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Math 4567. Final Exam (take home)

Due by December 23, 2009

There are a total of 180 points and 8 problems on this take home exam.

Problem Score
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1. (20 points) Chapter 6, page 168, Problem 8

A semi-infinite string, with one end fixed at the origin, is stretched
along the positive z-axis and released at rest from a position y = f(x),
x > 0. Derive the expression

y(z,t) = 2 /OOO cos(a at) sin ax /OOO f(s)sinas dsdo. (1)

™

If F(z), —0o < & < 00, is the odd extension of f(z), show that this
result reduces to the form

y(x,t) = ;[F(x +at) + F(x — at)].

Solution: The boundary value problem is

—_

Yt — @Yz = 0, z>0,t>0,
y(0,t) =0, >0,

yi(x,0) =0, x>0,

y(z,0) = f(z), x>0,

and y(x,t) is bounded for all x > 0, t > 0.

Using the Fourier method we write y = X (x)T'(t), substitute into the
wave equation and get the Sturm-Liouville problem with boundary con-
ditions:

w N
O = —

e~

X"+AX =0, X(0)=0, |X|<B, x>0,

and
T"+a*XT =0, T (0)=0 |T(t)<B, t>O0.

Case 1: A = a? o > 0. The differential equation and boundary
condition give X, (z) = sinax and this is bounded. The T equation
and boundary condition give T, (t) = cos(aat), which is bounded.

Case 2: A = 0. The differential equation and boundary condition give
X(z) = « which isn’t bounded. Thus 0 is not an eigenvalue.



Case 3: A = —a?, a > 0. The differential equation and boundary
condition give X, (z) = sinh cuz, but this is unbounded. Thus there are
no negative generalized eigenvalues.

We look for a solution of the form

y(x,t) = /OOO B(«) sin ax cos(aat) do.
The initial condition

y(x,y) = f(x) = /OOO B(«) sin az do

implies from the Fourier sine transform that

B(a) = 2/000 f(s)sinas ds.

™

Substituting the expression for B(«) into the integral expansion for y
gives the stated solution (1).

Using the identity
sin ar cos(aat) = ; (sina(z + at) +sina(xz — at)),
and defining the function F(u) by
F(u) = /OOOB(Oz) sinau do = i/ooo sinau/ooo f(s)sinas ds do,

we see that F'(u) is defined for all real u, F'(—u) = —F(u) and F(z) =
f(z) for x > 0, and from the identity we have

oz, t) = ; (F(z +at) + Fz — at)).

This is in accordance with the general solution of the wave equation.

. (15 points ) Chapter 6, page 168, Problem 11

Find the bounded harmonic function u(z,y) in the semi-infinite strip
0 <x <1,y >0, that satisfies the conditions

uy(7,0) =0, u(0,y) =0, wu,(1l,y)= f(y).
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Show that the answer is

2 /00 sinh ax cos ay
0

/Oo f(s)cosas ds da.
0

« cosh a

Solution: Using the Fourier method we write v = X (x)Y (y), sub-
stitute into the Laplace equation and get the Sturm-Liouville problem
with boundary conditions:

X"4+AX =0, X(0)=0, O<z<l,

and
Y'—=AY =0, Y(0)=0 |Y(y)|<B, y=>0.

Case 1: A\ = a?, a > 0. The differential equation and boundary con-
dition give X, (x) = sinaz. The Y equation and boundary condition
give Y, (y) = cosh(ay), which is unbounded. Therefore there are no
such eigenvalues.

Case 2: A = 0. The differential equation and boundary condition give
X(x) = x which isn’t bounded. Thus 0 is not an eigenvalue.

Case 3: A = —a?, a > 0. The differential equation and boundary
condition give X, (x) = sinhaxz. The corresponding Y equation and
boundary condition gives Y, (y) = cos ay which is bounded.

Thus we look for a solution of the form

o0

u(z,y) = /0 A(a) sinh az cos(ay) da.
The nonhomogeneous boundary condition
u(Ly) = fly) = /OOO A(a)a cosh acos ay da
implies from the Fourier cosine transform that
A(a)acosha = i/ooo f(s)cosas ds.

Substituting the expression for A(a) into the integral expansion for u
gives the stated solution.



3. (15 points) Chapter 6, page 173, Problem 2

Derive the solution of the wave equation vy = @y, (—o0 <z <
00,1 > 0), which satisfies the conditions y(z,0) = f(x) and y(z,0) =0
when —oo < = < 00:

y(z,t) = 1 /Ooo cos(a at) /_O:o f(s)cosa(s — x)ds da.

™

Show that this solution can be written in the form

Yz, 1) = ;[f(x +at) + fx — at)].

Solution: The boundary value problem is

1) ytt_azyxx:()7 —OO<ZE<OO, t>0,
2) y(z,0) =0, x>0,
4) y(z,0) = f(z), —oo<z<o0,

and y(z,t) is bounded for all x and ¢ > 0.

