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Math 4567. Homework Set # V

December 4, 2009

Chapter 8, (page 201, problems 1,2,3), (page 209, problem 4), (page 215,
problem 3), (page 221, problem 2), (page 228, problem 1), Chapter 6 (page
157, problem 2). (page 162, problem 1)

Chapter 8 page 201, Problem 1 (a) Consider the Sturm - Liouville prob-
lem

A
[ X'(2)] + =X(x) =0, 1<z<b,
x
X(1)=0, X(b) =0,
and use the substitution x = exp s to convert the problem to

d?X
— + XX =0, 0<s<lInb,
ds?

XlS:O = 07 X‘s:lnb =0.

Show that the eigenvalues and eigenfunctions of the original prob-
lem are

A =a2, X,(z) =sin(a,Inx), n=12-,

where «,, = nw/Inb.

(b) By making the substitution

give a direct verification that the eigenfunctions X,,(x) of part (a)
are orthogonal on the interval 1 < x < b, with weight function

p(z) =1/x.

Solution:



d _did _ .d
(a) We have & = 9£- = x7-, S0

2

X
zlaX'(z)] + XX (z )—O<—>Cfi2—|—/\X—O 0<s<lInb,
s

since s = Inx. Thus, in the new coordinates the boundary conditions
are

X|s:0 = 07 X|s:lnb =0.
For the original problem we solve the eigenvalue problem.

Case 1: A = o?, a > 0. The solution of the differential equation is
X = Acosas + Bsinas = Acos(alnx) + Bsin(alnz).

Then X(1) = 0 = A, and X(b) = 0 = Bsin(alnb), so we can have
a nonzero solution only for alnb = nm, or @ = o, = nw/Inb, with

X, (z) = sin(22BL) n=1,2,

(b) Since s = 72 it follows that ds = wdz/zInb. We have for m # n,

dm b nrtlnx mmlnx . dx
X :/ . . dx
/ LS s )

b

™ Jo

sinnssinms ds
=0,

if m # n.
Chapter 8, page 201, Problem 2 Let

LIX]=0rX")+q¢X
so that the Sturm-Liouville differential equation can be written as
LIX]+ ApX =0.
Derive Lagrange’s identity

d

XL[Y]-YLX] =

— (XY =YX



Solution:
XLY|-YL[X]= X(TY/)/ +qXY — Y(TX’)’ —qY X

=Xr'Y' + XrY" -YrX' - YX"=/(XY'-YX')+r(XY"-YX").
Since

d

r(XY' —-YX)N] =r(XY'-YX')+r(XY"-YX"),
d

x
this establishes the identity.

Chapter 8, page 201, Problem 3 (a) Let £ be the operator of the pre-

vious problem, defined on a space of functions on a < x < b,
satisfying the conditions

alX(a)—l—aQX’(a) =0, le(b)+ng/(b) =0, |CL1|+|CL2| > 0, |b1|+|b2| > 0,
and with inner product with weight function p(z) = 1. Show that
(X, LIY]) = (L[X],Y).

(b) Let A, # A, be eigenvalues of the problem L[X]+ ApX = 0 with
boundary conditions

CL1X(G)+G,2XI(G) = O, 61X(b)—|—b2X,(b) = O, |a1\—|—|a2| > 0, ’b1|+’b2| > 0.
Show that if X,,, X, are the corresponding eigenfunctions, then

Solution:

(a)
b d

(X, L) -(£x],Y) = [ =

r(b)(X(B)Y'(b) = V() X'(b)) = r(a)(X(a)Y"(a) = Y(a)X'(a)).

[r(XY'-YX')]dz = [r(XY' - YX)]. =



Now suppose a; # 0. Then

X(a) = _“2);("), Y(a) = —“21;(“)
. X(a)Y'(a) — Y(a)X'(a) = =22~ /(ZEY/(“) + aQX/(ZBY/<a> —0.
If a5 # 0 then
X'(a) = _al‘fja), Y'(a) = —‘“i(“)
s X(@)Y'(a) - V(@)X (a) = X @Y (@) aX(@)¥(a)

a9 a9
Thus always X (a)Y’(a) — Y (a)X'(a) = 0. A similar argument applied
to the endpoint b gives X (b)Y’(b) — Y (b) X' (b) = 0. Thus, (X, L[Y]) —
(L[X],Y) =0.

