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1. (20 points) Chapter 6, page 168, Problem 8

A semi-infinite string, with one end fixed at the origin, is stretched
along the positive x-axis and released at rest from a position y = f(x),
x ≥ 0. Derive the expression

y(x, t) =
2

π

∫ ∞
0

cos(α at) sinαx
∫ ∞
0

f(s) sinαs dsdα. (1)

If F (x), −∞ < x < ∞, is the odd extension of f(x), show that this
result reduces to the form

y(x, t) =
1

2
[F (x+ at) + F (x− at)].

Solution: The boundary value problem is

1) ytt − a2yxx = 0, x > 0, t > 0,

2) y(0, t) = 0, t ≥ 0,

3) yt(x, 0) = 0, x ≥ 0,

4) y(x, 0) = f(x), x ≥ 0,

and y(x, t) is bounded for all x > 0, t > 0.

Using the Fourier method we write y = X(x)T (t), substitute into the
wave equation and get the Sturm-Liouville problem with boundary con-
ditions:

X ′′ + λX = 0, X(0) = 0, |X| < B, x > 0,

and
T ′′ + a2λT = 0, T ′(0) = 0 |T (t)| < B, t > 0.

Case 1: λ = α2, α > 0. The differential equation and boundary
condition give Xα(x) = sinαx and this is bounded. The T equation
and boundary condition give Tα(t) = cos(αat), which is bounded.

Case 2: λ = 0. The differential equation and boundary condition give
X(x) = x which isn’t bounded. Thus 0 is not an eigenvalue.
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Case 3: λ = −α2, α > 0. The differential equation and boundary
condition give Xα(x) = sinhαx, but this is unbounded. Thus there are
no negative generalized eigenvalues.

We look for a solution of the form

y(x, t) =
∫ ∞
0

B(α) sinαx cos(αat) dα.

The initial condition

y(x, y) = f(x) =
∫ ∞
0

B(α) sinαx dα

implies from the Fourier sine transform that

B(α) =
2

π

∫ ∞
0

f(s) sinαs ds.

Substituting the expression for B(α) into the integral expansion for y
gives the stated solution (1).

Using the identity

sinαx cos(αat) =
1

2
(sinα(x+ at) + sinα(x− at)) ,

and defining the function F (u) by

F (u) =
∫ ∞
0

B(α) sinαu dα =
2

π

∫ ∞
0

sinαu
∫ ∞
0

f(s) sinαs ds dα,

we see that F (u) is defined for all real u, F (−u) = −F (u) and F (x) =
f(x) for x > 0, and from the identity we have

y(x, t) =
1

2
(F (x+ at) + F (x− at)) .

This is in accordance with the general solution of the wave equation.

2. (15 points ) Chapter 6, page 168, Problem 11

Find the bounded harmonic function u(x, y) in the semi-infinite strip
0 < x < 1, y > 0, that satisfies the conditions

uy(x, 0) = 0, u(0, y) = 0, ux(1, y) = f(y).
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Show that the answer is

u(x, y) =
2

π

∫ ∞
0

sinhαx cosαy

α coshα

∫ ∞
0

f(s) cosαs ds dα.

Solution: Using the Fourier method we write u = X(x)Y (y), sub-
stitute into the Laplace equation and get the Sturm-Liouville problem
with boundary conditions:

X ′′ + λX = 0, X(0) = 0, 0 < x < 1,

and
Y ′′ − λY = 0, Y ′(0) = 0 |Y (y)| < B, y > 0.

Case 1: λ = α2, α > 0. The differential equation and boundary con-
dition give Xα(x) = sinαx. The Y equation and boundary condition
give Yα(y) = cosh(αy), which is unbounded. Therefore there are no
such eigenvalues.

Case 2: λ = 0. The differential equation and boundary condition give
X(x) = x which isn’t bounded. Thus 0 is not an eigenvalue.

Case 3: λ = −α2, α > 0. The differential equation and boundary
condition give Xα(x) = sinhαx. The corresponding Y equation and
boundary condition gives Yα(y) = cosαy which is bounded.

Thus we look for a solution of the form

u(x, y) =
∫ ∞
0

A(α) sinhαx cos(αy) dα.

The nonhomogeneous boundary condition

ux(1, y) = f(y) =
∫ ∞
0

A(α)α coshα cosαy dα

implies from the Fourier cosine transform that

A(α)α coshα =
2

π

∫ ∞
0

f(s) cosαs ds.