Using the Fourier method we write y = X (x)7T(t), substitute into the
wave equation and get the Sturm-Liouville problem with boundary con-
ditions:

T"+a*XT =0, T'(0)=0 |T(t)]<B, t>0.
X"+AX =0, |X|<B, —oo<uz<o0.
Case 1: A = a? o > 0. The differential equation and boundary

condition for T give T,(t) = cosaat and this is bounded. The X
equation gives X, (x) = A cos(ax) + Bsin ax, which is bounded.

Case 2: A = 0. The differential equation and boundary condition give
T(t) = 1. The X -equation and boundedness give X = 1 Thus 0 is a
generalized eigenvalue.

Case 3: A = —a?, «a > 0. The differential equation and boundary
condition give T, (t) = cosh aat, but this is unbounded. Thus there are
no negative generalized eigenvalues.
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Thus, we look for a solution of the form
y(x,t) = /0 “[A(a) cosaz + B(a) sinaz] cos(aat) da.  (2)
The initial condition
y(x,0) = f(x) = /OOO [A(«) cos ax + B(a) sin ax]da (3)

implies from the Fourier transform theorem that

Ala) = 1/000 f(s)cosas ds, B(a)= 1/000 f(s)sinas ds

™ ™

Substituting the expressions for A(«), B(«) into the integral expansion
for y and the identity

cos as cos ax + sin as sin ax = cos as — x)

give the stated solution.

Using the identities
sin ax cos(aat) = 5 (sina(z + at) +sina(z — at)),
cos ax cos(aat) = ; (cos a(x + at) + cosa(x — at)),
and recalling from (3) that
flu) = /OOO[A(a) cos au + B(a) sin cvu]do
for all u, we see that (2) can be written as
o t) = 5 (Tl at) + (o — at)).

This is in accordance with the general solution of the wave equation.

. (20 points) Find the eigenvalues and normalized eigenfunctions of
the Sturm-Liouville system

—2?(2*) =y, y(1) =0, y(2) =0, 1<z<2
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What are the orthogonality relations for the eigenfunctions?

Solution: Here, p(z) = %, r(z) = 22, q(z) = 0, [a,b] = [1,2], the
boundary conditions are a1y(1) +asy'(1) = 0, b1y(2) 4+ bey/(2) = 0 with
a—1=b =1, ay+b—2=0, and the inner product is

(0= [ F@ho()

x?’

The operator L is
d? d
L=—2'— —22°—

dx? dx
and the eigenvalue equation is

LX = )\X.

From the identity relating eigenvalues, eigenfunctions and boundary
conditions in this case we have

2
AMX, X), = /1 22(X)2dx > 0,

so that there are no negative eigenvalues. Further, if 0 were an eigen-
value then necessarily X would be a constant, vanishing at = 1 and
x = 2, hence X = 0. Thus the only eigenvalues are positive.

To Solve the eigenvalue problem we make the change of variable u =
1 — 1/z, (the leading constant 1 is chosen only for convenience). In
this variable we find L = —%, so the eigenfunctions in the case A =
a?, o > 0 must take the form

X = Acosau + Bsin au.

where X must vanish when « = 1, (i.e. u = 0 ) which implies A = 0.
Thus we have X = sinau and this must vanish when = = 2 (i.e., u =
1/2). The determining equation for the eigenvalues is thus sin § = 0,
S0

a, =2, n=12---.

The corresponding eigenfunctions can be chosen as

1 2
X, (x) = —sin2mnu = —sin(2an[l — —]) = sin o
T x



Since

2 27m dx drn dxr 1
(XnaXn>p:/1 SlIl T I‘Q — 2/ 1—COS ]12 = 47

the ON basis of eigenfunctions is {¢,(z)} where

2
on (@) = 2sin(L), n=1,2,- -
i

We conclude that
(¢n7 gbm)p = 5nm

a. (15 points) Determine a formal eigenfunction series expansion for
the solution y(z) of

-y —py = f(z), ¥y(0)=0, y(1) =0, 0<z<1,

where f is a given continuous function on [0, 1].

b. (10 points) What happens if the parameter p is an eigenvalue?

Solution: With L =
here is

de, the Sturm-Liouville eigenvalue problem

LX=)X, 0<z<l1, X'(0)=0, X'(1)=0.

We have solved this problem several times before. The eigenvalues are
A\p =n?m2,n=1,2,---, and \yg = 0 with an ON basis of eigenfunctions

(bo(l') =1, ¢n($) = \/§COS(7”L7T.1').
The inner product is
1
(91,92) = /0 g1(x)ga(x)dx.

