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TABLE I. The exact phase shifts are § = K2g22185,, phase shifts
to the zeroth order in 72 are §® = K2g22r§,, and phase shifts to
the first order in 72 are 5 = K2g221S,.

I §= S, = S, =
: ! * 33 -(1 + 3 )
@+ D)@ 1)@+ 3) 8+ 1)) 2 8I( + 1)
1 0.066667 0.044 194 0.058 005
2 0.009524 0.008 505 0.009 391
3 0.003175 0.003 007 0.003 164
4 0.001 443 0.001 398 0.001 441
5 0.000777 0.000 761 0.000 177
og = /)12, (17p)

we obtain, for I =1, the following expression for the
phase shifts in the small ¢ limit

5, = 20K2g2/[(21 + 1)(2 — 1)(21 + 3)], (18)

where we keep only terms in ¢2 by omitting the
higher powers. By comparison with the exact result
at its small energy limit, we can determine how good
the WKB approximation is by simply expanding the
WKB results to the small limit. So that, to the zeroth
in %2, we have,for I = 1,

- K% 71
@+ 1))¥24°

which was obtained by keeping only terms to g2 =
2K 2g2 guch that

5= K{r —9) (19)

F(im k2) = in(l + 3k2+ --+), (20)

g E(3m,k2) = 311 —3k2+ ---), (21)
an
k2 =73/} + 73 = 2g2K2/H2U1 + ]2, (22)

To the first order in %2, in addition to the same ex-
pansion formula as given in Egs. (20), (21), and (22),
we use the expansion formula, which is given in
906. 05 of Ref. 6:

& 2 1(2)! . i
Jy = T MLL__}?ZJ a2)ym-i,
1= 5.5 ,Zc% 4m4i(m))2(j1)2 (f)

Now from Eq. (22) and o2 = —2g2K2/[I(l + 1)]2k2 to
the second order in ¢, we get
a
87— K(r —s)
= {K2g2n /4[10 + 1)]3/2}{1 + 5/81( + 1)). (23)

This comparison in the small ¢ limit is shown in
Table I. We see that it is agreeing in this limit. And
the agreement improves as [ becomes larger.
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It is shown that by constructing explicit realizations of the Clebsch~Gordan decomposition for tensor products
of irreducible representations of a group G, one can derive a wide variety of special function identities with
physical interest. In this paper, the representation theory of the harmonic oscillator group is used to give
elegant derivations of identities involving Hermite, Laguerre, Bessel, and hypergeometric functions.

1, INTRODUCTION

In two recent papers Armstrong! and Cunningham?
have employed Lie algebraic techniques to compute
some integrals which are useful in the quantum
mechanical treatment of the hydrogen atom. An
advantage of such techniques is that they allow one
to compute desired matrix elements for a quantum
mechanical system directly from the symmetry pro-
perties of the system, There is no need to appeal to
special function theory for an independent derivation.
Moreover, the corresponding special function iden-
tities themselves can be more simply and elegantly
derived on the basis of group theoretic considera-
tions. The identities useful in quantum mechanics
tend to be exactly those which are derivable from a
study of the symmetry groups of quantum mechanical
systems,

In this paper we extend the single example of Arm-
strong and Cunningham to a general method for the
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derivation of special function identities. The method
is simple to describe. Let {vj} be a family of irre~
ducible representations of the Lie algebra G and sup-
pose the tensor product v, ® ¥, can be decomposed
into a direct sum of representations
v, ® = Eeanj(k,l)vj, (1.1)
7
where the multiplicity n(%, 1) is either one or zero.
Let {n{/)} be a suitably chosen basis (which we call
canonical) for the representation space of ¥,. Then
the vectors {#{¥) ® h¥} form a basis for the repre-
sentation space V of v, ® y,. On the other hand, from
expression (1.1) we see that for each j such that
n(k, 1) = 0, we can find vectors {H{/’} which form a
canonical basis for that subspace V; of V which trans-
forms irreducibly under v;,. As is well known, the
vectors {H{/)} can be expressed as linear combina~
tions of the {h{¥) ® K®)} via the Clebsch—~Gordan (CG)
coefficients
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HD =2 C(k,m;1,nlj,p)lP @ B, {1.2)

mn
Also, relations (1. 2) can be inverted to express the
{n$® ® K} as linear combinations of the {H{/)}. We
suppose that the coefficients C(*) are known.

Consider a realization (model) of v, ® v, such that V
is a function space. Then the i{® @ k{) are functions
and (1. 2) shows us how to construct the functions
H(7). 1f, however, we can compute the functions H{7

directly from our model, we can view (1.2) as an
identity relating two families of functions.

