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Abstract
Second-order conformal quantum superintegrable systems in 2 dimensions are
Laplace equations with scalar potential and 3 independent 2nd order conformal
symmetry operators. They encode all the information about 2D Helmholtz
superintegrable systems in an efficient manner: Each of these systems admits a
quadratic symmetry algebra (not usually a Lie algebra) and is multiseparable. The
separation equations comprise all of the various types of hypergeometric and Heun
equations in full generality. In particular, they yield all of the 1D Schrödinger exactly
solvable (ES) and quasi-exactly solvable (QES) systems related to the Heun operator.

The separable solutions of these equations are the special functions of mathematical
physics. The different systems are related by Stäckel transforms, by the symmetry
algebras and by Bôcher contractions of the conformal algebra so(4,C) to itself, which
enables all systems to be derived from a single one: the generic potential on the
complex 2-sphere.

Distinct separable bases for a single Laplace system are related by interbasis
expansion coefficients which are themselves special functions, such as the Wilson
polynomials. This approach facilitates a unified view of special function theory,
incorporating hypergeometric and Heun functions in full generality.
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Introduction

Purpose

The purpose of this talk is to make clear how superintegrable systems theory
unifies and simplifies the study of the special functions of mathematical
physics, hypergeometric and Heun equations, and exactly solvable and
quasi-exactly solvable systems. We consider here one of the simplest classes
of such systems: 2nd order superintegrable systems in 2 complex variables.

This is an integrable Hamiltonian system on an 2-dimensional manifold with
potential:

H = ∆2 + V ,

that admits 3 algebraically independent 2nd order partial differential operators
L1,L2,H commuting with H, the maximum possible,

[H,Lj ] = 0, j = 1,2.

Here [A,B] = AB − BA is the operator commutator.
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Introduction

Superintegrability captures the properties of quantum Hamiltonian systems
that allow the Schrödinger eigenvalue problem HΨ = EΨ to be solved exactly,
analytically and algebraically.

The 2nd order 2D systems have been classified. There are 44 nondegenerate
(3 linear parameter potential) systems, on a variety of manifolds,

Under the Stäckel transform, an invertible structure preserving mapping, they
divide into 6 equivalence classes with representatives on flat space and the
2-sphere.

There is a similar number of degenerate (1 parameter potential) systems that
divide into 6 equivalence classes.
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Introduction

Properties of 2nd order superintegrable systems with
potential

The symmetry operators of each system close under commutation to
generate a quadratic algebra, and the irreducible representations of this
algebra determine the eigenvalues of H and their multiplicity
2nd order superintegrable systems are multiseparable.
Smorodinsky, Winternitz and collaborators inaugurated this study in 1965
by pointing out the multiseparability of systems such as the
Smorodinsky-Winternitz system

H = ∂xx + ∂yy + α(x2 + y2) +
β

x2 +
γ

y2 .
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Introduction

Example: S9 - a nondegenerate system

H = J2
1 + J2

2 + J2
3 +

a1

s2
1

+
a2

s2
2

+
a3

s2
3

where J3 = s1∂s2 − s2∂s1 and J2, J3 are obtained by cyclic permutations of indices.

Basis symmetries: (s2
1 + s2

2 + s2
3 = 1)

L1 = J2
1 +

a3s2
2

s2
3

+
a2s2

3

s2
2
, L2 = J2

2 +
a1s2

3

s2
1

+
a3s2

1

s2
3
, L3 = J2

3 +
a2s2

1

s2
2

+
a1s2

2

s2
1
,

Structure equations:

[Li ,R] = 4{Li , Lk} − 4{Li , Lj} − (8 + 16aj )Lj + (8 + 16ak )Lk + 8(aj − ak ),

R2 =
8
3
{L1, L2, L3} − (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3+

52
3

({L1, L2}+{L2, L3}+{L3, L1})+
1
3

(16+176a1)L1+
1
3

(16+176a2)L2+
1
3

(16+176a3)L3

+
32
3

(a1 + a2 + a3) + 48(a1a2 + a2a3 + a3a1) + 64a1a2a3, R = [L1, L2].

