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We develop a group theoretic method based on results of Winternitz et al. to compute and classify
all first- and second-order raising and lowering operators admitted by Hamiltonians of the form H
=-(1/2)A; + ¥ (x, ¥). The key to our results, which generalize to higher dimensions, is a proof that

H admits a second-order raising operator only if the Schrodinger equation separates in Cartesian,

polar, or elliptic coordinates.

INTRODUCTION

We call an operator R a raising operator for a
Hamiltonian H if [H, R]=\R, where X is a nonzero real
constant. If ¥ is an eigenvector of H with eigenvalue
p, Hp=py, it follows easily that H(RY) = (u + \)RY. Thus,
knowledge of R permits one to obtain new eigenvalues
and eigenvectors of H from old ones.

In this paper we give a complete classification of all
potentials occurring in the two-dimensional time inde-
pendent Schrddinger equation H=py which admit first-
and second-order raising operators. The classification
of first-order operators is almost trivial, and it is only
the second-order case which presents difficulties.
Moreover, as one can see from the results of Secs, 2
and 3, there are very few potentials admitting second-
order raising operators, and all such potentials are
generalizations of the harmonic oscillator.

The principal interest in our results lies in the fact
that they are exhaustive and in the method used to ob-
tain them, Proceeding directly, one can show that a
Hamiltonian admits a second-order raising operator if
and only if the corresponding potential V satisfies the
system (2. 8)—(2. 10) of second-order overdetermined
partial differential equations. However, while one can
easily find some solutions of these equations, it is
extremely difficult to determine when one has found all
solutions, We have not been able to solve these equa-
tions directly.

In order to solve (2. 8)—(2, 10) we have adopted an
indirect method based on results of Winternitz et al. ,*
which relates this problem to the Euclidean group E(2),
In Ref. 1 the authors show that H admits a second-
order symmetry operator if and only if the correspond-
ing Schrédinger equation separates in Cartesian, polar,
parabolic, or elliptic coordinates. In this paper we
show in essence that if # admits a second-order raising
operator, then it also admits a second-order symmetry
operator, hence that the Schrddinger equation must sep-
arate in Cartesian, polar, or elliptic (but strangely, not
in parabolic) coordinates. This means that we can re-
strict ourselves to a search for solutions of (2. 8)—(2. 10)
which separate in one of these three coordinate systems,
In this case (2. 8)—(2. 10) reduce to systems of ordinary
differential equations which, though tedious to solve, are
tractable, Thus we obtain a complete solution to our
problem,

Our method can be generalized to the more ihteresting
three-dimensional case? as well as to other types of dif-
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ferential equations, for example, wave equations or the
time dependent Schrddinger equation,

The results of Refs. 1,2, and this paper show the in-
timate connection between second-order raising and
symmetry operators and the separation of the Schrg-
dinger equation in some coordinate system. It appears
that higher-order operators will not be of great interest
unless and until one can find similar indirect means of
characterizing them.

The paper is organized as follows: In Sec. 1 the prob-
lem of first-order raising operators is solved, while in
Sec. 2 the problem for second-order operators is form-
ulated as a system of overdetermined second-order
partial differential equations. We then obtain some
solutions, but not the most general class which must
await the further development of the connection with
separation of variables in Sec, 3, where we complete
our classification of all solutions. Finally in Sec. 4,
we give the action of the raising and lowering operators
on a basis of eigenfunctions of the Schrédinger equation
for each case.

1. FIRST-ORDER OPERATORS
Let H be the formal Hamiltonian

H=— 305+ 0y) + V(x,) (1.1)

acting on the Hilbert space Ly(R,;) of square integrable
functions in the plane. Here V(x,y) is a real-valued
thrice-differentiable function of (x,y) to be determined.
We search first for all Hamiltonians which admit a
first-order raising operator R, i.e., we look for all H
which satisfy

(8, B]=1R, (1.2)

where X is a nonzero real constant and R is a first-
order partial differential operator

R=0y(%9)3, + 0y(%, )3, + 05(x,3), | 4]*+ [ [?#0,
(1.3)
Without loss of generality, we can assume that R is
real, i.e., that a,, a,, a; are real-valued functions.
Substituting (1.1) and (1. 3) into (1. 2) and equating co-
efficients of .y, 0,4, dyy, O, 0y, 1 O both sides of the re-
sulting expression, we obtain the conditions

8,0y =0,03=0, 08,0y+0,a1=0, (1.4)
(axx + aw) oy + zaxa3 +2k0¢1 =0,
(1.5)
(B,,+ 6,,) Qy + 26,,013 +2>ta2 = 0,
1484
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(Dp+3yy) O3 + 20,0,V + 20,3,V + 2205 = 0, (1.6)

It is easy to show that these equations have solutions if
and only if
Vix,)

_ _ 1,22, o0 _ jAcx/a ifa+0
=fbx - ag) + 21 (" +57) {)\cy/b if a=0, b+#0.