(b) We have
LX) + A\p X =0, L[X,] + \pX,, = 0.

Thus
(va L‘[Xn])_(L[XM]?Xn) = _(Xma )‘ann>+(>\mem7Xn) = [)‘m_)‘n] (pmeXn)

However, from part (a) we have (X,,, L[X,]) — (L[ Xn], X,) = 0, so
A — An](pXm, X)) = 0. Since A, # A, it follows that (pX,,, X,,) = 0.

Chapter 8, page 209, Problem 4 Solve the S-L problem

X" 4+AX =0, X(0) =0, X(1)— X'(1) = 0.

Solution:
Case 1: A=0a% >0, a > 0. Then

X(z) = Acosax) + Bsinax X'(z) = —aAsinax + aB cos az.
The conditions

X(0)=0=4, X(1)— X'(1) =0= Bsina — aBcosa,
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imply o = tan . Similar to what is shown in the book, the solutions
are ap, n = 1,2,--- such that (n — )7 < o, < (2n — 1)%. The
eigenvalues are \,, = o2 Here X,,(z) = sin a,,z, so

1 1 1
| X0 = (X0, X)) = /0 sin® (o, x)dr = 5/0 (1 — cos2a,x)dx

1 1 1
= 5(1 S sin 2a,) = 5(1 —cos® ay,),
since sin «y,, = « cos «y,. But
9 1 1
cos” ay, = 3 = 7
1+tan*a,, 1+a2
" 1 1 1 2
an
|1 Xl = 5(1 7) =5 2
2 14 a2 21+ a2

and the normalized eigenfunctions are

2(02 +1)
On(r) = ——sina,z.
Qp

Case 2: A =0. Then X(z) = Az + B. The conditions
X(0)=0=B, X(1)-X'(1)=0=A—A
imply Ao = 0, Xo(x) = z. We have

1 1
IX0lI? = (X0, Xo) = [ a%dw = 2,

so the normalized eigenfunction is ¢o(x) = /3.

Case 3: A = —a? < 0, a > 0. From the left hand boundary condition,
we must have X (z) = sinh ax. The remaining boundary condition is
then sinh o — acosha = 0 or a« = tanh a. The issue is then the points
of intersection of the curves y = a and y = tanha. These curves
clearly intersect at @ = 0. If they intersect again at some oy > 0 then
the function g(x) = a — tanha is continuous on the closed interval
0 < a < ap and differentiable on the open interval (0, ap). Furthermore
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g(0) = g(ap) = 0. By the Mean Value Theorem of calculus, there must

be a value ¢ € (0, ap) such that ¢'(c) = 0 But ¢/(a) = tanh®a > 0 for

all @ > 0. Thus no such ¢ can exist, so there is no negative eigenvalue
2

_ao.

Chapter 8, page 215, Problem 3 Use the normalized eigenfunctions of
Problem 2, page 209, namely

X"+ 2X =0, X(0)=0, hX(1)+ X'(1) =0, h >0,

—ay, 2h
Ap =02, tana, = a , On(x) = msmanx. n=12---,
to derive
1_2hz M Gina,, 0<z <l

— oy h + cos? ay,)

Solution: We have

o0

ch¢n —/1¢n ds, 0<z<l.
n=1
Now
2h /1 . J 2h cos o, — 1
Cp=/————— [ sina,s ds=— :
h + cos? oy, Jo h + cos? oy, O,
Thus

2h
an(h + cos? ay,)

(1 — cosay,).

