GARDING DOMAINS AND ANALYTIC VECTORS

If the representation is not irreducible or not a factor
representation, we learn from the above argument
that it decomposes into a direct sum of representa-
tions in P, 9, (P, — P,)9, (P; — P,) » etc. such that

U(f) is p,-continuous in (P, — P,_;}9. For fixed sub-
representation one can apply the same argument to
V{g), and thus we find that the representation is a
divect sum of subrepresentations in each of which

827

U(f) and V{g) are continuous with respect fo some
Hilbertian norm (depending on the subrepresenta-
tion).
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It is shown that the construction of concrete models of Clebsch~Gordan decompositions for tensor products of
irreducible group representations leads to a wide variety of special function identities. In this paper the repre-
sentation theory of the rotation and Lorentz groups in 3-space is used to give elegant derivations of identities
involving Laguerre, Gegenbauer, hypergeometric, and generalized hypergeometric functions. Some of these

identities may be new in this general form,

INTRODUCTION

In Ref. 1, which we refer to as I, a method was des-
cribed whereby a knowledge of the Clebsch~Gordan
decomposition for the tensor product of two repre-
sentations of a group G, could be used to derive
special function identities. The idea is easy to des-
cribe. Suppose G has a family of irreducible repre-
sentations {D,} with Clebsch~Gordan series

D,®D,=2;8D,,
w

such that each irreducible representation D, occurs
at most once in the tensor product. If {j,*} is a
canonical basis for D,, then there exists a relation of
the form

@) 7= 2 Clu,nv,mlw,h)j™ e @,
n,m

where the constants C(-|*) are Clebsch—Gordan coef-
ficients. Suppose we have an explicit function-space
model of the representation D, ® D,. Then the vectors
7w ® ) will be special functions and if the model is
simple enough, the special functions j,{*) can be com-
puted directly. In this case, expression (a) becomes
an identity relating the special functions j® ® j®
and 7). This identity can be inverted since the coef-
ficients C(-|-) satisfy orthogonality relations,

The above method is useful for a given group if there
is a procedure for constructing a variety of models
of the group representations. In Refs.2-4, a number
of such models are cataloged for groups of common
occurence in physics. Here we use these models to
give elegant derivations of identities associated with

the rotation and homogeneous Lorentz groups in 3-
space. Some of these identities may be new in this
general form; certainly their close relationship to one
another and to group theory is new.

Most of the following explicit examples are associat-
ed with the Lorentz group G, but the analogous ex-
amples for SO(3) are usually self-evident,

In physical applications, integral forms of these iden-
tities appear when one computes matrix elements
corresponding to a quantum mechanical system with
symmetry group SO(3) or G5.5,6 However, the group
theoretic method has validity independent of the com-
putation of matrix elements, so the results of this
paper are not presented in integral form. The reader
can write most of the following identities in various
integral forms by using well-known orthogonality re-
lations for the Laguerre, Gegenbauer, and hypergeo-
metric functions.

1. THE GROUPS SU(2) AND G,

The group SU(2) consists of all 2 X 2 unitary uni-
modular matrices. In Euler angles, every A € SU(2)
can be written as

A0, 8. 0) (e‘i(%*‘/’z)/z cos(6/2),ie"ile w02 sin(e/Z))
#1095 2=\ 4 oito -0, 02 sin (6/2),ei¢y* Y2 cos(8/2)

-(L53)

If ab = 0 the Euler angles can be defined uniquely by
sin(6/2) = |b |,

fal2 +|b]2=1. (1.1)

cos(6/2) = |al, 0=06=n,
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—3{@y + @y) = arga, (@, — @)+ 37 =argh,

— 27 = @q, 0, < 27, 1.2)

However, if ab = 0 these angles are not unique. As a
basis for the Lie algebra su(2) we choose the matrices
91, 82, 5, such that