Armstrong and Cunningham considered an example
where G was si(2, R), {;} was the discrete series of
representations, and V was a functional Hilbert space
such that the basis vectors i{* ® h{!), H(7) were com-
putable in terms of Laguerre polynomials. Substitut-
ing these results into (1. 2) and using the known CG
coefficients for the discrete series, they obtained an
identity obeyed by Laguerre polynomials. (Actually
these authors computed the matrix elements

HE, hE @ 1), (1.3)

where (-, +) is the inner product on V but that is
equivalent to a knowledge of (1. 2). Rather than study
(1. 3) via the Wigner-Eckart theorem, we choose to
examine the sums (1. 2). This is because {1. 2} makes
sense in many cases where there is no convenient
inner product space structure on V.)

The key to obtaining a variety of useful identities is
in the construction of models of v, ® ;. Once a model
is constructed the identity follows automatically, The
author's works3~6 contain a classification of these
models for many of the symmetry groups of physics,
in which the representation acts via differential and
difference operators. Thus, choosing appropriate
models from these papers we can substitute into

(1. 2) and obtain a wide variety of special function
identities.

In this paper we consider the Lie algebra of the har-
monic oscillator group S, a group which arises in the
study of the harmonic oscillator problem in quantum
mechanics. The irreducible representations and CG
coefficients for S are computed in Ref. 3. In particu-
lar, some of the CG coefficients are expressible as
hypergeometric functions and some as Laguerre
polynomials. By choosing appropriate models we
obtain identities involving Hermite, Laguerre, Bessel,
and hypergeometric functions.

The identity (5.14) may be new. All resulis are ob-~
tained with a minimum of computation. We do not
attempt to list all possible models but only a few
which lead to especially interesting formulas.

In a subsequent paper we shall apply this method to
the Lie algebras su(2) and si(2, R), the latter related
to the hydrogen atom problem. The CG coefficients
and special function identities for these algebras are
considerably more complicated than those presented
here.

Unless otherwise stated, all variables appearing in
this paper are real.

COEFFICIENTS., 1 649

2. THE HARMONIC OSCILLATOR GROUP

We designate by S the real four-parameter group of
matrices

1 fetiow ib—ww d
0 eic 1w 0

w,a, b = , (2.1)
g{ } 00 1 0
00 0 1

where w =x + # € Cand a,§ are real. The group
multiplication law is
glw,a,oboglw’,a’, 6t =glw + eiow’, a +a,

5+06 + %("w_wle‘ia ...wiy_’eia}. (2. 2)

In particular, g{0, 0, 0} is the identity and the inverse
of a group element is given by
g Hw, e, 6} = g{~ eiow, —a, 8. (2.3)

As a basis for the Lie algebra S of S we choose the
matricesd;, d5, 3,9 such that

g{x, 0,0} = expx &,
£{0,0,8} = expdd.

iy, 0,0} = ex ,
g{iv, 0,0} oy 9 2.4)
£10, ¢, 0} = expa gs,

It ig easy to verify that these matrices satisfy the
commutation relations

[91, 92] =29, [93, 8:]1= 5,
{512;9] = O!

where O is the zero matrix. For many purposes a
more convenient basis is provided by the matrices

giZ:ng +i519 53:2'33, &=~—1i8

[331 52] = gls
k=1,2,3. (2.5)

in the complexification of S. Here,

[33’ 3i]=i g:t, [3+9 g—] 2_8)
[6,8%]=[8,9%]=0.

The unitary irreducible representations of S were
determined in Refs,3 and 7. We list the results as
given in Ref. 3. (In this reference, representations
of the factor group S/D are computed where D is the
cyclic group generated by exp2rJ,. However, the
modification of these results to compute represen-
tationsg of S is trivial.)

(2.6)

There are four classes of unitary irreducible repre-
sentations. The first class consists of one~-dimen-
sional representations and is of no concern to us.
The second class consists of representations (A, /)
where both X and [ > 0 are real numbers. Each (A, )
can be defined on a Hilbert space 3 with ON basis
{h,:m =0,1,2,---}. Indeed, the defining relations
are

I3, = (0 — N, Eh, =1k

n 7
Jth, = [I(n + 1)]1/2p

vy TR, =(In)120 0 (2.7)
n=20,1,2,...,

where Jt,J3, E are the linear operators on ¥ cor-
responding to g%, 3, E in the Lie algebra represen-
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tation induced by (A, 7). The unitary operators U(g)
which define the representation on JC have matrix
elements:

U, (&) =, U(g)h,,) = explia(x —m) + 6

n,m
2 N 1/2
+ i(n — m)0] exp (—-« l—;——) 1%—,-)

X (yll/Z)m—nLém'n)(lyZ), (2.8)
where (-, ) is the inner product on ¥ and L{?(x) is
an associated Laguerre polynomial (See Ref. 8, Vol.
II). We have introduced polar coordinates rei® = 3w,