Here, H = L1 + L2 + L3 + a− 1 + a2 + a3.
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Introduction

Example: Higgs oscillator - a degenerate system

It is the same as S9 with a1 = a2 = 0, a3 = a, but admits additional symmetry.

Basis symmetries:

X = J3, L1 = J2
1 +

as2
2

s2
3
, L2 =

1
2

(J1J2 + J2J1)− as1s2

s2
3

.

Structure equations:

[L1,X ] = 2L2, [L2,X ] = −X 2 − 2L1 + H − a,

[L1,L2] = −(L1X + XL1)− (
1
2

+ 2a)X , R = [L1,L2]

0 = {L1,X 2}+ 2L2
1 + 2L2

2 − 2L1H +
5 + 4a

2
X 2 − 2aL1 − a.
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Constant curvature space Helmholtz systems

Nondegenerate flat space systems: HΨ = (∂2
x + ∂2

y + V )Ψ = EΨ.

1 E1: V = α(x2 + y2) + β
x2 + γ

y2 , (2) E2: V = α(4x2 + y2) + βx + γ
y2 ,

3 E3′: V = α(x2 + y2) + βx + γy ,
4 E7: V = α(x+iy)√

(x+iy)2−b
+ β(x−iy)√

(x+iy)2−b
(

x+iy+
√

(x+iy)2−b
)2 + γ(x2 + y2),

5 E8 V = α(x−iy)
(x+iy)3 + β

(x+iy)2 + γ(x2 + y2),
6 E9: V = α√

x+iy
+ βy + γ(x+2iy)√

x+iy
,

7 E10: V = α(x − iy) + β(x + iy − 3
2 (x − iy)2) + γ(x2 + y2 − 1

2 (x − iy)3),
8 E11: V = α(x − iy) + β(x−iy)√

x+iy
+ γ√

x+iy
,

9 E15: V = f (x − iy),
10 E16: V = 1√

x2+y2
(α + β

y+
√

x2+y2
+ γ

y−
√

x2+y2
),

11 E17: V = α√
x2+y2

+ β
(x+iy)2 + γ

(x+iy)
√

x2+y2
,

12 E19: V = α(x+iy)√
(x+iy)2−4

+ β√
(x−iy)(x+iy+2)

+ γ√
(x−iy)(x+iy−2)

.

13 E20: V = 1√
x2+y2

(
α + β

√
x +

√
x2 + y2 + γ

√
x −

√
x2 + y2

)
,
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Constant curvature space Helmholtz systems

Nondegenerate systems on the complex 2-sphere:
HΨ = (J2

23 + J2
13 + J2

12 + V )Ψ = EΨ, Jk` = sk∂s` − s`∂sk , s2
1 + s2

2 + s2
3 = 1.

Here,

1 S1: V = α
(s1+is2)2 + βs3

(s1+is2)2 +
γ(1−4s2

3)

(s1+is2)4 ,

2 S2: V = α
s2

3
+ β

(s1+is2)2 + γ(s1−is2)
(s1+is2)3 ,

3 S4: V = α
(s1+is2)2 + βs3√

s2
1+s2

2

+ γ

(s1+is2)
√

s2
1+s2

2

,

4 S7: V = αs3√
s2

1+s2
2

+ βs1

s2
2

√
s2

1+s2
2

+ γ
s2

2
,

5 S8: V = αs2√
s2

1+s2
3

+ β(s2+is1+s3)√
(s2+is1)(s3+is1)

+ γ(s2+is1−s3)√
(s2+is1)(s3−is1)

,

6 S9: V = α
s2

1
+ β

s2
2

+ γ
s2

3
,
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Constant curvature space Helmholtz systems

Darboux 1 systems:HΨ =
( 1

4x (∂2
x + ∂2

y ) + V
)

Ψ = EΨ. (Winternitz et. al., 2002)
1 D1A: V = b1(2x−2b+iy)

x
√

x−b+iy
+ b2

x
√

x−b+iy
+ b3

x + b4,

2 D1B: V = b1(4x2+y2)
x + b2

x + b3
xy2 + b4,

3 D1C V = b1(x2+y2)
x + b2

x + b3y
x + b4.

