Homework Problem Set #4

Math 5467

March 20, 2006

Exercise 1 Find the z-transform for the sequence $\mathbf{x}(n) = 0$ for n < 0 and $\mathbf{x}(n) = (2/3)^n$ for $n \ge 0$, i.e.,

Exercise 2 Show explicitly that the double-shift orthogonality condition in the frequency domain

$$\int_{-\pi}^{\pi} e^{2ik\omega} |C(\omega)|^2 d\omega = 2\pi \delta_{k0}$$

for integer k, is equivalent to

$$|C(\omega)|^2 + |C(\omega + \pi)|^2 = 2.$$

Exercise 3 Plot the frequency response function $|H(\omega)|$ in the interval $0 \le \omega \le 2\pi$ for the Daubechies 4 tap filter. Point out the features of the graph that cause this filter to belong to the maxflat class.

Exercise 4 Let $\phi(t)$ and w(t) be the Haar scaling and wavelet functions. Let V_j and W_j be the spaces generated by $\phi_{j,k}(t) = 2^{j/2}\phi(2^jt-k)$ and $w_{j,k}(t) = 2^{j/2}w(2^jt-k)$, $k = 0, \pm 1, \cdots$, respectively. Let f(t) be defined on $0 \le t < 1$ and given by

$$f(t) = \begin{cases} 4 & 0 \le t < 1/4 \\ 1 & 1/4 \le t < 1/2 \\ -1 & 1/2 \le t < 3/4 \\ 2 & 3/4 \le t < 1. \end{cases}$$

- 1. Express f in terms of the basis for V_2 .
- 2. Decompose f into its component parts in W_1 , W_0 , and V_0 . In other words, find the Haar wavelet decomposition for f.
- 3. Sketch each of the four decompositions.

Exercise 5 Let $\phi(t)$ and w be the Haar scaling and wavelet functions, respectively. Let V_j and W_j be the spaces generated by $\phi_{j,k}(t) = 2^{j/2}\phi(2^jt - k)$ and $w_{j,k}(t) = 2^{j/2}w(2^jt - k)$, $k = 0, \pm 1, \cdots$, respectively. Suppose the real valued function $f(t) = \sum_k a_k \phi_{1,k}(t)$ belongs to V_1 and $f \perp V_0$. Show explicitly that $a_{2\ell+1} = -a_{2\ell}$ for all integers ℓ . Conclude that f can be expressed as a linear combination of the functions, $w_{0,k}(t)$, hence that $f \in W_0$.