Here, a,b,c are real constants with a?+5%>0 and f is
an arbitrary real differentiable function. The raising
operator is then

R=ad,+bd,— \Max+by)+c.

(1.7

(1.8)

By a simple translation and rotation of the (x,y) co-
ordinates we can obtain new Cartesian coordinates X, Y
in which

V(X,Y)=g(X) +22*Y}, R=3y-2)Y, (1.9)
where g(X) is arbitrary. In these coordinates the
Schrédinger equation

HY(X, Y) = p (X, V) (1.10)

has solutions of the form
bp,n=exp(~ |X|YY/2)H,(VIXY)GX), n=0,1,2,...,
(1.11)

where H, is a Hermite polynomial® and G(X) is a square
integrable solution of the equation

G" - 2g(X)G=[-2u+ || @r+1)]G.
It follows easily that

—VIAl d’uﬂ,mi if A>0
{27V TAT § et 1 A<

2. SECOND-ORDER OPERATORS

Next we consider the more interesting problem of
computing those Hamiltonians H which admit a second-
order raising operator R:

BYy,n= (1.12)

(2.1)

Here a;(x,y) is a real function of (x,y) and of + of + o}

> 0. Substituting (1.1) and (2. 1) into (1. 2) and equating
coefficients of the third-order and second-order deriva-
tives, we obtain equations for ay,..., a5 which can easi-
ly be solved to yield

ay=-Ay+4A,y,

R= 040, +0p0yy+ 030, + 043, + A58, + ag.

a2 =A1x+A2y +A3, 013=—A2x+A5,
a,=NAxy - )\A2y2 - Mgy - Mx ~Agy +A,,

05= = M2+ Mgy — Mgy + Agx + Ay,

(2.2)

where the A; are real constants. The constraints on o4
and V are obtained by equating coefficients of 9., d,, and
1 in (1. 2):

3(0yy + Dyy) 0y + 0,05 + 20V + 0y V= — Ny, (2.3)
3D+ Dyy) 05 + 3,0 + 0y V, + 203V, = — A1, (2.4)
3(Bge + yg) g + Oy Vi + 0y Vi + @3V + @,V + 5 V= — Nt
(2.5)
Relations (2. 3) and (2. 4) yield
O,0g== 20 Vo= @V, — hag+Aj), @. 6)

0,05== a3V, - 203V, = Aag + A
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Substituting (2. 6) into (2. 5), we obtain an expression for
the multiplier o in terms of V:
2hag= (Ay - 205) Vo + (Ag — 20 Ve + A(Agy + Ay — Ay~ As).
2.7

Equations (2. 3) and (2. 4) may not be consistent with

(2.7). To guarantee consistency, we differentiate (2.7)
to compute 9,04, 9,0 and substitute into (2. 3), (2. 4).
This yields the consistency conditions for the potential:

(Ag — 20) Vi + (A = 205) Vi, + 6204 V; = 2(9,05 — Aap)
=—222%a, +2?4,, (2. 8)
(A =20, Vou + (A — 205) Vyy— 2(3,04 — M) Vo + 6205V
= - 22%a; + XA, (2.9)

Thus, corresponding to any choice of the constants

A4, ...,A the Hamiltonian admits the raising operator
R, (2,1), (2,2), provided that V satisfies the partial
differential equations (2. 8) and (2. 9). The multiplier o
for R is given by (2. 7).

We can obtain another consistency relation for V by
differentiating (2. 8) with respect to x, differentiating
(2. 9) with respect to y, and subtracting the second
equation from the first:

(Aix +A2y +A3) Vﬂ + 2(A1y - Azx - A4 +A5) I,xy
- (Ax +Agy + Ag)Vyy + 34,V - 34,7,
:—X(— 3A1M+3A2Ky+).A3+2A6). (2. 10)

Although (2. 10) is a consequence of (2. 8) and (2. 9), it is
useful in its own right,

In conclusion, to find the potentials V admiting rais-
ing operators, we must solve the system (2. 8)—(2. 10)
of overdetermined second order partial differential
equations.