Darboux 2 systems: HΨ =
(

x2

x2+1 (∂2
x + ∂2

y ) + V
)

Ψ = EΨ.

1 D2A: V = x2

x2+1

(
b1(x2 + 4y2) + b2

x2 + b3y
)

+ b4.

2 D2B: V = x2

x2+1

(
b1(x2 + y2) + b2

x2 + b3
y2

)
+ b4,

3 D2C: V = x2√
x2+y2(x2+1)

(
b1 + b2

y+
√

x2+y2
+ b3

y−
√

x2+y2

)
+ b4,

Darboux 3 systems: HΨ =
(

1
2

e2x

ex+1 (∂2
x + ∂2

y ) + V
)

Ψ = EΨ.

1 D3A: V = b1
1+ex + b2ex√

1+2ex+iy (1+ex )
+ b3ex+iy√

1+2ex+iy (1+ex )
+ b4,

2 D3B: V = ex

ex+1

(
b1 + e−

x
2 (b2 cos y

2 + b3 sin y
2 )
)

+ b4,
3 D3C: V (= ex

ex+1

(
b1 + ex ( b2

cos2 y
2

+ b3
sin2 y

2
)
)

+ b4,.

4 D3D: V = e2x

1+ex (b1e−iy + b2e−2iy ) + b3
1+ex + b4.
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Constant curvature space Helmholtz systems

Darboux 4 systems: HΨ =
(
− sin2 2x

2 cos 2x+b (∂2
x + ∂2

y ) + V
)

Ψ = EΨ.

1 D4(b)A: V = sin2 2x
2 cos 2x+b

(
b1

sinh2 y + b2
sinh2 2y

)
+ b3

2 cos 2x+b + b4,

2 D4(b)B: V = sin2 2x
2 cos 2x+b

(
b1

sin2 2x + b2e4y + b3e2y
)

+ b4.

3 D4(b)C: V = e2y

b+2
sin2 x

+ b−2
cos2 x

(
b1

Z+(1−e2y )
√

Z
+ b2

Z+(1+e2y )
√

Z
+ b3 e−2y

cos2 x

)
+ b4.

Generic Koenigs spaces:
1 K [1,1,1,1]: HΨ = 1

V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1
x2 + a2

y2 + 4a3
(x2+y2−1)2 − 4a4

(x2+y2+1)2 ,

2 K [2,1,1]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1
x2 + a2

y2 − a3(x2 + y2) + a4,

3 K [2,2]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1
(x+iy)2 + a2(x−iy)

(x+iy)3 + a3 − a4(x2 + y2),
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Constant curvature space Helmholtz systems

Generic Koenigs spaces:

1 K [3,1]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1 − a2x + a3(4x2 + y2) + a4
y2 ,

2 K [4]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) =
a1−a2(x + iy)+a3

(
3(x + iy)2 + 2(x − iy)

)
−a4

(
4(x2 + y2) + 2(x + iy)3

)
,

3 K [0]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1 − (a2x + a3y) + a4(x2 + y2),
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Laplace systems

Laplace systems 1

All these systems can be treated more conveniently as Laplace equations.
Since every 2D manifold is conformally flat, there always exist “Cartesian-like”
coordinates x , y such that H = 1

λ(x,y) (∂2
x + ∂2

y ) + V (x , y).

Thus the Helmholtz equation HΨ = EΨ on some conformally flat space is
equivalent to the Laplace equation (with potential)

(∂2
x + ∂2

y + Ṽ (x , y))Ψ = 0

on flat space, where Ṽ = λ(V − E), so the eigenvalue E has been
incorporated as a parameter in the new potential.
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Laplace systems

Laplace systems 2

More generally, we consider Laplace systems of the form

H Ψ(x) ≡ ( ∆2 + V (x) ) Ψ(x) = 0 ,

where ∆2 is the Laplace-Beltrami operator on a 2D Riemannian or
pseudo-Riemannian manifold. All variables can be complex. A conformal
symmetry of this equation is a partial differential operator L such that
[L,H] ≡ LH − HL = RLH for some differential operator RL. A conformal
symmetry maps any solution Ψ to another solution. Two conformal
symmetries L,L′ are identified if L = L′ + S H for some differential operator S,
since they agree on the solution space.