Substituting the expression for A(α) into the integral expansion for u
gives the stated solution.
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3. (15 points) Chapter 6, page 173, Problem 2

Derive the solution of the wave equation ytt = a2yxx, (−∞ < x <
∞, t > 0), which satisfies the conditions y(x, 0) = f(x) and yt(x, 0) = 0
when −∞ < x <∞:

y(x, t) =
1

π

∫ ∞
0

cos(α at)
∫ ∞
−∞

f(s) cosα(s− x)ds dα.

Show that this solution can be written in the form

y(x, t) =
1

2
[f(x+ at) + f(x− at)].

Solution: The boundary value problem is

1) ytt − a2yxx = 0, −∞ < x <∞, t > 0,

2) yt(x, 0) = 0, x ≥ 0,

4) y(x, 0) = f(x), −∞ < x <∞,

and y(x, t) is bounded for all x and t > 0.

Using the Fourier method we write y = X(x)T (t), substitute into the
wave equation and get the Sturm-Liouville problem with boundary con-
ditions:

T ′′ + a2λT = 0, T ′(0) = 0 |T (t)| < B, t > 0.

X ′′ + λX = 0, |X| < B, −∞ < x <∞.

Case 1: λ = α2, α > 0. The differential equation and boundary
condition for T give Tα(t) = cosαat and this is bounded. The X
equation gives Xα(x) = A cos(αx) +B sinαx, which is bounded.

Case 2: λ = 0. The differential equation and boundary condition give
T (t) = 1. The X -equation and boundedness give X = 1 Thus 0 is a
generalized eigenvalue.

Case 3: λ = −α2, α > 0. The differential equation and boundary
condition give Tα(t) = coshαat, but this is unbounded. Thus there are
no negative generalized eigenvalues.
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Thus, we look for a solution of the form

y(x, t) =
∫ ∞
0

[A(α) cosαx+B(α) sinαx] cos(αat) dα. (2)

The initial condition

y(x, 0) = f(x) =
∫ ∞
0

[A(α) cosαx+B(α) sinαx]dα (3)

implies from the Fourier transform theorem that

A(α) =
1

π

∫ ∞
0

f(s) cosαs ds, B(α) =
1

π

∫ ∞
0

f(s) sinαs ds

Substituting the expressions for A(α), B(α) into the integral expansion
for y and the identity

cosαs cosαx+ sinαs sinαx = cosα(s− x)

give the stated solution.

Using the identities

sinαx cos(αat) =
1

2
(sinα(x+ at) + sinα(x− at)) ,

cosαx cos(αat) =
1

2
(cosα(x+ at) + cosα(x− at)) ,

and recalling from (3) that

f(u) =
∫ ∞
0

[A(α) cosαu+B(α) sinαu]dα

for all u, we see that (2) can be written as

y(x, t) =
1

2
(f(x+ at) + f(x− at)) .

This is in accordance with the general solution of the wave equation.

4. (20 points) Find the eigenvalues and normalized eigenfunctions of
the Sturm-Liouville system

−x2(x2y′)′ = λy, y(1) = 0, y(2) = 0, 1 ≤ x ≤ 2.
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What are the orthogonality relations for the eigenfunctions?

Solution: Here, p(x) = 1
x2 , r(x) = x2, q(x) = 0, [a, b] = [1, 2], the

boundary conditions are a1y(1) +a2y
′(1) = 0, b1y(2) + b2y

′(2) = 0 with
a− 1 = b1 = 1, a2 + b− 2 = 0, and the inner product is

(f, g)p =
∫ 2

1
f(x)g(x)

dx

x2
.

The operator L is

L = −x4 d
2

dx2
− 2x3 d

dx
,

and the eigenvalue equation is

LX = λX.

From the identity relating eigenvalues, eigenfunctions and boundary
conditions in this case we have

λ(X,X)p =
∫ 2

1
x2(X ′)2dx ≥ 0,

so that there are no negative eigenvalues. Further, if 0 were an eigen-
value then necessarily X would be a constant, vanishing at x = 1 and
x = 2, hence X ≡ 0. Thus the only eigenvalues are positive.

To Solve the eigenvalue problem we make the change of variable u =
1 − 1/x, (the leading constant 1 is chosen only for convenience). In
this variable we find L = − d2

du2 , so the eigenfunctions in the case λ =
α2, α > 0 must take the form

X = A cosαu+B sinαu.

where X must vanish when x = 1, (i.e. u = 0 ) which implies A = 0.
Thus we have X = sinαu and this must vanish when x = 2 (i.e., u =
1/2). The determining equation for the eigenvalues is thus sin α

2
= 0,

so
αn = 2πn, n = 1, 2, · · · .