A(0, 6, 0) = exp6 g, A(—Z—, 8,—
Ag,0,0) = A(0,0, ¢) = expe J;.
These matrices satisfy the commutation relations
(81,921 = 93, (93, 1] =8z [a, 831 = 8. (1.4)
Another convenient basis is given by
f = ?—52 + ié}l, g = i33,
which belong to the complexification of su(2), Here,
(83, §1=28% [8%9]=28. (1.6)

The irreducible unitary representations of SU(2) are
D, 2u=0,1,2,...,each defined on a (2u + 1)-di-
mensional Hilbert space 3, with ON basis {p,,: m =
—u,—u+1,...,u—1,u}. “The defining relations are

';—T") = expggz,

(1.3)

(1.5)

=[usm){utm+ 1)]1/21)7)2&1’
(.7)

J3p, =mp,, J*pm

W= ..., U,

where J, * J3 are the linear operators corresponding
to c‘} g3 respectlvely, in the Lie algebra representa-
tion mduced by D,. The matrix elements U, , (A) of
the unitary operators U(A) on ¥, which determine
this representation are

(w + m)! (u — n)! )1/2
(u + n)} (u— m)!
1
T'(m—n+1)
—u,m—n+1;~— |b/al|?)

U“vm (A)‘= <l§w U(A)Pm> = (

X qutngu-mpm-n

x F(—
— 1

— (ipem ((u + m)! (u n)!> /2

{u + n)! (4 — m)!

U — R, M

x e7i(ngrme,) P=n.m (cosp), (1.8)
where
Pron(x) = (1 ;— x)(m—r)/z (1 .2_. x)(mW)/Z

1

X ———— Flu +m + 1,— u+ m;
Tm+7r+1)

m+r+1;3(1-—x) (1.9)
and A is given by (1. 1). Here,{:, ") is the inner pro-
duct on X, , linear in the second argument and

F(a, b; c; z) is the hypergeometric function, see Ref, 7,
Vol. 1.

The group G4 consists of all 2 X 2 complex matrices
of the form

[pl2 =1,

A= (_a_z)’ a,b, €C, detA=|al2 -
(1.10)
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This is a real 3-parameter matrix group isomorphic
to SL(2,R).2 Furthermore, G, is the twofold covering
group of the homogeneous Lorentz group in 3-space.8
We can choose real coordinates (u, p, v) for A so that

A( ) (e’i(,ﬂ*ﬂ)/z Cosh(p/z) ei(v‘ﬂ)/z SInh(p/z))
V) =
Py V)= gitu-¥2 ginh(p/2) ei®/2 cosh(p/2)
(1.11)
Here we require,
fal = coshp, |b] =sinhp, 0=p< o,
{ =-—arga—argh, v=argh-—arga. (1.12)
The matrices §,, Js, 3, such that
A0, p,m) = exppdy, A(0,p,0) = exppd,,
(1.13)

A(‘-{) O; 0) = A(Oa 0; ’J-) = exPU g,’}’
form a bagis for the Lie algebra §;of G;. The com-
mutation relations are
(81,92 =~ 930 (3 01]= 8o, 93, 2] =— &-
(1.14)
A more convenient basis for many purposes is gft =
— 9y ¥1d;, I3 = ig, in the complexification of Sa-.
Here the commutation relations are

[é]+, C‘I—] =298, [33’ gi] =% gia

identical with (1. 6),

We consider a class D of irreducible unitary repre-
sentations of G4, defmed for u > 0 (discrete series),
Here, D can be realized on the Hilbert space & with
ON basis {j,: =10,1,2,...}. The defining relations
are

I35, = W + n)j,, I, =[(2u+ n)n + 1)]1/25,,,,

IGy=—=[nu+n—-1Y25 ;. n=0,1,...,
(1. 16)

where J* ,J 3 are the representation operators cor-
respondmg to g*, g3, respectively. (To be more pre-
cise, D} is a global representation of G 3 only for 2u,
an 1nteger. For 2u not an integer, D} is a local re-
presentation of G5 and a global u'reduclble represen-
tation of the simply connected covering group of G,
(see Refs. 2, 8, and 9). The matrix elements of Dt
are

Vo m (A) = (4, VAN,

2u + wymi\ /2
2( . ) . atg-2u-mpme-n

(1.15)