The system is conformally superintegrable if there exist three algebraically
independent conformal symmetries, L1, L2, L3 with L3 = H. It is second order
conformally superintegrable if each L2 can be chosen to be a 2nd order
differential operator, and L1 of at most 2nd order.
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Laplace systems

Laplace systems and Stäckel transform
The mapping of a Helmholtz superintegrable system HΨ = EΨ to the Laplace
equation preserves superintegrability, i. e., the Laplace system is conformally
superintegrable.

Suppose we have a second order conformal superintegrable system

H = ∂xx + ∂yy + V (x , y) = 0, H = H0 + V

where V (x , y) = W (x , y)− E U(x , y) for arbitrary parameter E . The potential
U defines a conformal Stäckel transform to the (Helmholtz) system

H̃Ψ = EΨ, H̃ =
1
U

(∂xx + ∂yy ) + Ṽ

where Ṽ = W
U . and this Helmholtz system is superintegrable.

There is a similar definition of Stäckel transforms of Helmholtz superintegrable
systems HΨ = EΨ which take superintegrable systems to superintegrable
systems, essentially preserving the quadratic algebra structure. Thus any
second order conformal Laplace superintegrable system admitting a
nonconstant potential U can be Stäckel transformed to a Helmholtz
superintegrable system.
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systems, essentially preserving the quadratic algebra structure. Thus any
second order conformal Laplace superintegrable system admitting a
nonconstant potential U can be Stäckel transformed to a Helmholtz
superintegrable system.
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Laplace systems

Laplace System Non-degenerate potentials

V (x , y)

[1111] a1
x2 + a2

y2 + 4 a3
(x2+y2−1)2 − 4 a4

(x2+y2+1)2

[211] a1
x2 + a2

y2 − a3 (x2 + y2) + a4

[22] a1
(x+i y)2 + a2 (x−i y)

(x+i y)3 + a3 − a4 (x2 + y2)

[31] a1 − a2 x + a3 (4 x2 + y2) + a4
y2

[4] a1 − a2 (x + i y) + a3 (3(x + i y)2 + 2(x − i y))− a4 (4(x2 + y2) + 2(x + i y)3)

[0] a1 − (a2 x + a3 y) + a4 (x2 + y2)

Each of the Helmholtz nondegenerate superintegrable (i.e. 3-parameter)
eigenvalue systems is Stäckel equivalent to exactly one of these Laplace
systems HΨ ≡ (∂2

x + ∂2
y + V (x , y))Ψ = 0
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Laplace systems

System Degenerate potentials

V (x , y)

A 4 a3
(x2+y2−1)2 −

4 a4
(x2+y2+1)2

B a1
x2 + a4

C a3 − a4 (x2 + y2)

D a1 − a2 x

E a1
(x+i y)2 + a3

F a1 − a2 (x + i y)

Table : Each of the Helmholtz degenerate superintegrable (i.e. 1-parameter)
eigenvalue systems is Stäckel equivalent to exactly one of these Laplace systems
HΨ ≡ (∂2

x + ∂2
y + V (x , y))Ψ = 0

W. Miller (University of Minnesota) Heun equations, QES and Bôcher contractions Atlanta 18 / 47



Böcher contractions

Böcher contractions

All Laplace conformally superintegrable systems can be obtained as limits of
the basic system [1111]. The conformal symmetry algebra of the underlying
flat space free Laplace equation is so(4,C), and these limits are described by
Lie algebra contractions of this conformal algebra to itself, which can be
classified. We call these Bôcher contractions since they are motivated by
ideas of Bôcher,(1894), who used similar limits to construct separable
coordinates of free Laplace, wave and Helmholtz equations from basic
cyclidic coordinates.