The corresponding eigenfunctions can be chosen as

Xn(x) = − sin 2πnu = − sin(2πn[1− 1

x
]) = sin

2πn

x
.
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Since

(Xn, Xn)p =
∫ 2

1
sin2(

2πn

x
)
dx

x2
=

1

2

∫ 2

1
[1− cos(

4πn

x
)]
dx

x2
=

1

4
,

the ON basis of eigenfunctions is {φn(x)} where

φn(x) = 2 sin(
2πn

x
), n = 1, 2, · · · .

We conclude that
(φn, φm)p = δnm.

5. a. (15 points) Determine a formal eigenfunction series expansion for
the solution y(x) of

−y′′ − µy = f(x), y′(0) = 0, y′(1) = 0, 0 ≤ x ≤ 1,

where f is a given continuous function on [0, 1].

b. (10 points) What happens if the parameter µ is an eigenvalue?

Solution: With L = − d2

dx2 , the Sturm-Liouville eigenvalue problem
here is

LX = λX, 0 < x < 1, X ′(0) = 0, X ′(1) = 0.

We have solved this problem several times before. The eigenvalues are
λn = n2π2, n = 1, 2, · · ·, and λ0 = 0 with an ON basis of eigenfunctions

φ0(x) = 1, φn(x) =
√

2 cos(nπx).

The inner product is

(g1, g2) =
∫ 1

0
g1(x)g2(x)dx.

We expand both f and y in terms of the basis:

y(x) =
∞∑
j=0

cjφj(x), f(x) =
∞∑
j=0

bjφj(x), cj = (y, φj), bj = (f, φj).
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The equation to be solved is Ly − µy = f . Taking the inner product
of both sides of this equation with φj we find

(Ly − µy, φj) = (f, φj) = bj.

Note that

(Ly − µy, φj) = (Ly, φj)− µ(y, φj) = (y, Lφj)− µcj = (λj − µ)cj.

Thus (j2π2 − µ)cj = bj and

cj =
bj

j2π2 − µ
, j = 0, 1, · · · ,

as long as µ 6= j2π2 for some j. The solution is then

y(x) =
∞∑
j=0

(f, φj)

j2π2 − µ
φj(x) = 2

∞∑
j=0

∫ 1
0 f(s) cos jπs ds

j2π2 − µ
cos jπx.

If µ = N2π2 for some integer N , however, there is no longer a unique
solution and maybe no solution at all. Adding any multiple KφN(x) to
y will not change (L−µ)y, because (L−µ)φn = 0. If there is a solution
y to (L−N2π2)y = f with y satisfying the boundary conditions then

(f, φN) = ((L−N2π2)y, φN) = (y, (L−N2π2)φN) = 0,

so f is orthogonal to φN . In this case there is a solution but it is not
unique. However, if f is not orthogonal to φN there is no solution.

6. Laplace’s equation in polar coordinates is

urr +
1

r
ur +

1

r2
uθθ = 0.

a. (10 points) Use separation of variables to find the solution u(r, θ) of
this equation outside the circle r = a and satisfying the boundary
condition

u(a, θ) = f(θ)

on the circle. Require that u(r, θ) is bounded and continuous for
r ≥ a. To make u single-valued, require that u(r, θ) = u(r, θ+2π).
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Here, f(θ) is a continuous function with sectionally continuous
derivative such that f(0) = f(2π).

Solution:

Write u = Θ(θ)R(r) and separate variables to derive the Sturm-
Liouville eigenvalue problem with periodic boundary conditions

Θ′′ + λΘ = 0, −π < θ < π, Θ(−π) = Θ(π), Θ′(−π) = Θ′(π).

The conditions on R are

r2R′′ + rR− λR = 0, a < r <∞,

and |R(r)| < B for some constant B and all r > a. We already
showed in class that the possible eigenvalues in this case are λn =
n2, n = 1, 2, · · · with multiplicity two and eigenfunctions Θ(θ) =
an cosnθ + bn sinnθ, and λ0 = 0 with eigenfunction Θ0(θ) = 1,
For λn = n2 > 0 the possible solutions for R are R(r) = Arn +
Br−n. The boundedness condition requires Rn(r) = r−n. For
λ = 0 the possible solutions for R are R(r) = A + B ln r, and
the boundedness condition requires R0(r) = 1. Thus we have the
general solution

u(r, θ) =
a0

2
+
∞∑
n=1

(an cosnθ + bn sinnθ)

rn
.

b. (5 points) Show that formally the solution is

u(r, θ) =
a0

2
+
∞∑
n=1

r−n (an cosnθ + bn sinnθ) , (4)

and compute the coefficients an, bn.