T(2u + m)n!
9 F(—n2u +mym—mn+1; |b/al?)
T(m —n+ 1)
1/2
= (M) e—:‘{p {u+n)yv(e+rm) ﬂg-azn,:;;n;
2u + ! -#(coshp)’
[ @ mn (1.17)
where the coordinates of 4 are given by (1, 10), (1, 11},
and
BhE(2) = 1 (z + 1\ G-hy2 (z — 1) (eepy2
D +p+1) / 2

XFv+E+1L,E—pyp+ & +1;5(1 —2). (1.18)
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CLEBSCH-GORDAN COEFFICIENTS

As is well known, the Clebsch-Gordan series for
SU(2) is

U+v

D,®D, = 2,

w=lu-v|

® D,. (1.19)

The vectors {p, ,, =8 ® p:n=—u—u+1,...,
m=-—v,—v+1,...,v; form a natural basis for the
representation space 3, ® 3/, while a canonical

basis for the subspace transforming according to D,

4

expla(xy — x3) + B(x; — %) + v(% — x5)]
oo %

= X

(Jy + g + jy + 12

829

can be denoted {p¥:k=—w +1,...,w}. The
Clebsch~Gordan (CG) coefficients relating these two
bases are

Clu,myv,m|w, k) = (B, s PV (1. 20)
where (-, *) ’ is the inner product on &, ® /. If the

basis vectors are chosen appropriately, the CG coef-
ficients are defined by the generating function

Q" htiz*ds BATIz"

Np*iz=0 m ==,

X

W'l dy o Ity Tpt e 7+”‘3(
Y Xt 1Ky 2 T2 X" My My Mg

[ + i + 43010y — Gy * j3)!

Ji Ja J'3>

where the 3-j coefficients are

h ke B3 =& 1)’5"s ; ‘i .
(mimzma) \/-2_13—+T C(jy,my; jp, My s 7:13)22)

and the sum is taken over all j;, m, for which (1.21)
makes sense, In particular, C{x, n; v, m|w, k) = 0 un-
less k=n+mand |u—v| <w =<u + v. The various
symmetries and explicit formulas for the CG coef-
ficients which abound in the literature can all be ob-
tained from (1.21), see Refs. 10 and 11.

The Clebsch~Gordan series for the tensor product
Dt ® D} of G, representations is2:6

°«Q

2 & Dt

utv+s®
=0

Dte D} = (1.23)
The vectors {j, ,, = j, ® j, :n,m =0,1,-+-} form a
natural ON basis for the representation space X ® I’
A canonical basis for the subspace of 3 ® ¥’ trans-
forming according to D}, .. can be denoted
{js:h=0,1,---}. The CG coefficients are

E(u, 55,0, | 8, 1) = 3505 (1.24)
where (-, *)’ is the inner product on 3 ® X’. With an
appropriate choice of basis vectors, the CG coef-
ficients are given by the generating function.

((Zu + 20 + 25— 1)I'(Qu + 20 + s — 1)I'(20 + s)\1/2
sIT(2u)I'(2v) >
X (1 — by)'2u—s (1 —_— bx)—Zv-s(y _ x)s

g’: T(2u + 2v + 2s + h)\1/2
= k2, m=0 hl

X E(u,n; v,m|s, h)y»xmbk, |bx|<1, |by < 1,

(1. 25)
We can expand the left-hand side of (1. 25) to obtain
explicit expressions for the CG coefficients. In gene-
ral they are rather complicated finite sums. How-
ever in the special cases s = 0 or 2 = 0, the sum con-
tains only one term and the CG coefficient reduces to
the square root of a quotient of gamma functions, as
the reader can easily verify.

(71 * Jg _j3)l (jl + ml)! (71 —my)! (jz + mz)!(jz "mz)!(jg + mz)l(js - m3)1]1/2 ’

(1.21)

r

From the definitions (1. 20), (1. 24) it follows that the
CG coefficients satisfy orthogonality relations. Indeed
the coefficients E(‘) are real and satisfy

%:,0 B, ny; v,my | 8, h)E(W, ny, v, m5 | 8, 1) = 8, o By, s
(1.26)

. E(u, n; v,m| sy, hy JE(u, 75 v, m |sg, ho) = 8s,s,0hn,

x!