The third class consists of representations (A, —1)
where again / > 0 and A are real numbers. The re-
presentations are defined on the same Hilbert space
JC, but the defining relations are now

J3h, =(—x—n-—1)h,, Eh =—1Ih

(24

Jth, = (l“)l/zkn-p J-h, = [lin + 1}]1/2hn,1, (2.9)
n=0,1,2,-.
The matrix elements are
V, m(8) =, V(g)h,) = explia(n +m + 1)
— 16 + i(m —n)0]  exp(— 3ir2)
X (n I/m !)1/2 (_.llfzry)M”nLrsm‘%)(lyZ), (2. 10)

where 2rei® = w,

The fourth class contains representations of the form
[0, s] where p2 > 0 and s are real numbers with 0 <

s < 1. There is an equivalence [p,s}= [—p, s], but
all other pairs of representations are inequivalent.
Each [p, sl can be defined on a Hilbert space X with
ON basis {k,: m =0, £ 1, = 2, -+ }. The defining re-
lations are

J3k, = (m + s)k,, Ek, =0

Ik, = Pk, IR, =Pk, 4, (2.11)
m =0+ 1,2, ...,
and the matrix elements are given by
W, (&) = (&, ,W(gk,,)
—_— (_ i)n-mei[(m“‘n)o +(m*s)a]Jn_m(py)’ (2. 12)

where g = g{2rei®, a, 5} and J, (x) is a Bessel function
(Ret. 8, Vol. II).

Of special interest to us will be the Clebsch—Gordan
series for the decomposition of a tensor product of
two irreducible representations of S into a direct
sum of such representations. Again we quote the
results from Ref. 3. First we have the decomposition

oK
aDe @I 2 el +r —al+l).
a
A natural basis for the Hilbert space ¥ ® &’ corres-
ponding to the left-hand side of this expression is
givenby {h, ,=h, ®hyin,p =0,1,2,"" -1, while a
canonical basis for the subspace transforming accord-
ing to (A + A’ —a,l + I') is denoted {p{}r""a.1+2);
m = 0,1, ++}. The CG coefficients relating these
bases are

(2.13)
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K[lLn;U,pla,m] =(n (2.14)

(AN =g, 1+1")yr
Yl,P’ km 4 )> s

where (+, )’ is the inner product on ¥ @ &',

Explicitly,

ex 11/2(zu + xv) + 1'1/2(wu —zv))
P (1 +1')1/2
& zZowmyry b
= X

a,mmn,p=0

K{l,n;U',p \a,m] (2.15)

(@minpt)irz
It follows that these coefficients are zero unless
a +m =n +p. Furthermore,
K[Ln;l'ya + m —nla,m] = (—1)m=
% < all’ /1)~ mn) )1/2
mi@ +m —a)l(1 + I'/1)arm

Fl—m,n—a—min—m +1;—1U/1)
T(n—m +1) ’

X (2.18)

where F(a, B;y; 2) is the hypergeometric function and
I'(z) is the gamma function (Ref. 8, Vol.I). In Ref., 3,
several identities are derived for these coefficients
based on relations (2. 14) and (2. 15).

The CG coefficients for the decomposition

o0
=D, —l)= 2 eA+r +ta+1l,—1-1)
2=0 (2.17)
are given by

<k k(k+)\t+a+1,-l’3'>>’ = K[l,n; Z',p !arm]’

R m

(2.18)
identical with (2.14).
IfI1> I’ > 0,we have

o]
DWW, =N e+ +a+1,1-0) (2.19)
a=0

with CG coefficients
(h, ; RO @ 110) = G[1,n; U, jla,m).
Here,
Gll,m;U',jla,m] = (1 — U'/OYV2K[l — ', n; 1", alj, m].
(2.2

(2.20)

1)

The representation [p,s]® (1, 7) can be defined on the
Hilbert space X ® ¥. The Clebsch~Gordan series is

o0
[p,s]® (1) = 2 oA —s +a,l) (2.22)
g==0
and the CG coefficients are
(b, ® by, BQ~5*2.1)" = E(n,j;a,m;p2/1), (2.23)

where {hQ-s*a.0;m = 0,1,2,---} is a canonical basis
for (\ — s +a,l) and (-, )’ is the inner product on
X ® 3. These coefficients are zero unless
m —a =n +j,in which case
E(n,j;a,m;p2/1) = E(n + a,j;0,m;p2/1)
= E(m —j,j;0,m;p2/1) (2.24)
= (j!/mN1/2 exp(— p2/21) (p/11/2)m i L{mp2 /1),

The CG coefficients for the decomposition
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o)
[p,s]e,—D = 2, e(x—s +a,—1) (2. 25)
a=-0

are essentially identical to (2. 23) so we omit them,
Finally, the representations (A,7) ® (\’,— ) and
[p,s]1® [p’,s’'] have direct integral rather than direct
sum decompositions and we will not consider them
here.