Solution: The initial condition

u(a, θ) = f(θ) =
a0

2
+
∞∑
n=1

a−n (an cosnθ + bn sinnθ)

implies via Fourier series that

aj
aj

=
1

π

∫ π

−π
f(ψ) cos jψ dψ, j = 0, 1, 2 · · · ,

bn
an

=
1

π

∫ π

−π
f(ψ) sinnψ dψ, n = 1, 2 · · · .
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c. (5 points) Show that your formal solution is an actual solution of
Laplace’s equation satisfying the boundary conditions.

Solution: For r = a we know from the Fourier convergence the-
orem that the boundary conditions are satisfied and the series
converges uniformly and absolutely on the boundary. For r > a
we see that the series is a power series in ρ = a/r < 1 which
converges for ρ| = 1. Thus the radius of convergence of this power
series in ρ must be at least 1, and the series defines an analytic
function of ρ for all ρ < 1. In particular, term - by term differen-
tiation of the series is valid and the formal solution is an actual
solution of Laplace’s equation.

d. (15 points) By interchanging the order of summation and integra-
tion in (4), derive the Poisson integral formula for the solution:

u(r, θ) =
1

2π

∫ π

−π
f(ψ)

1− ρ2

[1 + ρ2 − 2ρ cos(θ − ψ)]
dψ,

where ρ = a/r < 1.

Solution: Substituting the integral expressions for aj, bn in (4) and
interchanging the order of summation and integration we obtain

u(r, θ) =
1

π

∫ π

−π
f(ψ)

[
1

2
+
∞∑
n=1

an

rn
(cosnθ cosnψ + sinnθ sinnψ)

]
dψ.

Note that

1

2
+
∞∑
n=1

an

rn
(cosnθ cosnψ + sinnθ sinnψ) =

1

2
+
∞∑
n=1

an

rn
cosn(θ − ψ)

=
1

2

[
1 +

∞∑
n=1

an

rn
{exp in(θ − ψ) + exp−in(θ − ψ)}

]

=
1

2

−1 +
∞∑
j=0

[(
a

r
ei(θ−ψ))j + (

a

r
e−i(θ−ψ))j]


=

1

2

[
−1 +

1

1− a
r
ei(θ−ψ)

+
1

1− a
r
e−i(θ−ψ)

]
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=
1

2

[
−(1− a

r
ei(θ−ψ))(1− a

r
e−i(θ−ψ)) + (1− a

r
e−i(θ−ψ)) + (1− a

r
e−i(θ−ψ))

(1− a
r
ei(θ−ψ))(1− a

r
e−i(θ−ψ))

]

=
1

2

1− a2

r2

1 + a2

r2
− 2a

r
cos(θ − ψ)

=
1

2

1− ρ2

1 + ρ2 − 2ρ cos(θ − ψ)
,

where ρ = a/r and we have used the formula

∞∑
j=0

zj =
1

1− z
, if |z| < 1,

for the sum of a geometric series. Thus we conclude that

u(r, θ) =
1

2π

∫ π

−π
f(ψ)

1− ρ2

[1 + ρ2 − 2ρ cos(θ − ψ)]
dψ,

where ρ = a/r < 1.

7. Fourier transforms on (−∞,∞) and Fourier series have interesting re-
lations between them. The periodization of a function f on (−∞,∞)
is defined as

P [f ](x) =
∞∑

m=−∞
f(x+ 2πm).

To guarantee convergence of the infinite sum we restrict ourselves to
functions that decay rapidly at infinity. A useful space of such functions
f is the Schwartz class of functions that are infinitely differentiable
everywhere, and for which there exist constants Cn,q (depending on f)
such that |xn dq

dxq f | ≤ Cn,q for all x and for each n, q = 0, 1, 2, · · ·. (An

example of such a function is f(x) = e−x
2
.)

a. (10 points) Show that if f is in the Schwartz class then its periodiza-
tion has period 2π. (You can assume the true fact that P [f ](x) is
continuous and continuously differentiable.)

Solution:

P [f ](x+ 2π) =
∞∑

m=−∞
f(x+ 2π + 2πm) =

∞∑
m=−∞

f(x+ 2π(m+ 1))

=
∞∑

k=−∞
f(x+ 2πk) = P [f ](x),

where k = m+ 1.
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b. (10 points) Expand P [f ](x) into a complex Fourier series

P [f ](x) =
∞∑

n=−∞
cne

inx

and show that the Fourier coefficients

cn =
1

2π

∫ 2π

0
P [f ](t)e−intdt

are given by

cn =
1

2π

∫ ∞
−∞

f(t)e−intdt =
1

2π
f̂(n)

where f̂(λ) is the complex Fourier transform of f(x).

