## Math 4242/4457 Sec. 10 Practice Final Exam

There are a total of 175 points on this 120 minute exam. To get full credit for a problem you must show the details of your work. Answers unsupported by an argument will get little credit. A standard calculator and ONE  $8.5 \times 11$  inch sheet of notes are allowed, but no books, other notes, cell phones or other electronic devices are allowed. Do all of your calculations on this test paper.

| Problem | Score |
|---------|-------|
| 1.      |       |
| 2.      |       |
| 3.      |       |
| 4.      |       |
| 5.      |       |
| 6.      |       |
| 7.      |       |
| 8.      |       |
| 9.      |       |
| Total:  |       |

**Problem 1** Let  $T: P_2 \longrightarrow R^2$  be the linear transformation from the space of polynomials  $p(t) = at^2 + bt + c$  to  $R^2$  defined by

$$T(p(t)) = \begin{pmatrix} p(0) \\ \frac{dp(1)}{dt} \end{pmatrix}.$$

a. (10 points) Compute the dimension of the kernel (null space) of T.

**b.** (10 points) Compute the dimension of the range of T.

**Problem 2** Note that the individual parts of this two-part problem are closely related. You can use the results of part a. to solve part b., if you wish.

a. (10 points) The vectors

$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

form a basis for a two-dimensional subspace V of  $\mathbb{R}^3$ . Use the Gram-Schmidt Process on these vectors to obtain an orthonormal basis for V.

**b.** (10 points) Find a least squares solution to the inconsistent system  $A\mathbf{x} = \mathbf{b}$  where

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Is the solution unique?

**Problem 3** Suppose the singular value decomposition of the  $3 \times 4$  matrix A is  $A = P\Sigma Q^{\mathrm{T}}$  where

**a.** (5 points) Find the eigenvalues of  $A^{T}A$ .

b. (5 points) Find a basis for the kernel of A.

c. (5 points) Find a basis for the range of A.

**d.** (5 points) Find a singular value decomposition of  $-A^{T}$ .

Problem 4

$$A = \left(\begin{array}{rrrr} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 1 & 2 & 5 & 0 & 5 \\ 0 & 1 & 1 & 3 & 4 \end{array}\right).$$

a. (10 points) Find an LU-decomposition of A.

b. (4 points) Find a basis for the range (column space) of A.

c. (4 points) Find a basis for the kernel of A

**d.** (2 points) What is the dimension of the cokernel of A?

Problem 5 Let

$$A = \left(\begin{array}{ccc} 0 & 0 & 4 \\ -2 & -4 & -2 \\ -2 & 0 & 6 \end{array}\right).$$

a. (10 points) Compute the eigenvalues of A.

**b.** (10 points) Find a matrix S such that  $S^{-1}AS$  is a diagonal matrix.

Problem 6 Consider the quadratic form

$$p(\mathbf{x}) = -2x_1^2 + 4x_2^2 + 6x_1x_2 - 4x_3^2, \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

a. (5 points) Find the real symmetric matrix K such that  $p(\mathbf{x}) = \mathbf{x}^T K \mathbf{x}$ .

**b.** (10 points) Diagonalize the quadratic form by means of some orthogonal matrix. (You need compute only the simplified form, not the orthogonal matrix.)

**c.** (5 points) Is this quadratic form positive definite, positive semidefinite or indefinite?

Problem 7 a. (10 points) Suppose we are looking for an  $m \times n$  matrix A and column vectors  $\mathbf{b}$  and  $\mathbf{c}$  such that  $A\mathbf{x} = \mathbf{b}$  has no solutions and  $A^{\mathrm{T}}\mathbf{y} = \mathbf{c}$  has exactly one solution. Why is it impossible to find  $A, \mathbf{b}, \mathbf{c}$ ?

**b.** (5 points) Suppose you are given a vector **b**, a vector **p** and n linearly independent vectors  $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ , all in the same inner product space V. If I claim that **p** is the projection of **b** onto the subspace W spanned by the vectors  $\mathbf{w}_j$ , what tests would you make to verify if this is true?

Problem 8 Let

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array}\right).$$

a. (7 points) Show that the columns of A are mutually orthogonal.

**b.** (6 points) Compute the determinant of A.

**c.** (7 points) Compute  $A^{-1}$ . (The simplest way to do this is to use the result of part a.)

Problem 9 a. (10 points) Fill in the entries a, b in the matrix

$$A = \left(\begin{array}{cc} 2 & 6 \\ a & b \end{array}\right)$$

so that A has the eigenvectors  $\mathbf{v}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$  and  $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ .

**b.** ( 10 points) Find a different matrix B with those same eigenvectors  $\mathbf{v}_1, \mathbf{v}_2$ , and with eigenvalues  $\lambda_1 = 1, \lambda_2 = 0$ . Compute  $B^{10}$ .

**Brief Solutions:** 

**1a.** dim =1. (basis  $t^2 - 2t$ )

**1.b.** dim =2

2a.

$$\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \mathbf{u}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

2b.

$$\mathbf{x} = \frac{1}{3} \left( \begin{array}{c} -2\\ 1 \end{array} \right)$$

unique solution.

**3a.**  $\lambda = 16, 1, 0, 0$ 

3b.

$$\mathbf{u}_1 = \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}, \quad \mathbf{u}_2 = \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}$$

3c.

$$\mathbf{v}_1 = \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

 $3d. -A^{\mathrm{T}} = (-Q)\Sigma^{\mathrm{T}}P^{\mathrm{T}}$ 

4a.

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & -2 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & -13 & 3 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

4b.

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} -2 \\ 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 3 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} 2 \\ -2 \\ 5 \\ 4 \end{pmatrix},$$

4c.

$$\mathbf{z}_1 = \begin{pmatrix} -3 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

**4d.** 0

**5a.**  $\lambda = 2, 4, -4$ 

5b.

$$S = \left(\begin{array}{ccc} 2 & 2 & 0 \\ -1 & -1 & 1 \\ 1 & 2 & 0 \end{array}\right)$$

6a.

$$K = \left(\begin{array}{rrr} -2 & 3 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & -4 \end{array}\right)$$

6b.

$$-4y_1^2 + (\frac{3+\sqrt{61}}{2})y_2^2 + (\frac{3-\sqrt{61}}{2})y_3^2$$

**6c.** indefinite

7a. If  $A^{T}\mathbf{y} = \mathbf{c}$  has exactly one solution then dim coker (A) = 0, so dim rng A) = m and all m-tuples  $\mathbf{b}$  are in the range. Thus  $A\mathbf{x} = \mathbf{b}$  must have a solution. This is a contradiction!

**7b.** Check that the set  $\{\mathbf{p}, \mathbf{w}_1, \dots, \mathbf{w}_n\}$  is linearly dependent and  $\mathbf{b} - \mathbf{p} \perp \mathbf{w}_i$  for  $i = 1, \dots, n$ .

8a. Easy verification. Also follows from the easily checked result  $A^{\mathrm{T}}A=2I_4$ .

**8b.** det (A) = 4

**8c.** Since  $A^{T}A = 2I_{4}$  we have  $A^{-1} = \frac{1}{2}A^{T}$ .

**9a.** a = -1, b = 7.

$$B = \left(\begin{array}{cc} 3 & -6 \\ 1 & -2 \end{array}\right)$$

$$B^{10} = B$$