1=>
n=1

Chapter 8, page 221, Problem 2 Use the normalized eigenfunctions of
the S-L problem

X"+ XX =0, X(0)=0, X'(m) =0
to solve the boundary value problem
up(z,t) = kug,(x,t), 0<zx<m t>0,
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u(0,t) =0, ug(m,t) =0, u(z,0) = f(x).

Solution: The normalized eigenfunctions are a renormalization of
those in the previous problem:

2 2n —1
Gn(1) = | = sina,, a, = u, n=12---
T 2

The corresponding separated functions T}, (t) satisfy 7" + o2kT = 0, so
T,(t) = exp (—a?kt). Thus

t) =" Bon_1exp(—alkt)g,(x), Ban_1exp(—aikt) = /Ow u(z,t)on(x)d.

n=1

Since u(z,0) = f(x), we have

Bgnl—/ ) (x d:x—\/>/ ) sin n;l)xdx

forn=1,2,---.

Chapter 8, page 228, Problem 1 Use the expansion of x,

in terms of the eigenfunctions of the S-L. problem

1)n+1

sina,z, 0<zxz<c

X"+ AX =0, X(0) =0, X'(c) =0,

2
)\n:ai, On(T) = \/;sinan, n=12---,

_(@2n—D7
=T

to show that the temperature function

where

eXp (—a?kt) sinanxl , O0<z<l,t>0

u(,):é I+2Z
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(2n—1)mw
2

with «,, = , can be written as

A o] 1)n+1
“En

[1 —exp(—aZkt)]sina,z, 0<z<1,t>0.

Solution: Set ¢ = 1 in the expansion for x, substitute this in the
expansion for u(x,t) and write the sum of two infinite series as a single
series to get

_A
u(x,t) l —{—22 exp (—a?kt) sin oznx] =
ZYSIET R [ e
— ——sina,r + exp(—a; kt) sin @
K& o =
24 & (—1)m+!
=% > ( )2 [1 —exp(—aZkt)]sinap,r, 0<x<1,t>0.
n=1 A

Chapter 6, page 157, Problem 2 Show that the function

when |z| < 1,
when |z| > 1,
when x = +1,

fx) =

o= O =

satisfies the conditions of the Fourier integral pointwise convergence
theorem. Establish

Q.

f(:c)zl/oo sinoz(1+x)+sina(1—x) da:g mw i
0 « mJo «

Solution: f is piecewise continuous on every bounded interval and
o0 1
/ |f(:r;\dx:/ 1 de =2 < oo,
—00 —1

SO

f(x+) / / f(s)cosa(s — ) ds da,



at each x such that fi(z) and f(z) exist, and these derivatives exist
at all z. Further, this function satisfies

flat+) + fz—)
2

= f(x)

for all z. Now

/_O:Of(s)cosoz(s—x) dS:/ cosa(s —x) ds = -

-1

1 [Sina(s - x)] !

_ sina(l —z) +sina(l + )

Y

«
SO

f) = 1 /00 sina(l —z) +sina(l + x)da.
0 o
From the addition formulas for sinx we have

sin a(1—z)4sin a(1+z) = sin a cos ar—cos a sin ar+sin o cos ax—+cos asin ar

= 2sin « cos ax,

SO

2 [ sin o cos o
—da.
0

fla) ==

™ (0%

Chapter 6, page 162, Problem 1 Show that the function
when 0 < x < b,

when x > b,
when = = b,

fz) =

o= O =

satisfies the conditions of the Fourier sine integral pointwise conver-
gence theorem. Establish

2 [o1— b
/ ﬂsinaw da, x> 0.
0

(0%

Solution: f is piecewise smooth on every bounded interval over the
positive x axis and is absolutely integrable. For every x > 0 f satisfies

flat+) + fz—)
2

= [(x)

9



Thus

2 00 00
f(x):—/ sinax/ f(s)sinas ds do, x> 0.
Now
00 b - )
/ f(s)sinas dS:/ sin as ds:—cosa$|8: cos a 7
0 0 o .
SO

2 [ 1— b
f(l') = 7/ Sianﬂda’ T > O
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