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Math 4242/4457 Sec. 10 Midterm Exam I October 26, 2007

There are a total of 100 points on this 55 minute exam. To get full credit for
a problem you must show the details of your work. Answers unsupported by
an argument will get little credit. A standard calculator and ONE 8.5 × 11
inch sheet of notes are allowed, but no books, other notes, cell phones or
other elecronic devices are allowed. Do all of your calculations on this test
paper.
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Problem 1 (10 points) Is each of these statements true or false? Give a
brief justification of your answer, or a counterexample .

(a)True or false: Every homogeneous linear system has a solution.

Solution: True. The equation Ax = 0 always has the solution x = 0.

(b) True or false: If det(A2) = 1 for an n×n matrix A then A is necessarily
nonsingular.

Solution: True.
(det A)2 = det (A2) = 1,

so det A 6= 0, and A is nonsingular.

Problem 2

A =







0 0 1 2 5
0 0 1 2 −1
0 1 0 0 −1





 .

a. (5 points) Determine the rank of A.

Solution: The row echelon form for A is

U =







0 1 0 0 −1
0 0 1 2 5
0 0 0 0 −6





 .

There are 3 pivots, so the rank is r = 3.
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b. (5 points) Determine the dimensions of ker(A) and of coker(A).

Solution: m = 3, n = 5. dim ker (A) = n − r = 5 − 3 = 2. dim coker
(A) = m − r = 3 − 3 = 0.

c. (5 points) Find a basis for ker(A).

Solution: U has 3 free columns. Solving the homogeneous equation
Uz = 0 we find the basis
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d. (5 points) Find the general solution of the equation

Ax = b, b =







−3
1
3





 .

Solution: The augmented matrix is











0 0 1 2 5
... −3

0 0 1 2 −1
... 1

0 1 0 0 −1
... 3











=⇒











0 1 0 0 −1
... 3

0 0 1 2 5
... −3

0 0 0 0 −6
... 4











.

A particular solution is xP where xT
p = (0, 7/3, 1/3, 0,−2/3) and the

general solution is

x = xP + zG =
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Problem 3 A 2 × 2 matrix A is a semi-magic square if its row sums and
column sums all add up to the same number, e.g.

A =

(

2 −1
−1 2

)

.

As you know from a homework problem, the set of 2× 2 semi-magic squares
forms a vector space.

(a) (15 points) What is the dimension of this vector space? Find a basis.

Solution: Let

A =

(

x y
z u

)

be a semi-magic square. Then

x + y − z − u = 0 (1)

x + z − z − u = 0 (2)

y + u − z − u = 0 (3)

so x = u, y = z, i.e. the system of equations has 2 pivots and 2 free
variables z, u. Thus the general solution is

A =

(

u z
z u

)

= z

(

0 1
1 0

)

+ u

(

1 0
0 1

)

.

The dimension is 2 and a basis is
{ (

0 1
1 0

)

,

(

1 0
0 1

) }

.

(b) (5 points) A symmetric 3×3 semi-magic square is a matrix A such that
A = AT and the row and column sums add up to the same number,
e.g.,

A =







−2 2 1
2 0 −1
1 −1 1





 .

What is the dimension of the space of 3 × 3 symmetric semi-magic
squares?
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Solution: A general symmetric semi-magic square is

A =







a b c
b d e
c e f





 .

where

a + b + c = b + d + e (4)

c + e + f = b + d + e. (5)

Thus there are just 2 independent equations, so 2 pivots and 4 free columns.
It follows that the dimension is 4.
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Problem 4 (20 points) For what range of numbers a is the matrix

A =







2 2 4
2 a 8
4 8 7







positive definite?

Solution: Putting A in row echelon form we find

U =







2 2 4
0 a − 2 4
0 0 −1 − 16

a−2





 .

The condition that A be positive definite is that all pivots are positive, which
implies both a > 2 and a < −14. This is impossible, so A is never positive
definite.
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Problem 5

A =







1 2 1
−1 1 3

1 −1 1





 .

(15 points) Compute the LU factorization of A.

Solution:

L =







1 0 0
−1 1 0

1 −1 1





 , U =







1 2 1
0 3 4
0 0 4





 .
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Problem 6 (15 points). Set up the equations for a least squares solution
to the inconsistent system Ax = b where

A =







1 1
−1 0

0 1





 and b =







1
1
0





 .

Do not solve the system. Will the solution necessarily be unique? Why?
Solution:

AT =

(

1 −1 0
1 0 1

)

.

The system is AT Ax = ATb or

(

2 1
1 2

)(

x1

x2

)

=

(

0
1

)

.

The solution is unique because the matrix

(

2 1
1 2

)

is nonsingular.
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