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Abstract

A spacecraft carrying a communications satellite (Loiterer IT), funded
by the start-up Mars Telecommunications Corporation (MTC), is on
its way to Mars, and presently approaching the planet on a hyperbolic
trajectory in the equatorial plane and in the same counterclockwise
direction the planet is rotating about its axis. Based on measurements
of the position of the spacecraft at two different times, each team is to
determine the precise trajectory, including the eccentricity, distance
rp to the planet at periapsis, speed v, at periapsis and time of arrival
at periapsis. Upon arrival at periapsis the spacecraft will fire its retro-
rocket and begin a Hohmann maneuver to achieve a stationary circular
orbit over the equator with radius r; and speed v,, to be computed.
The team will need to determine the proper Av at periapsis to put the
spacecraft into an elliptical orbit with apoapsis r4 = rs and periapsis
rp = rp. The time of arrival at the apoapsis of the elliptical orbit will
also need to be determined. Next the team will need to compute the
proper Aw for firing at apoapsis to put the spacecraft into stationary
orbit. Finally, since the final orbit will not be exactly stationary, and
may have a very small eccentricity € the team will need to do a Taylor
expansion of the orbital equation and the period in terms of powers
of € to determine if the orbit error is sufficiently large to require firing
of the engines to correct the orbit. The results should be written up
as a report to the MTC Board of Directors.

1 Background

The Mars Telecommunications Corporation (MTC) is a start-up com-
pany with an ambitious project: To establish planet-wide cell phone
coverage on Mars. The initial part of the plan is to set up 4 satellites
in stationary, equally spaced, orbits over the equator of Mars, for full
coverage in the equatorial regions. While acknowledging that there is
presently little demand for such coverage, due to the low population
P = 000,000 on Mars, the MTC argues that the growth potential is
great. This project involves the first of these satellites and, as such,
it doesn’t matter where on the equator it is directly overhead.

The MTC has had some difficulty in attracting investors. Thus
they have cut costs by using college science and engineering students
to plan the orbital maneuvers. They pay nothing but promise a good
letter of recommendation for students that plan a successful Loiterer



project. Unfortunately, the first spacecraft venture, Loiterer I, went
badly. The students planned a trajectory with periapsis distance 7,
that was less than the radius of Mars (3,396 km.) and the spacecraft
crashed on the surface. Now Loiterer II has been launched. This
time the Mars trajectory was carefully planned, but again a problem
occurred, due to a confusion of degree and radian measure, and contact
with the spacecraft was cut off while the engines were firing to establish
the trajectory to Mars. Contact has again been established but no one
is sure of the present exact trajectory. However, the position of the
spacecraft has been observed twice as Loiterer II approaches Mars,
so on this basis the trajectory can be determined and, possibly, the
mission can be saved if the rockets are fired at the correct times and
with the correct Av to reach the stationary orbit. The students that
made the reported errors were not honors students (who would never
make such mistakes). Willard Miller and Ryan Gantner have assured
the MTC Board that IT Honors students, particularly those in in
Math 1572H, are very capable and that they can save the Loiterer
IT mission. Thus you have been hired as consultants to advise the
MTC concerning the orbital maneuvers needed to park Loiterer IT in
stationary orbit.

2 Technical and theoretical data
Some of this information may not be needed for the mission planning.
It is up to you to decide what is relevant.
length of day on Mars: 24.62 hr.
length of day on Earth: 23.95 hrs.
angle of inclination of the equator on Mars to its orbital plane: 25.19°
mass of Mars: 641.9 x 101 kg.
mass of Earth: 5.974 x 1024 kg.
radius of Mars: 3,396 km.
radius of Earth: 6,378 km.
kBarth = 398,600 km.3 /5.2
Entars = 42,828 km.3 /5.2



In the standard perifocal coordinate system the possible trajecto-
ries with nonzero angular momentum are