There are 4 basic Bôcher contractions of 2d Laplace systems and each one
when applied to a Laplace system yields another Laplace superintegrable
system. These in turn induce contractions of the Helmholtz systems in each
equivalence class to Helmholtz systems in other classes, over 200
contractions in all. However, we can summarize the basic results for Laplace
systems in Figures 1 and 2. A system can be obtained from another
superintegrable system via contraction provided it is connected to the other
system by directed arrows.
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Böcher contractions

Figure : Contractions of nondegenerate Laplace systems
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Böcher contractions

Figure : Contractions of degenerate Laplace systems
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Separation of variables

Multiseparability of Laplace equations

The last crucial bit of information about these Laplace and associated
Helmholtz superintegrable systems is that they are multiseparable, Each
family of separated solutions is characterized as the family of eigenfunctions
of a 2nd order symmetry operator. Each family determines an eigenbasis of
separated solutions of the 2D superintegrable system. An eigenbasis of one
family can be expanded in terms of a eigenbasis for another family and the
quadratic structure algebras help to derive the expansion coefficients.

The compete list of separation equations follows.. (The notation (2) means
that the separation equations for the corresponding coordinates are both of
the same, except that the separation constant occurs as c in one equation
and −c in the other.)
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Separation of variables

Figure : Separation equations for nondegenerate Laplace systems
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Separation of variables

Degenerate Systems

Separable coordinates and separation equations

Elliptic
Special Heun eqn. (2)

Spherical
Gegenbauer eqn.

Hypergeometric eqn. 

Cartesian
Bessel’s eqn.
Exponential

Polar
Bessel’s eqn.

Confluent hypergeometric eqn. 

Parabolic
Confluent 

hypergeometric eqn. (2)

Polar
Confluent hypergeometric eqn. 

Exponential

Hyperbolic
Confluent Heun eqn. (2)

Cartesian
Airy eqn.

Exponential

Parabolic
Special tri-confluent 

Heun eqn. (2)

Hyperbolic
Special double-confluent Heun eqn. (2)

Cartesian
Airy eqn. (2)

Elliptic
Spheroidal 

wave eqn. (2)

Cartesian
Parabolic cylinder 

eqn. (2)

Elliptic
Special confluent 

Heun eqn. (2)

Polar
Bessel’s eqn. (2) 

Semi-hyperbolic
Parabolic cylinder eqn. (2)

Elliptic
Special confluent Heun eqn. (2)

Figure : Separation equations for degenerate Laplace systems
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Separation of variables

Hypergeometric type separation equations
1 Hypergeometric equation: z(1− z) d2w

dz2 + (c − (a + b + 1)z) dw
dz − abw = 0.

2 Confluent hypergeometric equation: z d2w
dz2 + (b − z) dw

dz − aw = 0.

3 Parabolic cylinder equation: d2w
dz2 + (az2 + bz + c)w = 0.

4 Gegenbauer equation: (1− z2) d2w
dz2 − 2(µ+ 1)z dw

dz + (ν − µ)(ν + µ+ 1)w = 0.

5 Bessel’s equation: z2 d2w
dz2 + z dw

dz + (z2 − ν2)w = 0.

6 Airy’s equation: d2w
dz2 − zw = 0.
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Separation of variables

Heun separation equations

1 Heun equation: d2w
dz2 +

(
γ
z + δ

z−1 + ε
z−a

)
dw
dz + αβz−q

z(z−1)(z−a)w = 0,

α + β + 1 = γ + δ + ε.
2 Confluent Heun equation: d2w

dz2 +
(
γ
z + δ

z−1 + ε
)

dw
dz + αz−q

z(z−1)w = 0.

3 Doubly-confluent Heun equation: d2w
dz2 +

(
δ
z2 + γ

z + 1
) dw

dz + αz−q
z2 w = 0.

4 Biconfluent Heun equation: d2w
dz2 −

(
γ
z + δ + z

) dw
dz + αz−q

z w = 0.

5 Triconfluent Heun equation: d2w
dz2 + (γ + z)z dw

dz + (αz − q)w = 0.
6 Spheroidal wave equation:

d
dz

(
1− z2) dw

dz

)
+
(
λ+ γ2(1− z2)− µ2

1−z2

)
w = 0.
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Separation of variables

Special functions and Bôcher contractions

Special functions associated with these systems arise in two distinct ways:
As separable eigenfunctions of the quantum Hamiltonian. Second order
superintegrable systems are multiseparable.
As interbasis expansion coefficients relating distinct separable coordinate
eigenbases. These are often solutions of difference equations.