NG

”,

The coefficients C(-) satisfy similar relations except
that the sums are finite,

2. IDENTITIES FOR THE MATRIX ELEMENTS OF
SO(3) AND G,

Justasin I,Sec. 2, we can use products of matrix ele-
ments of the representations D,, D} to construct new
models of these representations. Since the methods
are identical with I we present only the results.

For fixed b and ¢, the functions

5
PRUVNA A = 25 Efu,mv,m|s, h)

n,m=0

X VAOA) VD (A7), h=0,1,2,-+-, (2.1)
form a canonical basis for a model of D}, ., under

the group action
[P(B)f (A, A’) = f(AB,A’B), A,A,Bec Gy (2.2)

on functions defined on G; X G4. Hence, V®)(A) is the
matrix element (1.17) corresponding to the repre-
sentation D}. Note that the sum on the right-hand
side of (2. 1) is finite since E(u, n; v,m|s, h) = 0 un-
lessn+m =s + h,

Using the transformation properties of the basis
pL#+?s) we can also show

[> o)
P (A, AN = 2 Elu, s + j— ¢;v,¢18,7)
i=0

X Vs (A) V) (AA)T). (2.3)
Equating (2. 1) and (2. 3) we obtain a family of identi-
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ties obeyed by the matrix elements, In particular,
for A = A’ the identity reduces to the formula

nZ')n E(u, n; v, m| s, )V (A)VE) (4)

= E(u, b;v,c|s, b+ c— s)VE 2D (4), (2.4)

since V,®) (E) = 6, ,, for E the identity matrix.

The construction of models of the representations

D, of SU(2) is analogous to that given above, and
formulas (2. 1) and (2. 3) can easily be modified for
this case. Of special interest is the case where the
basis contains only one element {0 (4, A’), i.e., this
function transforms according to the identity repre-
sentation D,. Nonzero functions p{® (4, A’) can be
constructed only if # = v, in which case the analogy of
(2.1) is

b0 (4, A')

,Zu Clu, n;u, — |0, 0) UM (4) U@ (A7) (2.5)
with fixed b, ¢, The analogy of (2.3) is
204, A4") = Cu, — c; u, c|0, 0)UM (A(A)L).  (2.6)

Equating (2. 5) and (2. 6) we obtain a family of addition
theorems for the matrix elements. The simplest case,
b= c=0,u= I yields the well-known addition
theorem

P, [cosé cosé’ + sing sing’ cos(¢ — ¢')]

47
91, ’ 2.7)
2l+1m§)_[ (8, 0) (

Y, (6, @)

for the Legendre polynomials (see Ref. 12, p. 68).

3. DIFFERENTIAL OPERATOR MODELS

In this section we construct new models of the repre-
sentations D} as classified in Ref. 2, Chap. 5, and use
these models and the results of Sec.1 to obtain
special function identities,

The Type B operators

; 0 . 0
JYT=elf(x z= —izz — %)
dx a6 ’
5 " (3.1)
0 .
— <] L o 3 =32
J- e’(xa +zae) J {5
and basis functions
n! 1/2
. oy = [t
inl, 6) (r(n + 2u))
x x#L2wD(x)eitwme,  n=0,1,2,..., (3.2)

form a model of D}, i.e., they satisfy expressions
(1.16). Here L(a)(x) is a generalized Laguerre poly-
nomial (see Ref 7,Vol.1).