I
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where periapsis occurs at ¢ = 0. The energy is
E =v%)2 —k/r = K*(e? — 1)/202.
The angular momentum is £ = ||L||, where
L=rxr' =/k

andr’ = v and ||v|| = v. Here, ¢ = rpv, where rp, v, are the radius and
speed at periapsis. The Kepler equation for hyperbolic trajectories is
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In terms of the angle ¢ that is 0 at periapsis, the Kepler equation for
elliptic orbits takes the form
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(Note that this has the effect of switching the sign of e in the former
equation for §.) Here the period is given in terms of the constants of
the motion by
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where a is the semi major axis and 7p, 7, are the radii at periapsis and
apoapsis, respectively. In the special case of a circular orbit (e = 0)
the Kepler equations reduce to

3 Calculating the stationary orbit

We intend to put Loiterer II in a stationary orbit over the Martian
equator. The first task is to determine the required period of the

4



circular orbit, and then to determine its radius and the velocity of the
spacecraft. The relationship between these quantities and the angular
momentum is given by the equations.

2
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Task 1 Compute rs,vs and s for the geostationary orbit.

4 Calculating the Mars trajectory

The next set of problems is to locate Loiterer II, to determine when
it will reach periapsis, and to determine the radius and speed at pe-
riapsis. Presently the spacecraft is on its way to Mars, following a
trajectory of the form

__ 4/k
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in the perifocal coordinate system, where ¢ is the angle between the
periapsis position and the spacecraft (with vertex at the focus). Con-
tact with the spacecraft has only recently been re-established and two
measurements of its position have been made. The first measure-
ment was [ro, ¢o] = [1,244,601.71 km., 161.5168°] and the second was
[r1, 1] = [911, 534.65 km., 159.7979°] where the degree measurements
have to be converted back to radians (as all savvy rocket scientists
know).

Task 2 Compute the eccentricity ey and angular angular momentum
L1 for this trajectory. Check that the trajectory is hyperbolic.

The periapsis radius and speed are related to the angular momentum
by

b = rpup,
SO
k
b= \krpy(1+e1), vp= r_(l +e1).
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Task 3 Compute r, and vp. Check that this trajectory will not lead to
a collision with Mars, i.e., a crash. The original plan, before contact
with Loiterer II was lost, was that r, < r,. Check to see if this is still
correct.

Task 4 Compute the time remaining (in seconds) between the time of
the second observation and arrival at periapsis.

We want to contact Loiterer II exactly 10 hours (36,000 seconds)
before periapsis to program it with the precise parameters for the
Hohmann maneuvers to a stationary orbit. To make the radio contact
we need to know exactly where it is.

Task 5 Use the Kepler equation for hyperbolic trajectories and New-
ton’s method to find the location [r,$] of Loiterer II ezactly 10 hours
before periapsis.

5 Calculating the Hohmann maneuver
to an elliptical orbit from the fly-by hy-
perbolic trajectory

When we fire the engines we will have new angular momentum
62 = ’l"p(’l)p + A’Ul)

or
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The new (elliptic) orbit must be designed to have periapsis radius 7,
and apogee radius r, = r in order for the Hohmann transfer to be
feasible. Thus the new orbit equation will be
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Solving for Av; we get

k 2
Am:,/—< L—\/Hel).
Tp Ts +Tp

Task 6 Compute the new constants of the motion es and £s. Calcu-
late Avy. Is this positive or negative, i.e., should we fire or retrofire
the rocket motor?

The period of the elliptical orbit is given by
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so the time to travel from periapsis to apoapsis is T5/2.

Task 7 Compute the time between periapsis and apoapsis for this or-
bit.

6 Calculating the Hohmann maneuver
to the stationary orbit from the ellipti-
cal orbit

For the second firing which occurs at apoapsis r, = 75, we must achieve
the angular momentum £ of the stationary orbit. We have

[ 2krgr
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and after firing the motor we want

(Vg + Ave)rs = Ls\/krs.

Thus the delta-v is

Task 8 Compute Avs. Is this positive or negative, i.e., should we fire
or retrofire the rocket motor?



Task 9 The Hohmann maneuvers that you have just carried out de-
pended upon the requirement that the periapsis radius r, was less than
the radius rs of the stationary orbit. As additional rockets are sent
to occupy stationary orbits about Mars, it may happen that rp > 5.
How would you alter your planning and the firings of the rocket motor
to successfully execute the Hohmann maneuvers to a stationary orbit?
Emphasise the differences between the Hohmann maneuvers in the two
cases and make a sketch of the trajectories.