It follows immediately from their definitions that the
CG coefficients satisfy unitarity relations. For
example, from (2, 14) we have

K[l,nl;l’,plla,m]K[l,nz; U,pyla,m]
0
=0

EIVE

a

(2.26)

“1”2691192’

20
§: K[l,n;1',p lal,ml]K[l,n; U,p laz,mz]

n 0

= 6“1"26”‘1”‘2'
(Note that these coefficients are all real.) Similar
relations hold for the other CG coefficients,

3. IDENTITIES FOR THE MATRIX ELEMENTS OF S

As our first application of the preceding results we
consider models of the representation (x,7) ® (A, 1)
in terms of functions on the group S. Let & be the
space of all functions f(g), g €S, defined on S. The
operators P(g),

[P(g)f](g') = flg'g), &£,8 €S, (3.1)

letermine a representation of S on &, the leff regular
represeniation. Let UMD (g) be the matrix element
(2. 8) corresponding to (x,!) and (for fixed b) define
functions k,(g) = UN,2(g), n =0,1,2,...,in §, Then

[P(g)h,)(g") = UNP(g'g) = io ugR (g (3.2)
fe

so that the {hn(g’)} form an ON basis for a Hilbert sub-

space of § which transforms according to the irre-

ducible representation (X, 7)., The last equality in

(3. 2) follows from the group multiplication property
e]

U (8'8) = 1 UKP(E) URP(), ggTe s, (3.9)
=

of the matrix elements.

1t follows that (for fixed b, ¢) the functions

hn,p(g,g’) = Uéf\ﬁl)(g)Ug‘\;’;'y)(g'), np = 0, 1) 2: . '('3’ 4)

on the group § X S form a natural basis for the rep-
resentation (x, 1) ® (A, ') under the left regular re-
presentation. Using (2.13) and (2. 14), we see that the
functions

o0
RO b (g g7) = ?0 K[l,n;1',pla,m)
X UA(UN(g), m=0,1,2,---, (3.5)

form a canonical basis for a model of A + X\’ — a,
1 +1'). (Note that K[+] is zero unlessn +p =a +m.)

We shall obtain an identity for the matrix elements
by computing the functions hf,{\**"‘z;f*ég =h2(g,g’) in
an alternate manner. This computation makes use of
the obvious properties:

COEFFICIENTS. 1 651
o0
ha(hh' k') = 25 UGsN-aU) (Wb (k) h b’k € S,
=0 (3.6)
and
U,E}\,Z) (e) = 6?1,771! (3_ 7)

where e is the identity element of S. Setting g’ = ¢ in
(3.5), we find

ha(g,e) =K[l,a + m —c;U',cla,mULY, (g).

Substituting this result in (3.6) with 2 = ¢, 1’ =g,
h =g(g’)"1, we obtain

o0
hil8,8') = .EOK[l,a +j—c;l,cla,j]
pe
x U}.%X"a'm')(g')muf (g(g)1). (3.8

b,a+j-c¢
The desired identity follows from a comparison of
(3.5) and (3. 8). In particular, if § = g’, we find the
familiar identity:

"Z; K[l, n; l',? !a, ni ]Ufg),\;ll)<g)U§z\;‘ll) (g)

= K[1,b; ', cla,b + ¢ — alURALEO(g).  (3.9)

This identity can be written in several equivalent
forms by making use of the unitarity of the K coef-
ficients, Substitution of relations (2. 8) and (2.16) into
(3. 9) leads to a special function identity. Similar
identities can be derived in the same manner corres-
ponding to each of the coefficients G[+] and E[+].
Some of these are listed in Ref. 3.

4. IDENTITIES FOR HERMITE POLYNOMIALS

We now search for additional models of the repre-
sentations (A,% ) and [p, s]. Many such models have
been classified in [3]~[6] in terms of Lie algebras of
differential and difference operators. We select a
few of particular interest.
As shown in Ref. 3, the operators
d __d
Jj=-—zj-c-+lx, Jx=a‘, E:l,
2 .
J?:——'l“l—d-—*-i-x—d-—A’ (4 1)
dx2 dx

and basis functions

h(x) = 20/2(u)"12H, (VI7E), n=0,1,2,..., (4.2)

determine a model of (A, [}, where H, (x) are Hermite
polynomials (Ref. 8, Vol. I). Another model is given
by the operators