It follows that the functions
3 Ty 0 ) ( 6) n 1 1/2
o (5.6) = 850 (5,0) 45, 0)= (L)

X qu}Zu—l)(ax)ei(u‘rn)e(_i!____ 1/2
T'(m + 2v)

J. Math. Phys., Vol. 13, No. 6, June 1972

i5(x, 6)

X xUL(ZU“l) ([1 —_ a]x) ei(v+m)9’
m
nom=01,2..., (3.3)

and the operators (3.1) define a model of D} ® D?
where a, #, v are real constants such that « > 0,2 >0,
Indeed,

" Do, d 0 ,
IHPILP) = j{ o ("5} —igg (- “)x) "
ax GL

X (n+ D2 0 552
+{@v + m) (m + 1)]1/2 j{1) j(2)

A Y (1
= gio (xa_k 02 x> Py

+ j(2) gto (x_a_ —_ z-i— — ax) J(l) [Qu + n)

3.4)

with similar interpretations of J~ and J3,

We now compute the basis vectors j§, s,k =
0,1,2 , corresponding to the Clebsch Gordan

’ b y e

series (1. 23) From (1.24) we have

Z} E(u, n; v, m|s, h) j§1)(x, 6) §$2) (x, 0).
nm=0 (3.5)

[Recall that E(*) = 0 unless » + m = s + .] On the
other hand, we can compute the j§ directly for this

model by using the fact that they satisfy (1.16) with
n=~h, u=u+ v+ s. Indeed, from (3.2),

. nt 1/2
0 =c, )
T(h + 2u + 20 + 25)

X xUtVHS Llf2u+2m2(§;l) giurwrs hio (3 @)

where ¢, is a constant. To determine c , we equate
(3.5) and (3. 6) in the case 2 = 0. In this special case,
(3.5) simplifies to

B (s ITQu + 2v + s — 1) T'2u + s)I'(2v + s)> 1/2
0= T(2u + 20 + 25— 1)

X 2 (= 1p[(s— m)n! TQu + m)D@u+ s—n)]-1/2
n=0

x j{1j(2) 3.7

Substituting (3, 3) and (3. 6) into this expression, com-
paring coefficients of x%*?*$ on both sides of the re-
sulting equation we find

_ (a—1)s (I’(Zu + 8)T(2u + 2v + s —1)
“~ Tew s IT(20 + s)

1
X(2u+2v+23-—1)> /2F<1—s—2v,

-—s;?.u;—afl_—l), s=0,1,2,..., (3.8)

where F(o, B;v;2) is the hypergeometric function
(see Ref. 7, Vol, 1) Note that ¢, is a polynomial of
order s in a. The final identity is obtained by sub-
stituting (3. 3), (3. 6), and (3. 8) into (3. 5).

For a = 0 this identity simplifies to
x5 L{2u 20+ 25-1) (x) (— 1)

RiT2u + s)T'Qu + 2v + s — 1)(2u + 20 + 2s — 1)\1/2
><< x!1T(2v + )T (2u + 2v + 2s + k) )
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= 2 E(u,mv,ml|s,h) (M)Uz L 2o D) (x),
n.m n!lT2v + m)
(3.9)

A second model of D7 is defined by the operators
; a iz 3 ¥
JE = eri6 ((zz—l)w._ + -~ F )
2z (22 —1)1/2 8
Y (3.10)
(2 -a—'é' N

and basis functions

J3 =—

7828 = [I'(2u + nnt|"V2Ponum (z)giwindd,

n=20,1,2,..., z=coshp, (3.11)

where 7 is an arbitrary constant. It follows that the
functions

389 = j, (2, 0)),(2, 6) =

x %t:l’_u_n(z) ei(u+n)6[r(2v + m)m !]_1/2

[T(Qu + n)nl]-1/2

X P72 TV (z) PR

y Ty =%, nm=0,1,2---, {3.12)
and the operators (3. 10) define a realization of D} ®
D?. Indeed, writing J* = J* — i67(22 — 1)"1/2 e

have
J+(jnjm) — jn (j+ —_ eieyz(zz — 1)—1/2 )]-m

+ it —efr (22 — 1)-1/2) 5,
with a similar interpretation of J~ and J3. From
(3.11) we see that the basis functions jj correspond-
ing to the Clebsch—Gordan series (1.23) must be

i =c¢[T@u + 2v+ 2s + h)h!]"1/2

X ‘E-T'-u‘v—s_h( i(u+ u+s+h)9,

2)e (3.13)