Most of the special functions in the DLMF appear one of these ways.

Example: Consider the Helmholtz system S9. The eigenfunctions of
symmetry operator L1 correspond to spherical coordinates lined up on the
y − z axis; those of operator L2 also correspond to spherical coordinates but
lined up on the x − z axis. The expansion coefficients of L2 eigenfunctions in
terms of the L1 eigenbasis are the Racah and Wilson polynomials in full
generality.
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Separation of variables

Special functions 2

Böcher contractions of S9 to other superintegrable systems induce limits of
these expansion coefficients to expansion coefficients for the contracted
superintegrable systems. Thus, a contraction of S9 to E1, (the
Smorodinski-Winternitz superintegrable system), yields Hahn polynomials as
limits of Wilson polynomials. The result of this is a reinterpretation of the
Askey Scheme relating the possible hypergeometric orthogonal polynomials
via limits.
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Separation of variables

Special functions 3

Figure : The Böcher contraction version of the Askey scheme
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Exact and Quasi-exact solvability

Exact and Quasi-exact solvability

Let H = d2

dx2 + V (x). We are concerned with the 1D eigenvalue problem
HΨ = EΨ. The operator H is said to be exactly solvable, (ES) if there exists
an infinite flag of subspaces of the domain of H: PN , N = 1,2,3, · · · , such
that nN = dimPN →∞ as N →∞ and H PN ⊆ PN ⊆ PN+1 for any N. In this
case, for each subspace PN the nN eigenvalues and eigenfunctions of H can
be obtained by pure algebraic means.

This is roughly equivalent to saying the eigenfunctions are hypergeometric.

The operator H is called quasi-exactly solvable, (QES) if there exist a single
subspace Pk of dimension nk > 0 such that H Pk ⊆ Pk . In this case, again we
can find nk eigenvalues and eigenfunctions of H by algebraic means, but we
have no information about the remaining eigenvalues and eigenfunctions.
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Exact and Quasi-exact solvability

Motivating example: A QES equation

Anharmonic oscillator with 6th order potential term:

H = −1
2

d2

dx2 + [
k2

1
8ω2 − (2n +

3
2

)ω]x2 +
k1

2
x4 +

ω2

2
x6.

For n a fixed positive integer, there are n + 1 eigenfunctions

Ψi = P(i)
n (x)e−

k1
4ω x2−ω

2 x6
,

i = 0,1, · · · ,n where P is a polynomial of order at most n in x .

Similar examples studied by Turbiner, Schiffman, Ushveridze,
Gonzales-Lopez, Olver, ....
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Exact and Quasi-exact solvability

Superintegrable explanation

The singular anisotropic oscillator potential, a Stäckel transform of system
[31].

V1(x , y) =
1
2
ω2(4x2 + y2) + k1x +

k2
2 −

1
4

2y2

The Schrödinger equation has the form(
∂2

∂x2 +
∂2

∂y2

)
Ψ +

[
2E − ω2(4x2 + y2)− 2k1x −

k2
2 −

1
4

y2

]
Ψ = 0.

The Schrödinger equation separates in two systems: Cartesian and parabolic
coordinates.
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Exact and Quasi-exact solvability

Cartesian separation

Separation of variables in Cartesian coordinates leads to the two independent
one-dimensional Schrödinger equations

d2ψ1

dx2 + (2λ1 − 4ω2x2 − 2k1x)ψ1 = 0.

d2ψ2

dy2 +

(
2λ2 − ω2y2 −

k2
2 −

1
4

y2

)
ψ2 = 0.

where
Ψ(x , y ; k1, k2) = ψ1(x ; k1)ψ2(y ; k2)

and λ1, λ2 are Cartesian separation constants with λ1 + λ2 = E .
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Exact and Quasi-exact solvability

1st Cartesian separation equation

The first equation represents the well-known linear singular oscillator system.
The complete set of orthonormalized eigenfunctions, (on 1/2) in the interval
0 < y <∞ can be expressed in terms of finite confluent hypergeometric
series or Laguerre polynomials

ψn2 (y ; k2) =

√
2ω(1+k2)n2!