We expand both f and y in terms of the basis:

D=3 e @)= Xboe) o= 6) b= ()



The equation to be solved is Ly — uy = f. Taking the inner product
of both sides of this equation with ¢; we find

(Ly — HY, ¢j) = (f; ¢j) = b;.
Note that
(Ly — py, &5) = (Ly, ¢5) — wly, ¢;) = (y, Lo;) — pe; = (A — pe;.
Thus (j27? — p)c; = b; and
b

¢ j:O,l,"‘,

Ci — ———
J 122 ’
J2m? —p

as long as u # j%n? for some j. The solution is then

y(x) = i M%(m) _ 2% Jo f(s)cosjms ds

. - COS JTX.
At = p j=0 JPT? =

J=0

If u = N2n? for some integer N, however, there is no longer a unique
solution and maybe no solution at all. Adding any multiple K¢y (z) to
y will not change (L — )y, because (L — )¢, = 0. If there is a solution
y to (L — N?n?)y = f with y satisfying the boundary conditions then

(f,¢n) = (L = N*7%)y, én) = (3. (L — N*7*)¢) = 0,

so f is orthogonal to ¢y. In this case there is a solution but it is not
unique. However, if f is not orthogonal to ¢y there is no solution.

6. Laplace’s equation in polar coordinates is

1
Upp + —Up + 72“90 =0.
T T

a. (10 points) Use separation of variables to find the solution u(r, @) of
this equation outside the circle » = a and satisfying the boundary
condition

u(a,0) = f(0)
on the circle. Require that u(r, ) is bounded and continuous for
r > a. To make u single-valued, require that u(r,0) = u(r, 0+2m).
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Here, f(0) is a continuous function with sectionally continuous
derivative such that f(0) = f(2n).

Solution:

Write u = O(0)R(r) and separate variables to derive the Sturm-
Liouville eigenvalue problem with periodic boundary conditions

0"+ X0 =0, —t<f<m O(—m)=0(r), O(—7)=06"(r).
The conditions on R are
PR +rR—AR=0, a <7 < 00,

and |R(r)| < B for some constant B and all » > a. We already
showed in class that the possible eigenvalues in this case are A\, =
n? n =1,2,--- with multiplicity two and eigenfunctions () =
a, cosnf + b, sinnf, and Ay = 0 with eigenfunction ©y(0) = 1,
For A\, = n? > 0 the possible solutions for R are R(r) = Ar" +
Br=". The boundedness condition requires R,(r) = r~". For
A = 0 the possible solutions for R are R(r) = A+ Blnr, and
the boundedness condition requires Ry(r) = 1. Thus we have the
general solution

ag X (a,cosnf + b, sinnh)
u('r, 0) = ? + E - .
n=1

b. (5 points) Show that formally the solution is
u(r,0) = % + Y 7" (an cosnb + by, sinnb) (4)
n=1

and compute the coefficients a,,, b,.

Solution: The initial condition
u(a,0) = f(0) = % + Y a " (a, cosnb + b, sinnd)
n=1

implies via Fourier series that

aj 1

G~ [T wycosju do, j=0,1,2-,

a’ T Jonx

b, 1 gm ‘

*:*/ f()sinny dyp, n=1,2---.
a™ T Jr
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c. (5 points) Show that your formal solution is an actual solution of
Laplace’s equation satisfying the boundary conditions.

Solution: For r = a we know from the Fourier convergence the-
orem that the boundary conditions are satisfied and the series
converges uniformly and absolutely on the boundary. For r > a
we see that the series is a power series in p = a/r < 1 which
converges for p| = 1. Thus the radius of convergence of this power
series in p must be at least 1, and the series defines an analytic
function of p for all p < 1. In particular, term - by term differen-
tiation of the series is valid and the formal solution is an actual
solution of Laplace’s equation.

d. (15 points) By interchanging the order of summation and integra-
tion in (4), derive the Poisson integral formula for the solution:

B 1 ™ 1— p2
wrt) = g L O T ey =

where p =a/r < 1.

Solution: Substituting the integral expressions for a;,b, in (4) and
interchanging the order of summation and integration we obtain

u(r,0) = 1 /7r f() B + i ;L:(cos n# cos ny + sinnd sinmﬂ)} di).
n=1

mwJ—7

Note that
1 X a” . . I &Ka”
5 + Z T—n(cosnﬁcosmb + sinnfsinny) = 5 + Z o cosn(0 — 1)
n=1

n=1

[1 + i i:{exp in(0 — 1) + exp —in(6 — 10)}]

DO | —

14+ i[(ﬁei(ew)y 1 (jei(("”))j]]

1
2 v




—(1 - %ei(ﬂ—zb))(l — ae0=¥)) 4 (1 — ;e—i(e—w)) + (1 — %e—i(e—w))

DN | —

(1_ =) (1 — Lei0—9)
1 -2 1 1 - p?
B 21+ % —2%cos( — 1) 21+ p%—2pcos(0 — )’

where p = a/r and we have used the formula

ZZ]ZE’ lf |Z|<].7
7=0

for the sum of a geometric series. Thus we conclude that

1 = 1—p?
u(r,9) = o / @) [1+ p? —2pcos(f — )] %,

where p = a/r < 1.