To simplify the solution of these equations, let us
consider the action of the Euclidean group E(2). Under
the action of a Euclidean transformation the coordinates
(x,¥) go into new coordinates (x’,y’), where

x'=xcos¢ +ysing +a, ¢,a,beR,

y'=—xsing +y coso +b. (2.11)
Since Euclidean transformations preserve the Laplace
operator, we have

- %(ax"x’ + 3yy') + V(x,sy') =~ %(an"' ayy) + V,(x9 y))

where V'(x,y)=V(x’,»’). Thus the Hamiltonian # is
transformed into a new Hamiltonian H' = — 3(2,, + 9,,)
+V'(x,y). Similarly the raising operator R is trans-
formed into a new raising operator R’ satlsfymg [_' R’]
= \R’. Considering the set M of all pairs {V, R} which
satisfy (1. 2), we see that E(2) acts on M as a trans-
formation group. We will consider two solutions of

(1. 2) as equivalent if one solution can be obtained from
the other by a transformation (2. 11), i.e., if both solu-
tions lie on the same E(2) orbit. Clearly, it will be
enough for us to find a solution, if one exists, corre-
sponding to a single point on each orbit.

For the orbit analysis we make use of (2. 1) and (2. 2)
to write a general raising operator as
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_Iz,il A,Q;+ ag(x,9), (2.12)
where
21=MP1—MM, :Q_2=—MP2+A.yM, Q3=P1 Pz—A.yPh
(2.13)
Q=Pi- Py, Qs5=Pi~ xyP,, Qe=M, Q:=P;, Qz=P,.
Here,
P1=6x, P2=By, M=x8y—y8, (2.14)

are the basis operators for the Lie algebra action of
E(2). We see that the pure differential operator compo-
nent of R is described by the vector (44,...,4;) and
that the action of E(2) induces an orbit structure on the
set of all such vectors. A direct computation shows that
a rotation through the angle 6 [Eqs. (2.11) with a=5=0]
transforms (4,) into (A}) with
Al=cos8A; +sinfA,, Aj=-sinfA +cosfA,,
Aj=cos20A;+sin26 (A, - A;),
i=-sinf cosf A; + cos’d A, +sin’0 A;, (@. 15)
Al=sinf cosf Ay +sin’0 A, +cos’0 A,
Af=rsin’6 Ay - A sind cosf A, + A sind cosf A; + Ay,
1=cos8A; +sinfA;, Af=-sinfA;+cosfA,.
Similarly, the translation x —x +a yields
A{ =A1! Aé =A2’ Aé = aAl +A3,

Aj=A,, Af=-aA,+A;,

§=—2a0MA +A;, Al=-a*MA +aA +A,, (2.16)
g=—arA, +Ag,
and the translation y —y + b yields
A=A, Aj=A,, Aj=bA,+A;, Aj=-DbA +A,,
Af=A;, Aj=brA;+A,, (2.17)

Aj=—bMAg+A;, Ab=—bDA,— bAA; - bAg+ A,

Using these results, we will choose a point on each
E(2)-orbit. We start with a general operator JA,Q;.
Noticing that A} +A} is an E(2)-invariant, we see that
there are three cases:

Case 1: A}+A}>0.
Case 2: A;=A,=0, A}+Al+A%>0.
Case 3: Aj=Ay="+"=A4;=0, A}+A%2+A%>0.

In Case 3, R is first order and has already been treated
in Sec. 1. In Case 1 we can perform a rotation so that
A{>0, Aj=0 and then translate so that A =Af =0. Thus

the vectors (4;) of the form
(A,0,0,0,A5,A,,A;,Ap), A;>0, (2.18)

cut each Case 1 orbit exactly once. In Case 2 we can
perform a rotation such that A{=0. Thus, vectors of the
form

(0,0,0,A,,A;5,A4, A, Ap), A§+A§>0, (2.19)
cut each Case 2 orbit at least once,.
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These Case 2 solutions of (2. 8)—(2. 10) are easy to
find, Indeed, assuming that R=7A,Q;+ g and V are
Case 2 solutions, we can use (2. 19) to require 4,=4,
=Az;=0. Then (2. 10) becomes

