) and the Laplace-Runge-Lenz vector (3
constants). This is the use of impulse maneuvers to change trajectories. For
an impulse maneuver the rocket engine is turned on for a very short time but
with a powerful thrust. The rocket engine may have been reoriented before
firing so that the thrust may not be tangent to the original trajectory. Thus
at the instant ¢y of firing, the rocket which was on a trajectory with present
velocity vy and position ry almost immediately follows a new trajectory with
initial position still ry but new velocity v; at time ;. The change in velocity
(or delta-v as we savvy rocket scientists like to say) is Av = v; — vy, and
it completely determines the new trajectory of the rocket. This is an ideal-
ization, but for very brief rocket firing during a long mission it can be quite
accurate and energy efficient. The mass of the rocket will decrease due to
the engine firing, but since the mass of the rocket factors out of the orbit
equations, it will not have any effect on our calculations.

Now let us consider a rocket (with engines turned off) that is following a
trajectory about a planet (say the Earth). Suppose at time ¢ it is at position
r and has velocity v = r’. We assume that the origin of coordinates is at the
center of the Earth. The constants of the motion for this trajectory are
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Angular momentum :
L=rxv
The Laplace-Runge-Lenz vector :
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We can evaluate these seven quantities at time ¢ but they have the same
values at all points on the trajectory. Although there are 7 constants, due to



the 2 conditions
e-L=0, |el?=2[LIPE+#

there are really only 5 independent quantities. (Recall that ||e|| = ek and
||L|| =, so e*k* = 2¢?E + k*.) Each of these constants determines a surface
in 6-dimensional position-velocity space (phase space). At any time ¢ the
rocket has coordinates (r,v) in phase space and, for example, the rocket
coordinates must always lie on the surface £ = %V -V — f for a fixed constant
E. This means, essentially, that we can use the restriction to this surface to
solve for one of the 6 coordinates in terms of the other 5. Since there are
5 independent constants of the motion, the solution of Newton’s equations
lies on the common intersection of 5 surfaces and is a function of only 1
variable. Hence it is a 1-parameter curve. Thus these constants of the motion
completely determine the trajectory without any more work. (However, they
don’t tell us how the trajectory is traced out in time.)

We conclude from this discussion that for an impulse maneuver at time
to we need merely compute the 7 constants of the motion from the values
(ro,vo) to determine what trajectory the rocket has been following. Then
we compute new constants of the motion at ¢ from the initial values (rg, v1)
(where vi = vo + Av) to obtain the new trajectory.

0.2 An example: The Hohmann transfer

The Hohmann transfer, proposed by Hohmann in 1925, takes a satellite from
a near-Earth circular orbit to a higher circular orbit with an expenditure of
the minimum delta-v. To understand it we need first to determine the orbit
equations for a circular orbit, i.e., an orbit with e = 0. This is a special case
of elliptic orbits. Setting e = 0 in the orbit equation r = ¢2/k(1 — e cos ) we
see that r = /2 /k, a constant. It follows that

0= %r-r:2r-r':2r-v,
sor L v. Thus ¢ = ||L|| = rv and the speed v is a constant. We conclude
that v?2 = k/r. The period of the orbit is T} = 27r/v = 2m(/r3/k. The
energy is E = v*/2 — k/r = —k/2r.
Now suppose the the satellite is in a near-Earth circular orbit of radius
r1 and we wish to boost it to a new circular orbit of radius ro, (12 > 71) and



in the same plane as the original orbit. At the time ¢ = ¢, we fire the rocket
motor briefly in a direction tangent to the orbit, to boost the speed from
v1 = y/k/r1 to v1 + Avy. If we choose the z-axis to be the apse line through
r(tp) and the center of the Earth, and the x — y plane as the plane of the
orbit, we can assume that the position and velocity immediately after firing
are r(tg) = —r1 i, v(ty) = —(v1 + Awvy) j. If Avy > 0, but not too large, the
satellite will follow an elliptical orbit in the x — y plane with equation
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where e is the eccentricity of the new orbit and
= 7'1(1)1 + A’Ul). (1)

We want to design this orbit such that the perigee radius (f = 7) is r, = r;
and the apogee radius (# = 0) is r, = 72, so that the ellipse will be tangent
to the circular destination orbit at apogee. Thus we require
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Solving for e and £ in these 2 equations we find
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Then, using these results and equation (1) we can solve for Aw:

Avlzwﬁl 2T2 —1]
1 T+ T2

The time for the satellite to travel from perigee to apogee is half a period:
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At apogee we again fire the rocket engine, briefly, to put the satellite in the
higher circular orbit. As before we orient the engine so it fires in direction of
the tangent vector of the trajectory. At the instant of firing, t = tq+7/2, the




speed at the apogee is v and the velocity vector is tangent to the trajectory.
Thus ¢ = r1(v1 + Avq) = rovs, SO
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At the instant just after firing the position is the same but the velocity is
(ve + Avy) j. We require that Aw, is exactly the change in speed required
to put the satellite in the higher circular orbit, i.e., to make the eccentricity
e of the orbit equal zero. Thus we require 2 = kry, €?k? = 20°E + k? =
2kra(vy + Avg)? — k? = 0 or vy + Avy = /k/r, the speed in the higher
circular orbit. The result is
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The total delta-v is Av; + Avy the minimum required to move to the higher
circular orbit. For this new orbit we have constant speed ve + Avy = 1/ k/79,

period Ty = 271y /(v + Avy) = 2m4/73 /k and energy Fy = —k/2r5.

0.3 An example: Escaping the Earth from an
elliptical orbit

Suppose we have a satellite in the elliptical orbit about the Earth
2/k

r=——m—— 0<e <1,
1+e;cos¢ =1

expressed in the usual coordinate system with ¢ the angle between perigee
and the position of the satellite. We wish to fire the rocket engines, briefly,
so that the satellite will escape the Earth, but use the minimum amount of
fuel possible. To just barely escape the Earth we need to put the satellite
in a parabolic trajectory, i.e., a trajectory with e, = 1. Since the general
relation e?k? = 2/2F + k? holds this means that E, = 0 for the parabolic
trajectory. The most convenient way to achieve this escape is to fire the
engines at perigee in the elliptical orbit, with the change in velocity vector
tangent to the orbit at perigee. The perigee distance from the Earth is
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and the velocity at perigee is vi = —v; j where rjv; = £;. An instant after
firing the engine the satellite will be at ¢; = 0,r = r; but with velocity
—(v1 4+ Awy) j. Since the energy of the new trajectory is E = (v + Avy)?/2 —
k/rp, the energy will be E = 0 and we will just have achieved a parabolic
trajectory es = 1 provided (v; + Av;)? = 2k/r; or
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The angular momentum for the parabolic trajectory is
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so the new trajectory is
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Problem 1 A spacecraft is in circular orbit with radius r and speed v about
a planet. The rocket is fired instantaneously to increase the speed in the
direction of motion by Av = av, where a > 0. What is the eccentricity of
the new orbit? (ans. e = a(a+2))