. Fourier transforms on (—o0, c0) and Fourier series have interesting re-
lations between them. The periodization of a function f on (—oo, )
is defined as .
Plfi(x) = > f(z+2mm).

To guarantee convergence of the infinite sum we restrict ourselves to
functions that decay rapidly at infinity. A useful space of such functions
f is the Schwartz class of functions that are infinitely differentiable
everywhere, and for which there exist constants C,, , (depending on f)
such that |z"L- f| < C,,, for all z and for each n,q = 0,1,2,---. (An

example of such a function is f(z) = e "))

a. (10 points) Show that if f is in the Schwartz class then its periodiza-
tion has period 27. (You can assume the true fact that P[f](x) is
continuous and continuously differentiable.)

Solution:

Plfl(x+27) = Z flz+2m+2mm) = Z flz+2m(m+1))

m=—00 m=—00

S (ot 2mk) = PLf](2),

k=—o00

where k = m + 1.
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b. (10 points) Expand P[f](x) into a complex Fourier series

0 .
Z cneznx

n=—oo

and show that the Fourier coefficients

27 .
o [ PG

Cp =
are given by
1 oo ) 1 -
=5 [ SOt = o f(n)

2w J- ™
where f()) is the complex Fourier transform of f(z).

Solution:
1 oo

Cp = — /27r P[f](t)e~™dt = /27r > ft+2mm)d

21 Jo oo

1 2
Z / f(t+2rm)e™dt
27r

m=—0oQ
where the interchange of summation and integration is justified
by the uniform convergence of the infinite series. Then, making
the change of variable 7 =t 4+ 27m in the integrals and using the
fact that e>™™ = 1, we have

2m(m+1) .
Cp = Z / —zn7'627rmzd7_
o 2m

1 o0 ) 1 -
=5 [ f@emar = —fn),

where f(\) = [, f(T)e " ""dr.
c. (5 points) Conclude that

Z f(z+2mn) = — Z f(n)e, (5)

so P[f](z) tells us the value of f at the integer points A = n, but
not in general at the non-integer points. (For z = 0, equation (5)
is known as the Poisson summation formula.)
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Solution: We have
P(fl(x) = > cae™
Substituting the definition of P[f](z) and the computed values of ¢,

into this formula we obtain equation (5).

8. Let f(z) = for a > 0.

o
a. (10 points) Show that f(\) = me~e. Hint: It is easier to work

backwards.

Solution: The Fourier transform pair is given by
]_ oo L i N o .
fl@) =5 [ foerar, foy= [ flaye e,
T J—00 —00

and this transform is invertible. Staring with f(\) = me 1" and
making use of the indefinite integral

L, cosbu + bsin bu
1+ b2

/e“cosbudu:e + C,

we find
1 * 2 iz L oo —al)\| i
(@) / F(\)e d)\:g/ o=l gire g\

" or oo
= / e~ cos Az d)\
0

_ _—ar@Cos AT — TSN AT o __a
a? + z2 A=0 a? + x2

b. (5 points) Use the Poisson summation formula to derive the identity

i 1 _7r1+e*2”
n2+a2 al—e2ma’

n=—oo

Solution: Substituting f(r) = 7 and f(\) = me M into the
Poisson summation formula we find

o0

Z a _ ; Z e—a|n|€inm —

oo
+ Z e " cosnz.
n=1

N —
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Now set z = 0 to get

o a R | 1
nzz_ooa2+(27rn)2—_§+7§)e T T
Thus
i a 1 4e
a4+ (2mn)? 21 —ea)

Changing parameters to a = 27b gives

i 1 w1+ e—2mb
b2+n2  b(1—e2m)"

n=—oo

which, modulo setting b = a is the desired result.

c. (10 points) What happens as a — 0+ 7 (Look at the n = 0 term
on the left hand side.) Can you obtain the value of >7° n—lg from
this?

Solution: The n = 0 term on the right hand side gives us a—g, SO we

can’t immediately set @ = 0. Instead we subtract ?12 from both sides of

the equation, to get

i 2 ml+4 g 2ma 1 (ma—1)+(ma+ 1)e—2ma
— n24+a2 al—e2ma g2 a?(1 — e~2ma) )

The limit of the left hand side as a — 0 is obvious: 277, 7712 To
get the limit on the right hand side we expand the numerator and the
denominator in a power series in a. The leading term in the numerator
is %7?%3 + -+, in the denominator it is 2wa® + ---. Thus the limit is

72/3. We conclude that

ool 71_2
P
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