2(A5-A4)I,xy=_ ZMG. (2. 20)

Suppose first that A;—A,#0. Then (2. 20) has the general
solution

V=-[MAgry/(As - A]+fx) +£(),

where f and g are arbitrary. Substituting this solution
into (2. 8) and (2. 9), we find A;=0 for consistency, and
so V=f(x) +g(y). If both A, and A; are nonzero, we can
perform translations (2. 16), (2.17) to achieve A;=A4,4=0,
Thus Egs. (2.8), (2.9) reduce to

xf" +3f =%, M\g"+3g" =2y
with general solution
2
Vix,y)= %(x2+y2)+%+-%+c, a,b,cc R,
Y (2. 21)
(AJ) = (07 0’ 07A4’A53 0’ 07 0)’ A4’A5 #0,

If A;+#0, A;=0, we can perform a translation (2. 16)
to achieve A3=0. Then Eqgs. (2.8), (2.9) reduce to

xf" +3f "= 2%, (¢"-2HA;=0
with solutions
2
Vix,y)= %(x2+4y2) + %+by +c,

(2. 22)
(Aj) = (0; Oy 0’A47 07 0’A73 0), A41A’[¢0

and
M  a .
Vix,y)= =g +2+&0), g0) arbitrary,

(2.23)
(AJ) = (0’ 0, O)Ab 0, 0, 0) 0)’ A4 #0.

The cases A;#0, A =0 are identical to (2. 22), (2.23)
with x and y interchanged.

Finally, suppose A,=A;+0. Then (2. 20) yields 44=0,
and by applying translations (2.16), (2.17) we can
achieve A;=A;=0. Thus Egs. (2.8), (2.9) reduce to

d d
E;(xVx+yVy+2V)=>~2x, @(xvx+yvy+2v)=>\2y
with general solution

2 2

(‘4]) = (0’ 0’ 0)A4’A47 0: 0’ 0): A4 #0.

(2. 24)

Here g is arbitrary, x=7cos8, y=vsind, f(6)=g(tand)/
02
sin‘6.

This completes the analysis of Case 2. However,
Case 1, Eqs. (2.18), is much more difficult. We have
not been able to discover a direct practical means of
computing all solutions of (2. 8)—(2. 10) corresponding to
this case. In the next section we develop an indirect
group-theoretic procedure which not only enables us to
solve these equations but also provides clear insight
into the structure of second-order raising operators.
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3. SEPARATION OF VARIABLES

Let us note that raising and lowering operators occur
in pairs: If R is a raising operator for H,

[H,R]=)R, 1#0, A€R (8.1)
then, taking the formal adjoint, we have
18 FERY: (3.2)

so that E' is a lowering operator (raising operator by
- ). In particular, if R takes the form (2. 12), then

8 8
R'= jZ_}lA,Q}+ ag= 24 A;Q;(~ V) + &, (3.3)
where
Ai‘Ah 1<j=<5
As——As, A= A1. Ay, Ag=A,- A, (3.4)

Q= ag— MAY +Ax — A, - Aj).

Here Q;(- ) is obtained from @;, (2.13), by replacing
A with — A. These results follow from (2. 13) and the
following facts:

Qi=MPy +\xM+ Py -y, Q3=—MPy, = \yM+ Py~
Q3=Py Py +\yPy, Qj=Pi+ \xPj+), (3.5)
Q=Pi+MPy+), Qi=-M, Q}=-P,, Qi=-P,.

Moreover, it follows from (3. 1) and (3. 2) that [H, S]
=0, where S=[R,R'], i.e., Sis a symmetry of H. We
are concerned with the case “where R and R’ are ' both
second-order differential operators so that we would
expect that S was in general a third-order operator.
However, we see from (2.12), (2.13), and (3. 3) that the
purely second-order terms in R and R* are identical.
This means that S is at most a second-order operator.
Indeed for S=§ +B, where § is a pure differential opera~
tor and B is a multiplier function, a straightforward
computation yields

§ =PH4rAL+ 20A% + Al - 24,4, + 24,4;) + PH4AL + A}
— 24,A4 - 2A5A¢) + P\Py(2A4Ag - 2414, + 2A5A, + 60444
+20M A - 44,Aq +4AA,) + ME(42A + 4rA)) + (MP,
+ P M) (= M Ay + 40A A, - A,Ag — 30ALA,) + (MP,
+ Py M)(= AAg +20A A, - 404,45 + MA,). (3.6)