. 9, Ix of 0 Ix
+ — pi0 | il - Of — — 3
J e ( P + 2), J et (ax + 2> E=1

J3=—7 (4.3)

Fi)

and basis functions

h,(x,0) = 277/2(n1)~1/2 exp(— Ix2/4)H, (xV1/2)
X gili-No, (4.4)

Suppose the operators J%,J3, E, and J5*,J}3, E), are

given by (4. 1) and define models of the represeénta-

tions (x, 1), (', !’), respectively. Then the operators

JE=JF +J5F, J3P=JF+J.3, E=E +E; (4.5

J. Math, Phys., Vol. 13, No. 5, May 1972
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and basis functions

h, ,(%,y) = B, (x)h,(3)
= 2700/ 2(n1p! )—1/zgn(xm)ﬂp(xm) (

define a model of (0, 1) ® (\’,1'). We will use g2 13)
and (4. 5) to compute the basis functions hQ*)'~a.2+¥)
= ha(x,y) directly. It is easy to verify that the equa-
tions

Jhg=0, I =—Q +1)0 (4.7)
for h%(x,¥) have unique solutions,
h:(x,y) = caz-alz(a !)—1/2Ha[(x —y W/ + 1],
a=0,1,2,..., (4.8)

where the ¢, are constants, The remaining basis
functions can be obtained from the recurrence rela-
tion

Jthe =

The solution is

m=20,1,2,"

[om + 1)1 /(1 + 1)]2/2h8 4,
(4 9)

he(x,y) = ¢, (21 ™/2(1 + I'ym(m))~1/2H, (u)H,,(v)
i I + 1y

u= m—,—(x -9}, =-—2—-l—‘/,_(_:i_—_-l—-?}, (4. 10)
am=0,1,2+--,
To compute ¢, we use the fact that

which follows from the explicit expression (2. 16) for
K[l,k;V,a —kla,0]. Comparing the coefficient of x2
on both su‘les of th1s equation, we obtain

¢ = (— 12, (4.12)
On the other hand, (2. 14) yields the relation
hg = 2 K[l,n; V', pla,m]h, ,. (4.13)
n‘p

Substitution of (2. 16), (4. 6), (4. 10), and (4. 12) into
this relation yields the desired identity.

Another model of (A4, ;) ® (A5, I,) is provided by the
operators (4. 3) and basis functions
h, p(%, 0) = 27*2V2(nlp!)~1/2 exp(— 1x2/4)

X H, (VT2 H,(x\T,72)ei®* #2730

=k (x, O) h,(x, 0), (4.14)

where [ = [, + [,. Indeed,

-0 1
Ty = 05, ©)e (5o + )z, 0)

a Iix
+ hy(x, ©)et e(—-— + —-—)h,.(x 0)
= w/lzip + lihu‘pﬂ"' w/llin + lfhml'p
with similar formulas for the other operators (4. 3).

On the other hand, from (2. 13) it is obvious that the
basis functions k2 for this model are given by

(4.15)

J. Math, Phys., Vol. 13, No. 5, May 1972

ha(x, 0) = ¢, 2"™/2(m!)~1/2 exp(— ix2/4)
X H, (x/I72 )e' "o,
where ¢, is a constant, We can use the identity (3.11)

with I = 1,, I' = I, to compute ¢,. Indeed, comparing
coefficients of x0, we find

(4.16)

c (—- 2)2/2(a!)1/2/(a/2)! if a is even

a if a is odd. (4.17)

(Note that (4.18) is actually the special case x =y of
the first identity derived in this section. However,
the method of proof is much simpler.)

For our next model we observe that the operators

.o O ] .9
K+=—em$, K‘—-e‘oa—;, K3 = —§ 5_@-’
E=0 (4.19)
and basis functions
k"(x, 0)= (,_i)n ei(n+s)0+ipx’ n=0,£1,+£2-" ’(4.20)

define the representation [p, s]. Therefore, the opera-
tors (4. 3) and basis functions

k, ® b (x, 0) = (—i)n273/2(j1)-1/2
x exp(+ ipx — Ix2/4)H; (VI72)
x expli(n +j +s —1)0],

J,xn=1012,..,, (4.21)

determine a model of [p, %@ (1, 1). From the explicit
form of the operators (4. 3), we can directly compute
the natural basis functions hQ-s*e.0(x, 0) = hg(x, 0)
corresponding to the Clebsch-Gordan series. The
resulis are clearly

ha(x, 0) = ¢, 27™/2(m!)1/2 exp(— Iv2/4) H,(x\T]Z)
X gimArs=ade,  (4,22)

where ¢, is a constant, We compute the constant by
evaluating the expression

o0
ha(x,0) = 'Z;o E(—j —a,j;a,0;p2/Dk_; ,®hx, 0)
i=

(4.23)
at x = 0. the result is ¢, = %, so the identity

hg = 23 E(n,j;a,m;p2/Dk,® h (4.24)
jmn

becomes (after some simplification)

exp(p? — 2ipx) Hy (%) = ?30 (— 2ip) I LN 2 )H,(x).
2

A different group-theoretic interpretation of (4. 25)
is presented in Ref. 3, p. 1086,