7 Perturbations of the geocentric sta-
tionary orbit

When we park the spacecraft in the geocentric orbit, the orbit may be
(or will become) slightly elliptical over time. We need to monitor the
spacecraft orbit to ensure that it remains stationary to within strict
tolerance limits. Otherwise it will become necessary to fire the rocket
motor again to correct the orbit. A relatively easy way to monitor the
orbit is to observe the period. From the period we can compute the
eccentricity € of the orbit.
For our model we assume that the equatorial orbit has the form

B T B 2k
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where 0 < € << 1. That is, the eccentricity is a very small number
and the angular momentum ¢ = /r/k is fixed. The period of the

orbit is 3/2
T(e) = 2 (T—) .
VE \1—¢€2

We can regard the period and the radius r(¢,€) as functions of e.
Assume that the eccentricity is so small that you can ignore all terms
of order greater than €2 in the Taylor series of T and r about € = 0.

Task 10 Work out the Taylor series expansions of T and r explicitly.
They should be polynomials of order 2 in e. We will permit the present
orbit only so long as the actual period differs from the desired period,
the length of the Martian day, by no more than 6 minutes. Using the
model and our approximation, what is the largest value of € that we
can tolerate?



Task 11 We need to understand how the nearly stationary orbit ap-
pears from the ground for very small €. Thus, neglecting powers of €
graeter than two, we should compute the expansion

$(t,€) = fo(t) + fr(t)e + fo(t)e” + O(e%), (3)
where 12
fO(t) = J6_37

the result for a stationary orbit. This can be done through the use of
Taylor series. Recall that the Lagrange expansion for the solution 1)
of the elliptic Kepler equation M = 1) + € is

2
1/;:M+esinM-|—%sin2M+...’ (4)
where M = 27t/T(e) and
_ I+e P
¢(t, €) = 2arctan ( [ tan 2) : (5)

One can expand this last expression for ¢ in powers of € and then
substitute the Lagrange expansion for ¢ and neglect powers exceeding
€2 to get the final result. The previous group of student consutants (not
honors students) carried out the expansion of (5) and obtained the

result
2

¢ =1+ esing — %sinw +O().

Verify or correct this result. Derive expansion (3), i.e., compute
f1(t), f2(t). Now interpret the result.

a. First assume that € is so small that we can neglect the € term
in (3). How would you describe the motion as seen from the
ground?

b. Now take into account the effect of the € term. How would you
describe the motion as seen from the ground?

REMARK: It is easy to show that in this approximation the curve
r(€, ¢) derived in Task 10 is an epicycle as a function of ¢, i.e., it
can be expanded in linear terms of the form cos(n¢). The Cartesian
coordinates z, ¥y of the orbit in the perifocal plane are

(.’L‘(E, (:b)a y(ea ¢)) = (’I"(e, ¢) cos ¢, 7"(6, (:b) sin ¢) .



That (z(e, ¢), y(€, ¢)) is an epicycle follows from the addition formulas

1
cos’ ¢ = 5(1 + cos 2¢)

cos acos ¢ = — (cos(¢ + a) + cos(¢p — a))

=N =

cos asing = 3 (sin(¢ + a) +sin(¢p — «)) .

Thus even today epicycles play some role in rocket science.

8 The recommendations and report

Write up your team report to the MTC, addressing each of the tasks.
You can (and are encouraged to) confer with your classmates and in-
structors about the solutions to the problems. You can also parcel out
the tasks within the team. However, each final report is the responsi-
bility of the team members and each team will be judged as a group.
All of the computations can be carried out on a calculator or using a
spreadsheet program. (Indeed, standard spreadsheet programs, some
of which can be downloaded for free, have all of the functions needed
for the project.) The consultants report should be prepared with a
word processor and should look professional. We expect complete sen-
tences describing your findings. An initial draft will be assessed by
Ryan Gantner and then returned to you for the final report.

9 Appendix: The trajectory of Loi-
terer 11
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Trajectory of Loiterer II

apse axis

0. First sighting

1. Second sighting

2. Hohmann transfer at periapsis
3. Elliptical orbit

4. Hohmann transfer at apoapsis
5. Geostationary orbit