Γ(n2 + k2 + 1)
y

1
2+k2 e−

1
2ωy2

Lk2
n2

(ωy2)

where λ2 = ω(2n2 + 1 + k2).
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Exact and Quasi-exact solvability

2nd Cartesian separation equation

The second equation easily transforms to the ordinary one-dimensional
oscillator problem. In terms of Hermite polynomials the orthonormal solutions
are

ψn1 (x ; k1) =

(
2ω
π

)1/4 e−ωz2

√
2n1n1!

Hn1 (
√

2ωz),

where z = x + k1
4ω2 , and λ1 = ω(2n1 + 1)− k2

1
8ω2 .
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Exact and Quasi-exact solvability

Energy spectrum

E = λ1 + λ2 = ω[2n + 2 + k2]−
k2

1
8ω2 , n = n1 + n2 = 0,1,2, ...

The degree of degeneracy for fixed principal quantum number n is (n + 1).
The separation of variables in Cartesian coordinates leads to two exactly
solvable one-dimensional Schrödinger equations.

W. Miller (University of Minnesota) Heun equations, QES and Bôcher contractions Atlanta 36 / 47



Exact and Quasi-exact solvability

Parabolic separation

Parabolic coordinates ξ and η are connected with the Cartesian x and y by

x =
1
2

(ξ2 − η2), y = ξη, ξ ∈ R, η > 0.

The Schrödinger equation in parabolic coordinates is

1
ξ2 + η2

(
∂2Ψ

∂ξ2 +
∂2Ψ

∂η2

)
+

[
2E − ω2(ξ4 − ξ2η2 + η4)− k1(ξ2 − η2)−

k2
2 −

1
4

ξ2η2

]
Ψ = 0.
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Exact and Quasi-exact solvability

Parabolic separation equations

Upon substituting
Ψ(ξ, η) = X (ξ)Y (η)

and introducing the parabolic separation constant λ, we find the two
separation equations:

d2X
dξ2 +

(
2Eξ2 − ω2ξ6 − k1ξ

4 −
k2

2 −
1
4

ξ2

)
X = −λX ,

d2Y
dη2 +

(
2Eη2 − ω2η6 + k1η

4 −
k2

2 −
1
4

η2

)
Y = +λY .

Substituting E = λ1 + λ2 = ω[2n + 2 + k2]− k2
1

8ω2 , in either of these equations
we get the QES equation for the anharmonic oscillator with 6th order potential
term, where now the energy is the separation constant, ±λ.
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Exact and Quasi-exact solvability

QES ⇔ 2nd order superintegrable systems

Kalnins, Miller and Pogosyan showed that there is a general relation between
QES systems in 1D and 2nd order superintegrability in nD.

In two recent papers, Turbiner has studied and reported on the classification
of QES systems in 1D. His emphasis is on QES systems that are special
cases of the Heun equation and its confluent forms, and exactly solvable
systems which are special cases of the hypergeometric equation.

We see now that all of these systems correspond to separation equations for
the 2D 2nd order superintegrable systems as given here. Thus all of these
solutions determine solutions of the 2D superintegrable systems.

W. Miller (University of Minnesota) Heun equations, QES and Bôcher contractions Atlanta 39 / 47



Exact and Quasi-exact solvability

QES ⇔ 2nd order superintegrable systems

Kalnins, Miller and Pogosyan showed that there is a general relation between
QES systems in 1D and 2nd order superintegrability in nD.

In two recent papers, Turbiner has studied and reported on the classification
of QES systems in 1D. His emphasis is on QES systems that are special
cases of the Heun equation and its confluent forms, and exactly solvable
systems which are special cases of the hypergeometric equation.

We see now that all of these systems correspond to separation equations for
the 2D 2nd order superintegrable systems as given here. Thus all of these
solutions determine solutions of the 2D superintegrable systems.

W. Miller (University of Minnesota) Heun equations, QES and Bôcher contractions Atlanta 39 / 47



Exact and Quasi-exact solvability

QES ⇔ 2nd order superintegrable systems

Kalnins, Miller and Pogosyan showed that there is a general relation between
QES systems in 1D and 2nd order superintegrability in nD.