~u-v-§
To compute the constant ¢, we substitute (3.12) and
(3.13), £ =0,into (3.7). Cancelmg the common
factor

(z — 1)—<w+sw)/z (z + 1) -(urvrs-r)2

2 2

on both sides of the equation and setting z = 1, we
obtain

T~u—v—s—7r+1)
T2w(—7ry —u+ HI'(—r, —v—5s~1)

¢, =

9 (r(zu + 8)TQQu + 2v + s —1)

sIT(2v + s)
1/2
X (2u + 2p + Zs~1)

X gFp(—s,—2v—s+1,u+7ry;

2, — ¥y —v—s—11). (3.14)
Qur final identity is obtained by substituting (3. 12),
(3.13), and (3. 14) into (3. 5). In the very special case
ry = 73 = s = 0 this identity reduces to

M~u—v+1) (

I'2u + 20) 1/2
'l —w)yI'(—v—1) )

T(2u)T(20)T(2u + 2v + h)h!

(22 — 1)1/2/)"°

XPur2rk (2) =

E E(u,n;v,h —n|0,h)

n=0

B (2) B27"(2)
[TQu + n)T(2v + s — n)nl(s — )1 |2/2°

{3.15)

where B ,’,‘ (2z) is a Leegendre function of the first kind
(see Ref. 7, Vol. 1). [In this special case s = 0, the
coefficients E(‘) are easy to evaluate explicitly.]

For our next model of DT we choose operators
J*E _eue<(xz_1)a T ix a)

.3 % (3.16)
3=
06

and basis functions
n! 1/2 )
i (x, 0) = fe——————— x2 -1 u/'QCu X ez(u+n)e
60 = (Fga) G = DG (e,
n=0,1,2,..., (3.17)

where C¥(x) is a Gegenbauer polynomial (see Ref, 7,
Vol. 2). It follows that a model of D} ® D} is deter-
mined by the operators (3. 16) and basis functions

1 lm! 1/2
2u + n)T2v + m))

X (x2 — 1)(u+v)/zC: (x)C2(x) gilurvsnrmo,

nym =0,1,2, - (3.18)

Jnm (x,6) = Jn (x, e)jm(x, 6) = (I‘

The basis functions j transforming according to
D?, . canbe obtained directly from (3.17):

/2 (*2 - 1) (u+v+s)/ 2
)

(x,6) = ( hl
x
4 TQu+ 20+ 2s + h

X Cu+v+s(x)ei(u+v+s+h)e, s, h=0,1,2,---, (3. 19)
To determine the constants ¢, we substitute (3.18)
and (3.19) into (3.7) and divide through by the com-
mon factor (x2 - 1)*2¥2_ If s is odd, the right-hand
side of the resulting expression is odd and the left-
hand side is even. Thus

c, =0, sodd.

s

(3.20)

If sis even, we compare coefficients of x5 on both
sides of the equation to obtain

. - (I‘(Zu + 8)2u + 20 + 25 — 1)>1/2 2sP(v + s)
=

siT(2v + s) TRu)I'(v)
X g Fy(u,— s,— 20— s + 1;2u,— v— s + 1;1),
s even, (3.21)

Substituting (3. 18)~(3. 21) into (3. 5), we obtain our
general identity. In the special case s = 0, this
formula reduces to

172

( h'Q2u + 2v—1)
E(u,n;v,h — n|0, k)

I'Cu + 2v + A)T(2u)T(2v

Mk

1}
(=]

n

X( nlh — n)!
TCu + #)T2v + h—~n

1/
) ’ CEx)CL, (%),
)
(3. 22)
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where the coefficients E(-) can be simply evaluated.
Our next model of D} is defined by operators