At this point we can make use of the results of Ref, 1,
There one studies differential operators

L=AP}+BP,P, + CP} +DM? + E(P\M + MP,)
+ F(PyM + MP,) +y(x, y) 3.7

such that [H, L]=0, where H is given by (1.1). A princi-
pal result of Ref 1 is essentially that if H commutes with
a nontrivial L, then the Schrédinger equation Hy=
separates in one of four orthogonal coordinate systems.
More specifically the authors study the action of E(2) on
the set of all operators L via the coordinate transforma-
tions (2,11). They show that the E(2)-orbits are of five
types.

L. P}-Pi+a(P}+P})+8,
L. P,M+MP;+a(P}+P})+8,

J. Math. Phys., Vol. 15, No. 9, September 1974
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oI, M2+a(Pi+P})+B, (3.8)
IV. M +34P} - P}) +a(P}
P +B, a,lcR,
Every L lies on the same orbit as a constant multiple of

exactly one of the elements I~V, (The term P} + P} oc-
curs with an arbitrary constant because the Hamiltonian

always commutes with itself. ) Thus by applying an ap-
propriate E(2) transformation we can always assume
that L is equal to one of these five forms.

If L takes the form I, then, according to Ref. 1,

Vix,y) =fx) +g®), (3.9

and the Schrddinger equation separates in rectangular
coordinates. If L takes the form II, then

v [(E) +&(Er)
§1+ &3

and the Schrddinger equation separates in parabolic
coordinates, while if L takes form III,

V=fr) +g(6)/7%,

and the equation separates in polar coordinates. If L
takes form IV, then

___fl0)+g(p)

cos‘o —~ coshp

+P}) +8,

V. a(Pi+ 1>0.

1-8), v=tk, (3.10)

, x=3(§

x=7cos8, y=7singd (3.11)

x=1coshp coso, y=1sinhp sino,

(3.12)
and the equation separates in elliptic coordinates. Final-
ly, if L takes form V, then L is a multiple of H and
there is no information about V,

The above results apply immediately to our study of
the operator S. First of all, by putting R in one of the
forms (2. 18), (2.19), we see from (3. 6) that if R is
truly second-order, then S is truly second-order (never
first-order).

Note that the coefficient of M? in (3. 6) is proportional
to A} +A}. If this coefficient is nonzero, then Sliesona
type III or IV orbit, i,e., the Schrdodinger equatxon
separates in either polar or elliptic coordinates. If A,
=A,=0, then S lies on a type I, I, or V orbit.

We consider Case 2(4, =A,=0) first. Then from (2.19)
we can also require A4;=0, A} +AZ>0. Substituting into
(3.6), we find

S=4MAP] + 4MALP} + 444(As— A)P Py + B. (3.13)

It follows that type II orbits never appear, only type I
and V orbits are possible. Moreover, our analysis of
(2. 20) has shown that we can find a potential V only if
Ag=0. Thus S corresponds to a type I orbit if A2 #A and
to a type V orbit if AZ=AZ% The method of Ref. 1 y1e1ds
no information for type V orbits but our direct approach
in Sec. 2 has yielded the solutions (2. 24), separation in
polar coordinates, and the special case A ;=— A; of
(2.21), separation in rectangular coordinates. For A}

# Al the results of Ref. 1 show that H lies on the same
orbit as a Hamiltonian whose potentlal takes the form
V=f(x) +g(»). This agrees with the results (2. 21)—

(2. 23).

So far we have merely verified previous results. How-
ever, the method of Ref. 1 now allows us to find all
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solutions of (2. 8)—(2. 10) corresponding to Case 1, In-
deed, if A}+A%>0, we know that H lies on the same
orbit as a Hamiltonian with potential of the form (3, 11)

or of the form (3. 12). Thus, we can find all Case 1
solutions of (2.8)—(2.10) by requiring that V take either

the form (3.11) or (3.12). That is, every solution V lies
on the same orbit as a V which separates in either
polar or elliptic coordinates, This fact is of great im-
portance for it allows us to separate variables in (2, 8)—
(2. 10) and reduce these coupled partial differential
equations to uncoupled ordinary differential equations
for f and g.

At this point we have proved the following fact: If a

Hamiltonian H admits a second-order raising operator
then the Schrddinger equation Hy= uy separates in either
rectangular, polar or elliptic coordinates. Of course the
converse is false.