The operators

K* = pei®, K~ =pe o, K3=—-2'5?§, E=0
(4. 26)
and basis functions
k,(0) =ein*90 2 =0,+1,+£2,-"", (4.27)
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define another model of [p, s]. It follows from this
remark and expressions (4. 3) and (4. 4) that the

operators
Ix of 8 | Ix
+ _ e hodd) - = e~ — —
J__eW(a +2+p> J e’°<ax+2+p>
E=1, J3:—zﬁ (4.28)
and basis functions
k, ®hi(x,0) = kn(O)h].(x, 0)
= gi(n+8)0277/2(j1)~1/2 exp(— Ix2/4)
x Hj(x«/7—l 2)ei(j")\)0’
j,xn=0,1,2---, (4.29)

define a model of [p, s]® (A, ). In particular

_ ; iof 0, &
[knh] (peok)h +keo< % +2>hj,

I3[k, = ( aOk)h+k< 3‘86’6')’ (4. 30)

with similar interpretations of the remaining opera-
tors. We can again compute the basis functions
hQ-s+a.D(x ©) = hz(x, O) directly from (4.28) and
(2.7):

ha(x, ) = c, 2 /2(m!)-1/2 exp[— Ux + 2p/1)2/4]
x B, [(x — 20/INT/E | eitmres-are,

As usual, we compute ¢, by evaluating (4.23) at x = 0,
The result is ¢, = 1, so our new identity becomes

(4.31)

exp[— 2xp — p2]H, (x + 2p)

18

(4.32)

(20)7- L (2p2) H(x).
0

A different group-theoretic derivation of this for-
mula is given in Ref. 3, p. 106.

.
i

We omit the routine computation of the identities for

Hermite polynomials obtained by decomposing (A, /)

®W,—1).

As a concluding remark we note that the identity

277/2(nl)~1/2H [(21)-1/2(J+ +J~)]h, = h,,
n=01,2 ..., (4.33)

holds for the model of (A, ) defined by (4. 1), (4. 2),
since J* + J~ = Ix, Therefore, (4.33) must hold for
all models of (A, ) as classified in Refs.3-6. This
identity is by no means obvious for the remaining
models considered in this paper.

5. IDENTITIES FOR LAGUERRE FUNCTIONS
As shown in Ref. 3, p. 111, the operators

of ? ,. 3, id
+ of L - = o _ — —_
J_e’<ax z), J e'<xax+ao>’

J3:~i5%, E=1 (5.1)
and basis functions
R, (x, 0) = (n!)1/207/2(Ix) A nLA"n)(Ix) i~ No,
n=01,2"--, (52)

form a model of (A, ). It follows that the operators
(5.1) and basis functions

By o, ©) = b, ® b = (uipt) 1721 20/

X x l+>\2 n- pL()kl n)( x)Lékz’P)(lzx)ei(n*p")\l‘xz)e' (5- 3)
define a model of (,

Here,
(3
THh ) = hyet (%—l>h£+hpe‘0(-5;—ll>hn (5.4)

with a similar interp{etatlon)for the other operators.
The basis functions h (x,0) =h2(x,0) for
this representation are easily obtained from (5. 1)
and (5. 2);

1,)® Ay, 1), where I, + 1, = 1.

he(x, 0) = c, (m!)* 2121y Reem LT gy

i\ ~apr)0 M, a4 =0,1,2,++. (5.5)

X e

The value of ¢, follows by equating coefficients of

xM727% on hoth sides of expression (4.11) (I =1,
U= 12).
P(XZ + 1) A+a/2 }\ -a/2 +a/2
%=Th,—a+D Iy + 1) N
X Fil=a; =gy —a +1;~1,/1)). (5.6)

Thus,
21 K[ly,n31y,pla,m] (up!) /20372

x 1y PP LN ) L0 P 1)

= ¢ (m!) 31y + 1RO ),
(5.7)

In the special case where r, and A, are integers, this
identity reduces to (3.9).