. 0 , 3
+ = id — e ] — —
Jt = ei®{x(1 — x) 3% — 73 qx),
. 0 , d
- = ety 9.
J- = et X +lae>’ (3.23)
. d
3= ;2
J 55 s

and basis functions

I'(2u + n)\}/2 _
jn(x$ 6) = "“"'_) XUF(— nyu + g;2u;x)ei® e,

(3. 24)

n!
nzo’l’z""’

where ¢ is a constant and F(o, ;y,%) is a hyper-
geometric function (see Ref. 7, Vol. 1). It follows
easily that the operators (3. 23) and basis functions

(2w + »)T(2v + m)\ /2 R
nm (%5 8) = nlm! xee

X F(—n,u + qq;2u; x)
X F(—m, v + gy; 20; x) ei(u+v+n+m)6,

n,m=0,1,2,..., (3.25)

define a model of Dt ® D} where g = ¢, + ¢,. From
(3. 24) we see that the basis vectors js transforming
according to D}, ,., are given by

T(2u + 20+ 2s +R\Y2
ji(x, 8) = ¢ 7 x

X F(—hyu+ v+ s+ q;2u+ 2v + 2s; %)

Xei(u+v+s+h)9’ s’h = 0, 1’ 2’.-._ (3.26)

To compute the constants ¢, we substitute (3.25) and
(3. 26) into (3. 7) and equate coefficients of x**?** on
both sides of the resulting expression. We find

P2u + 20+ s — V)T Qu + s) \ /2

K =(S (2 + 20 + 25 — )T @v + s))
r@uTw + g, + 8)

8 r(2u + 2v + 2s — VT(v + g5) 3

—20—5+1;2u,—v—¢q,— st 1;1).

Fz("" s,ut g4,
(3.27

Substituting (3. 25)~(3.27) into (3. 5), we obtain our
general identity. In the special case s =0, it re-
duces to
(I‘(Zu)l‘(2v)l’(2u + 22 + h)) i/2
T(2u + 2v) h!
X F(— h,u+t v+ q2u+ 2v; x)

h
= 7, E(u,n,;v,h —nlQ, )
n=0

(1“(214 + )T + h — n)) 1/2
x ni(h —n)!
X Fl—n,u + qy;2u;x)

X F(—h + n,v + gy; 27; x). (3.28)
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The reader can discover other interesting special
cases of this general identity by varying ¢, and ¢,,
e.g.,setq, =—u.

4. A DIFFERENCE OPERATOR MODEL

As shown in Refs. 3 or 13, the operators

, . 8
Jt = et ((x——l)L — X —ims ¥ q),
J“=e‘i9(-—(x+'r)E+x+i% +1'+q—1), (4.1)
_ il
a6
and basis functions

(%, 8) = (&:’@) 1/2

Tu—q+1)Tx+r+qg—u—n—1)
T(x+ 7 —n)
X sFpl=nu—q—7r+1lu—q+1;2u,
x+,r_.n;]_)ei(u+n)6’ n=012"-"

J3 =

(4.2)

form a model of D}, where 7, g are constants and
Efl(x, 0) = f(x +1,8), Lf(x, 6) = f(x—1,8). Further-
more, the operators

; . ¢ o .0
t = oib [ § L - = ¢i0 ;L
J et ( zaa+v), J et zag+v,
. d
3:—. —
J i5g » (4.3)

and basis functions

(2o +
j,;l(e)z,/_.__{mlmj iwme m=0,12..., (4.4

form a model of DF. Thus the operators (4.1) and

basis functions
T
Jn,m (x, 8) = In (%, 9)],’,,(9) = (

Tu—g+ov+ )T (x+r+g—u—v—n—1)
X
T(x + 7 —n)
X gFpl—mu+v—qg—r+lLutv—qg+tl

(2u + n)T(2v + m)) 1/2
nim!

u, x + ¥ — L) et@wroenmo oy gy = 01,2 000,
(4.5)

define a model of D} ® D}. The basis functions
j$(x, 8) transforming according to D7, ,,; can be ob-
tained immediately from (4.2) with u replaced by
u+ v+ sand n=r:

T@Qu + 2v + 2s + k) /2
7¥(x,8) = ¢ ( Py )
Tu+tv+s—g+1)
T(x+7r—h)
XTx+r+qg—u—v—s—h—1)
X gFg (—hybutv+ts—g—r+lLutvts
—qg+1; 2ut 20+ 2s,x +r—nl1)