To find all cases when S is type III we substitute the

polar coordinate expression (3. 11) into (2. 8)—(2. 10)
and find all solutions which correspond to type III orbits.
A tedious computation yields the single solution

X% asing+b

4 2 7! cos’o

_A.z 2 2 a b
re=g s e ate

(3.14)
(‘4]) = (Aly 0; 07 09 0’ 07 %Ab 0), Al #0,

Every type III solution lies on the same orbit as (3. 14).

To find all cases when S is type IV we substitute the

elliptic coordinate expression (3. 12) into (2. 8)—(2. 10)
and find all solutions which correspond to type IV orbits.
We obtain

14

v

_ 22*(cosh’p + cos’o - cosh’p - cos) + b(1/cosh’p - 1/cos’0)

C.P. Boyer and W. Miller Jr.: Second-order raising operators

cos’c - cosh’p
+c= (% +9%) +b/x% +c,
(AJ) = (Aly 0, O; 0’ 09 O’AT, 0), Al ¢0’ ZA'(*Ai’

x = coshp coso, y=sinhpsingo,

(3.15)

_ A% (cosh’p + cos'o — cosh?p - cos’s)
T2 cos’o — cosh’p

A2
re=% & +yH)+c,
(3.16)
(AJ) = (Ai’ 0, 0; 0’ 0; 0,A7,A3), AI,A8¢0°

The determination of all solutions of Eqs. (2. 8)—

(2. 10) for elliptic coordinates is extremely tedious due
to the complicated nature of the coefficients in the resul-
tant coupled ordinary differential equations. Our method
is to examine these equations in the vicinity of some
convenient point which may or may not be a singularity
of the potential, [This singularity cannot be essential
since from (2. 10) in elliptic coordinates one can see that
if there is a singular point it is regular. ] For example,
examination of (2. 8)—(2. 10) about the points sino =0
yields six differential equations involving only g(p)
which must be compatible. In this way one can proceed
until all possibilities for the parameters A; and poten-
tials V are exhausted.

4. EXAMPLES

J.

In this section we explicitly solve the Schrédinger

Math. Phys., Vol. 15, No. 9, September 1974
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equations corresponding to the above potentials and ex-
amine the action of our second-order raising operators.
Without loss of generality we can assume A> 0 and set
the additive constant ¢ equal to zero for each potential,
In each case we solve the equation Hy= uy correspond-
ing to appropriate choices of the potential parameters.

Consider first the potential (2. 21),

a %

< age

Bound states exist for ¢;> - ¢, and the normalized
eigenfunctions are

2 1
A 2R /g 11

2 =1\I'(k;x v; +1)
Xx} IZtV(Lt“’i (Ax';’/Z),

vi=3(1+8ap)'’?,

N
Vixy, %5) = s (6% +23) +

exp(- \x}/2)

#1:2 (xl’ x2) =

4.1)

uEE= ARy + Ry +1) + 2N (2 Y £ 1),
k;=0,1,2,... .

For details on the degeneracies see Ref. 1,

Here L.(x) is a generalized Laguerre polynomial, ®
The raising operator in x; takes the form

R==HQ/X Oy~ 2010, + I0xd — 42/l -1)  (4.2)
with action
Ry, = V(ky+1) (kg + 1y +1) lpki-ti, ky?
(4. 3)

B uyn, = VR1(Ry + 1) U1, p,ye

There is a similar operator in x, which raises the &,
index.

The potential (2. 22),
V(xy, %) = sA* (5] + 4%3) + (ay/) + apxy,

has bound states for a; > - §, with eigenfunctions

A 1/4 A () /2 Bill 1/2
#1»2<xnxz>=<;) (5) (W)

Xexp [- % (x2 + %) Z]sz [ﬁ (xz + %)]

A x
Xexp (— ;ﬁ)xi ! Z”Lif(g x§>,

v= %(1 +a1)1/2’
-3/
?(%2-) 2], ky,ky=0,1,... .