We can construct another model related to Laguerre
polynomials by observing that the operators

o 0 L a 170 .0
+ 510 - Of - —— 3 - PR
Kt =e 3x K -e1<xax+ae>, K3 = isg
E=0 (5.8)

and basis functions

kn(x, 0) = x‘(n+s)/2c]_n_s(2p,\/;)ei(,,+s)0’

n=0t1,%2..., (509

form a model of [p, s]. Hence, the operators (5.1)
and basis functions

k, ® hix,0) = (j 1)1/275/2(1x) A-ix - +5)/2
X, s (2pw/-56_)L}*'j)(lx) gibr+s+i=2)o,

J,xm=0,+1,£2 ..., (5.10)

determine a model of [p,s]® (A, ). The basis func-
tions hQ"s*@.2 = h2 can be computed directly from
(5.1) and (5.2):

hi(x,0) = c,(m!)1/2]m/2(ixfr-s+a-m[O-s+a=m)(ix)

x ei(m—}««s—a)e’ a,m = 0, 1, 2’ ce (5. 11)
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We compute the constants ¢, by comparing coeffi-
cients of x» s*¢ on both sides of (4.23). The result is

_ exp(—p2/2l) (p\e-s — N a—s +1;p2
¢ =T a1 (z) 1F1( I

_ exp(}é)z) - E(z i ;)+ T <§>a-SL a-s) (P—lz-):

. . (5.12)
so that the identity
k, ®h =Zn.} E(n,j;a,m;p2/1) hQs*a:d (5.13)
reads
exp(pZ) (p2x)(n*s)/2¢]_n_s(2p.‘/_x_ )L}K‘j)(x)

© (x +1) i et
:E rbl +m-(—n—-j._s+1)(P2) ]lﬁ( !)(p2)

m=0

X L{r-n39)(p2) L-sn-3(x),

(5.14)

frx=j=0,n+s=—a,l=1,this formula simpli-
fies to the well-known expression

® 2mpfo)
exp(p2)p2) /20, (20V%) = 1) o Latr) . (5.15)

The special case of (5,14) withj = 0 was first de-
rived by Erdelyi in 1937 (see Ref. 9, p. 141). However,
the general formula withj # 0 may be new.

It is a routine computation to obtain models of the
representation (3, 1) ® (A, — I’), but this will be
omitted.

6. DIFFERENCE OPERATOR MODELS

In this section, we construct Lie algebra models
using difference operators. These models were clas-
sified in Ref. 4.

The operators

K* =e*'io(— L +1),

K- = ¢ei0 <-— (x +1)R +x +1 +—azao>, (6.1)
9
3 _ ; —
K3=—iss, E=0

and basis functions

B, 0) = prLw Ap2) ¢itne90,  m=0,21,22,...,

(6.2)
define a model of [p, s]. Here,
Rf(x,0) =flx +1,0), Lf(x,0)=flx—1,0). (6.3)
On the other hand, the operators
HYt=—1le"°, H- = ie‘“’(;—@— + ny , H3=-—1i é%’
E=1 (6.4
and functions
h}-(ﬁ) = ( — 1)ili/2(j1)-1/2¢ii-No,  j =0,1,2,...,
(6.5)
define a model of (A, !). Thus, the operators
Jt=e'i0(—-L—1+1),
- e~ie(_(x +1R +x—x +1 +-53%), (6.6)
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20°?

and functions
B ® Bi(x, 0) = (= VT )I(j1)"1/2p™ LEn Np2)eitnsivs-Ae,
(6.7)

determine a model of [p,s]® (A, 7). We can compute
the basis functions Q"1 )(x, 0) = ha(x, 0) directly
from (6. 6), (2.7), and (2. 22), with the result
I'x —s +a+1)

Fx +1)

X oF (—m,s —a;s —a—x;1"1)eilm\s-a)0 (6, 8)

ha(x, 0) = c,(— VT )m(m!)-1/2

(Here, ¢, could be a periodic function of x with period
one. However, it is easy to check that ¢, is actually

a constant,) The constant ¢, can be evaluated from
expression (4. 23). Indeed, comparing (4. 23) and
(5.14) withj = 0, x = 0, we find

¢, = p°® exp(p2 — p2/2l)/T(@a—s +1). (6.9)

Thus, the identity (5. 13) becomes

exp[p2(1 — 1)]LEX1p2)

5 (e rm i)l

ma0 x m!