Solution:

cn =
1

2π

∫ 2π

0
P [f ](t)e−intdt =

1

2π

∫ 2π

0

∞∑
m=−∞

f(t+ 2πm)dt

=
1

2π

∞∑
m=−∞

∫ 2π

0
f(t+ 2πm)e−intdt

where the interchange of summation and integration is justified
by the uniform convergence of the infinite series. Then, making
the change of variable τ = t+ 2πm in the integrals and using the
fact that e2πmi = 1, we have

cn =
1

2π

∞∑
m=−∞

∫ 2π(m+1)

2πm
f(τ)e−inτe2πmidτ

=
1

2π

∫ ∞
−∞

f(τ)e−inτdτ =
1

2π
f̂(n),

where f̂(λ) =
∫∞
−∞ f(τ)e−iλτdτ .

c. (5 points) Conclude that

∞∑
n=−∞

f(x+ 2πn) =
1

2π

∞∑
n=−∞

f̂(n)einx, (5)

so P [f ](x) tells us the value of f̂ at the integer points λ = n, but
not in general at the non-integer points. (For x = 0, equation (5)
is known as the Poisson summation formula.)
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Solution: We have

P [f ](x) =
∞∑

n=−∞
cne

inx

Substituting the definition of P [f ](x) and the computed values of cn
into this formula we obtain equation (5).

8. Let f(x) = a
x2+a2 for a > 0.

a. (10 points) Show that f̂(λ) = πe−a|λ|. Hint: It is easier to work
backwards.

Solution: The Fourier transform pair is given by

f(x) =
1

2π

∫ ∞
−∞

f̂(λ)eiλxdλ, f̂(λ) =
∫ ∞
−∞

f(x)e−iλxdx,

and this transform is invertible. Staring with f̂(λ) = πe−|λ| and
making use of the indefinite integral∫

eu cos bu du = eu
cos bu+ b sin bu

1 + b2
+ C,

we find

f(x) =
1

2π

∫ ∞
−∞

f̂(λ)eiλxdλ =
1

2

∫ ∞
−∞

e−a|λ|eiλxdλ

=
∫ ∞
0

e−aλ cosλx dλ

= −e−aλa cosλx− x sinλx

a2 + x2
|λ→+∞
λ=0 =

a

a2 + x2
.

b. (5 points) Use the Poisson summation formula to derive the identity

∞∑
n=−∞

1

n2 + a2
=
π

a

1 + e−2πa

1− e−2πa
.

Solution: Substituting f(x) = a
a2+x2 and f̂(λ) = πe−|λ| into the

Poisson summation formula we find
∞∑

n=−∞

a

a2 + (x+ 2πn)2
=

1

2

∞∑
n=−∞

e−a|n|einx =
1

2
+
∞∑
n=1

e−an cosnx.
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Now set x = 0 to get

∞∑
n=−∞

a

a2 + (2πn)2
= −1

2
+
∞∑
n=0

e−an = −1

2
+

1

1− e−a
.

Thus ∞∑
n=−∞

a

a2 + (2πn)2
=

1 + e−a

2(1− e−a)
.

Changing parameters to a = 2πb gives

∞∑
n=−∞

1

b2 + n2
=
π

b

1 + e−2πb

(1− e−2πb)
.,

which, modulo setting b = a is the desired result.

c. (10 points) What happens as a → 0+ ? (Look at the n = 0 term
on the left hand side.) Can you obtain the value of

∑∞
n=1

1
n2 from

this?

Solution: The n = 0 term on the right hand side gives us 1
a2 , so we

can’t immediately set a = 0. Instead we subtract 1
a2 from both sides of

the equation, to get

∞∑
n=1

2

n2 + a2
=
π

a

1 + e−2πa

1− e−2πa
− 1

a2
=

(πa− 1) + (πa+ 1)e−2πa

a2(1− e−2πa)
.

The limit of the left hand side as a → 0 is obvious: 2
∑∞
n=1

1
n2 . To

get the limit on the right hand side we expand the numerator and the
denominator in a power series in a. The leading term in the numerator
is 2

3
π3a3 + · · ·, in the denominator it is 2πa3 + · · ·. Thus the limit is

π2/3. We conclude that
∞∑
n=1

1

n2
=
π2

6
.
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