4.4)

Details on the degeneracies can again be found in Ref. 1.
This potential takes the form (1.7) with x,=x,=x, x,, x,
=9, a=0 so that it admits a first-order raising operator
(1.12) in x,. It also admits the second-order operator

(4. 2) with action (4. 3). Similarly the potential (2. 23)
admits a second-order raising operator in x=x; with

the form (4. 2).

| 4

p.*=>\[k1+k2+ 1:1:2

The potential (2. 24)
V=522 1+ 1(68)/7?

corresponds to eigenfunctions

By s(7, 6) =(12\)(s+1)/2 (r—(:(f;)—d)

1/2
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Xexp (— %) 7L, (%)93 (0,

n=0,1,"*". (4.5)
where 6; is a solution of
e.'s' +[SZ - 2f(9)]ea=0)

and u=A(n+3s+%), s>-1. The raising operator takes
the form

B oY 5 22 0]
with action
Ry, o=\ (n+s+ 1)@+ D] 20 o
R*Y, , = Al +s)n] /%,y . @.7

For the above potentials it was always possible to
choose coordinates such that R could be expressed as a
differential operator in a single variable. In the re-
maining three cases this is no longer possible and the
action of the raising operator is more complicated.

The potential (3. 14),

_X7* asing+b
T 9 72 coste. ’

has, for example, in the case a={(c?-p%)/4, b=—%
+(a?+p%/4, a>1}, B>4, normalized eigenfunctions

~ AMrD)EDT(a+B+k+1)(a+B+2k+1) L /2
V(7 8) = (I‘(n+§(a +B)+k+3)T(a+k+1)T(B+k+ 1)2“*5)

X exp(— Xyz/z)(\/'iy)(aw)/zwd /ZL’(lﬂw»iﬂ:) 2 (Ar?)
x(1+8in6)*/21/4(1 - sin6)*/2*1 /4Py &(sin),

n7k=0y1,2:°" ’

(4.8)

and energy eigenvalues p = \2n+k% +3(a +8) +1]. Here,
P 8(x) is Jacobi polynomial. * The raising operator is

R=- siné g +€O80 3, — 58003, — (cose A7 cosG) g
r 27
(a® - ) (sin*6+1) (aﬂﬂs2 1‘) sing .
AT cos’® T\ 2 4)7rcos’e t 2 sind
4.9)
and its action takes the form
gzpn, i Yn, hwn, kel + gn, Izznbm-]_, kel
(4.10)

Ry 07 Vi ket Py et + Enet, w1 Pet, 0t

where y, £ are rather complicated real constants, non-
zero in general. Thus, R no longer raises a single in-
dex n or k.

The potential (3. 15),
V=3 2(x%+y%) + b/x2,

is of the form (1.9) in y, Thus, it admits a first-order
raising operator with action (1.11), (1.12). Further-
more, this potential corresponds to a special case of
(2.21) so that its eigenfunctions are given by (4.1) with
a;=b, a,=0, and it admits two second-order raising
operators of the form (4. 2). The potential is also a
special case of (2. 24) and (3. 14) so that it admits the
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raising operators (4. 6) and (4.9). However, the poten-
tial admits the further raising operator

R=9(85— N24% = 2b/%% = X) - (3, = M) (@, + 1), (4.11)

which is not admitted by the earlier mentioned potentials
in their generality. In Cartesian coordinates the Hamil-
tonian has (unnormalized) eigenvectors

Vit a, (%, 9) = exp(= M2/2) () LY ") Hy, (V)
(4.12)
v=(2b+14, b>-4%,
and eigenvalues
p=A2ks +Roxv+1), Ry, ky=0,1,"--.
The action of R is given by
RUY b= — N/2(2Ry x v+ 3) Py, ppet = AN 2Ry + 1ot myets
(4.13)
R == 202y 2 D)y, iyt = 2N %Ry 2Ry £ v+ 3) Py, a1

The potential (3. 16), isotropic harmonic oscillator, is
a special case of all previous potentials except (2. 22)
and it admits all of the raising operators allowed by
these potentials.

The raising operator @, + @ admitted by potentials
(3. 15) and (8. 16) implies via our procedure that the cor-
responding Schriodinger equations separate in elliptic
coordinates. Thus one might expect that the action of
these raising operators would be simplest in elliptic
coordinates. This is not the case. The elliptic co-
ordinate solutions of the harmonic oscillator Hamilton-
ian are Ince polynomials, ¢ but the corresponding poly-
nomial solutions for (3.15) in elliptic coordinates ap-
pear not to have been studied in any detail. In any
event, the action of the raising operator on an elliptic
basis is not transparent,

In conclusion, we remark that Refs. 5 and 6 contain
results related to our work,
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