X Fi(=m,j—a—m;j—a—m-—zx;I"1)
% Lj(m'l')(pz)_ (6.10)

For our last example we consider the operators

J¥=eio(—L~1—1+1),

J- = e‘iﬂ(— (x+1DR+x—xr+1 +g—%—), (6.11)

.0
J3=—ize,  E=1+1.
The functions

(=VI)r (=VT)? Tx +2' +1)

hn'p =hn®hl;(x,0)= Jﬁl_ \/p—l- r(x+1)
X (=P, =N =2 —x;171)
x exp(n +p —x —A’)i0, n,p=0,1,2,...,
(6.12)

and these operators define a model of (A,1) ® (A, [’).
[In particular, the action of the operators (6.4) on the
{n,(©)} yields (r, ).] Computing the basis functions
h2 = BQ+\'-a.+U)(x O) directly, we find in analogy with
(6. 8):

ha(x,0) =c, AT t) —at 1)

ymT T{x +1)
X JFi(—m,a — N8~ —x; (L +1)°1)
x eilm+a-x-\"o, (6.13)
Using (4. 11) to evaluate the constant, we obtain
Ca =<):1> val(l + I'ya/2(l/1)a/2, (6.14)

The resulting identity is
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(A)\l"(x + A —a+1)
a) T +x+1) .

a+
X Fil=msa—N,a—N —x; (1 +1')71) = 27

n=

(—1)asm(i—1'ymir-a

o
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(= N)rimnFi (—m,n—a—m;—n—m +1;—1"/1)
% (a+m—n)ITn—m +1)
X JFy(n—a—m, —N;— XN —x;1'"1), (6.15)
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Note on the Explicit Form of Invariant Operators for O(n)

Takayoshi Maekawa
Depariment of Physics, Kumamolo University, Kumamoto, Japan
(Received 20 September 1971)

A complete set of invariants of O(n) is constructed explicitly and a method of deriving the corresponding in-

variants of O(p, ¢) is briefly remarked.

It is assumed that the invariant operators for a Lie
group are clarified implicitly by the researches of
Killing, Cartan, and Weyl. It, however, is important to
know the explicit form for the invariants in applica-
tions to physics. The subject is discussed by some
authors!™3 and an interesting form for the invariants
is given for some special groups. But it seems that
the explicit form for the invariants is not so simple
as the Casimir operator. In this note, we give a com-
plete system of independent invariants suitable for
uniquely labeling the irreducible inequivalent repre-
sentations of O(n). A further discussion will be given
in the near future together with some simple appli-
cations.4

The infinitesimal generators D, j, k= 1,2,...,n,
of O(n) are defined as the quantities which satisfy the
commutation relations

[D; (1)
where D, is antisymmetric (D;,= — D,.) and Hermi-
tian. As is well known, the orthogonal group O(n) has
[n/2] invariant operators, where [r/2] is equal to n/2
or (n — 1)/2 corresponding to even # or odd n. One of
these invariants is the well-known Casimir operator

(2)

ks Dim) = (8D + O Djy — 8, Dy — 8, D;),

F@ = %Djijk ,
where the superscript # of F denotes the dimension
number. Unless stated otherwise, similar notation
and the summation convention from 1 to » will be
used.

We can give the result for the other invariant opera-
tors G as follows:

- 2
6p= Loo(ca ®3)
1 "2 n=2p-2
GP =C® foranevennandp = (n— 2)/2, (4)

where p in (3) takes 1,2, ..., (n — 4)/2 for an even n
and 1,2,...,(n — 3)/2 for an odd n. It is straight-
forward to show that the G® in (3) and (4) are in-
variant. The sum on the right-hand side of (3) is

taken over all satisfying the conditioni; < i, < «+« <
lp2p-2- The Cin (3) and (4) are given by virtue of D,
as follows:

1
Ci(n)...~ = T .oT ii'--iD' ;
12" tezpz 20 1(p + 1)1 02T Tmepmitezp
in—zp+1in-2p+2' v Din-lin'
+ 1, for an even permutation (i4i,- -
i,) of (12+*+n),
iy for an odd permutation (i;iy--«7,)

of (12+++n)
otherwise.

i, =\ 1,
0, (5)
Thus together with (2) and (3) [and (4) for an even n],
we have given the [#/2] invariant operators for O(n),
whose explicit expressions can be easily given.

It can be seen that these invariant operators are in-
dependent and suitable for labeling the irreducible
representations of O(n). In order to see the situation,
let us give an outline of the proof according to Bieden-
harn! and Micu2: When an invariant is evaluated in
terms of the highest weight L and only the highest-
order terms [only the terms containing the genera-
tors H; =Dy, 1 ,,0/=1,2,...,[n/2])] in the invariant
are considered, it becomes an invariant of the group
S (the group of reflections on hyperplanes perpen-
dicular to the roots). That is, the invariants F® and
G become

_ [n/2]
F® F@ = 3 LL, (6)
6P =GP = B, EalyLy )N
zl< 12<...<;p+l ?
Gﬁ(n) — EP(n) = L1L2 .. ‘L"/z
foranevenn andp = (n — 2)/2. (8)

These invariants of S have the properties: Their
Jacobian does not vanish identically and factorizes
into N[ = n(n — 2)/8 for an even n and (n — 1)(n + 1)/8
for an odd =] linear forms which, when equated to
zero, give the reflecting hyperplanes that generate the
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