X ei (u+ v*s*h)e'

X

(4.6)
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To compute the constants c , we substitute (4. 5) and
(4.6) into (3.7) and set x = —7 + 1. We can then
sum the right-hand side to obtain

CLEBSCH-GORDAN COEFFICIENTS 833
(—=1)s
T(2u+ 2v + 2s—1)
X sFp(—s,utv—gq—r+tlLut+tv—qg+1
x 2u,utv—q+1;1). 4.7)

<1"(2u +2v+ s —1)TQ2u + s)T'(2v + s)) 1/2
c =
s sl (Qu +2v+ 25— 1)
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Certain differential-geometric and Lie group theoretic facts that are useful in the systematic study and search

for spectrum generating algebras are presented.

1. INTRODUCTION

Dothan has pointed out! several ideas and possible
directions of research in connection with the “spect-
rum generating Lie algebras” of quantum mechanics.
Typically, such ideas also have analogs in classical
mechanics. Since the problems in classical mech-
anics often have a geometric foundation, one finds
interconnections between geometry and Lie group
theory, quantum mechanics and elementary particle
physics. The aim of this paper is to survey more
extensively some of these links than was possible in
Dothan's paper.

2. POISSON BRACKETS STRUCTURES AND CAN-
ONICAL TRANSFORMATIONS ON MANIFOLD

We adopt Ref. 2 as a basic reference for the ideas
and notations of differential geometry on manifolds.
Let M be a manifold of even dimension, with a closed
two-differential form w of maximal rank on M. A
diffeomorphism ¢: M — M is a canonical transforma-
tion if ¢ preserves the form w,i.e.,dp*(w) = w. A
vector field X € V(M) defines an infinitesimal
canonical transformation if

X(w)=0 (2.1)

[X(w) denotes the Lie derivative?2 of the form w by
the vector field X}. The set of vector fields X satis-
fying (2. 1) forms a Lie algebra [under Jacobi
bracket (X, Y) — [X, Y]] of vector fields, that we
denote by V(w). It may be thought of as the “Lie
algebra” of the group of canonical transformations.

Let F(M) denote the C%=, real-valued functions on M.
The form w defines a Lie algebra structure

(f,f5) = {1, o} called the Poisson bracket. To define
it, for f € F(M), let X, be the vector field such that

Set
{f1,f2}=—Xfl(fz)

for f,,f, € F(M).

(2.2)

(2.3)

Then, one can prove the following results.

The bracket { , } defined by 2. 3 makes F (M) into

a Lie algebra. (2.4)
The mapping f — Xf is a Lie algebra homo-
morphism of F(M) into V(w). (2.5)

The kernel of this homomorphism consists of the
constant functions on M.

To recover the classical expression for Poisson
bracket to be found in all mechanics books, suppose
(p;,4;), 1 =i,7= m is a coordinate system for M
such that

w = dp; N dg;.
Then, for f € F(M),
of 8 . of @
X == — + = —. 2.
f ap; ogq;  9q; op; (2.6)

Given h € F(M), the integral curves of the vector
field X, are the solutions of Hamilton's equations,
with 7 the Hamiltonian.2 Thus, if 7 is the function that
represents the total energy of the mechanical system,
a basic problem is to study these integral curves, i.e.,
to study the one-parameter group of canonical trans-
formations generated by X,. Now, in Ref. 2 certain
general insights of the “Lie theory” of ordinary
differential equations have been explained. In parti-
cular, they apply to the problem of finding the inte-
gral curves of X,.

Definition: A function f € F(M) is a symmeltry of
h if

{f,h} =0.

If f satisfies (2. 7), then it follows from (2. 5) that

X5 X,] = 0, hence that the one-parameter group
generated by X, and X, commute. The aim of the
theory of “spectrum generating algebras”, stated in
rather vague terms, is to study Lie subalgebras of
F(M), whose elements f satisfy commutation relations

(2.7
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