In two recent papers, Turbiner has studied and reported on the classification
of QES systems in 1D. His emphasis is on QES systems that are special
cases of the Heun equation and its confluent forms, and exactly solvable
systems which are special cases of the hypergeometric equation.

We see now that all of these systems correspond to separation equations for
the 2D 2nd order superintegrable systems as given here. Thus all of these
solutions determine solutions of the 2D superintegrable systems.

W. Miller (University of Minnesota) Heun equations, QES and Bôcher contractions Atlanta 39 / 47



Exact and Quasi-exact solvability

Another QES example. 1

Some special cases of Heun equations reduce to hypergeometric equations,
see the impressive work of Maier. Moreover, in recent papers it has been
shown that some special QES cases of the Heun equations have explicit
solutions that are expressible in terms of derivatives of hypergeometric
functions.

We can observe that all such special solutions lead to eigenfunctions of 2D
superintegrable systems which also have separable ES hypergeometric
eigenfunctions. The quadratic algebras of the 2D systems allow us to relate
the QES and ES systems. Moreover a knowledge of the possible ES systems
for a 2nd order superintegrable system gives important clues about the
structure of the QES systems
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Exact and Quasi-exact solvability

Another QES example. 2

Consider the inverse square root system written in the form

d2f (x)

dx2 + (
a

x1/2 +
b
x

+
c

x3/2 − E)f (x).

With y =
√

x we have

y
d2f (y)

dy2 − df (y)

dy
+ (4ay2 + 4by + 4c − 4Ey3)f (y).

The superintegrable system E2, in Cartesian coordinates y1, y2 is(
∂2

∂y2
1

+
∂2

∂y2
2

+ (−A(4y2
1 + y2

2 ) + By1 +
C
y2

2
− E ′)

)
f (y1, y2) = 0. (1)

It belongs to the [31] Laplace equivalence class. This system is separable in
two coordinate systems: Cartesian and parabolic.
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Exact and Quasi-exact solvability

Another QES example. 3

In Cartesian coordinates the separable solutions f (y1, y2) = g1(y1)g2(y2) are
eigenfunctions L1f = λ1f of the symmetry operator

L1 = ∂y2
1

+ (−4Ay2
1 + By1),

and the separation equations are

d2g1

dy2
1

+ (−4Ay2
1 + By1 + λ1 − E ′)g1 = 0,

d2g2

dy2
2

+ (−Ay2
2 +

C
y2

2
− λ1)g2 = 0.

Here, λ1 is the separation constant.
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Exact and Quasi-exact solvability

Another QES example. 4

In parabolic coordinates η, ξ with y1 = ξ + η, y2 = 2i
√
ξη, and writing

f (η, ξ) = (ηξ)−3/4f1(η)f2(ξ), we obtain the bi-confluent Heun separation
equation

η
d2f1(η)

dη2 − df1(η)

dη
+

(
15
16η

+
C
4η
− E ′η + Bη2 − 4Aη3 + λ2

)
f1(η) = 0,

for f1(η) with a similar equation for f2(ξ) Now note that, with the restriction to
the superintegrable system E2 with C = −15/4 in the potential, this becomes
the inverse square potential system, provided we make the identifications

y = η, 4b = −E ′, 4a = B, 4c = λ2, E = A.

Thus this 1D inverse square root potential system corresponds to a special
case of the separation equation for the 2D superintegrable system E2 in
parabolic coordinates. This separation equation is QES, but we will show that
it has explicit solutions which are a consequence of the exactly solvable E2
separation equation in Cartesian coordinates.

W. Miller (University of Minnesota) Heun equations, QES and Bôcher contractions Atlanta 43 / 47



Exact and Quasi-exact solvability

Another QES example. 5

We can solve the ES Cartesian coordinate system directly to get
g1(y) = exp(−y(−a + Ey)/

√
E) G(y) where G(y) is an arbitrary linear

combination of

1F1

(
1
8 ( 2E3/2+(4b−λ1)E−a2

E3/2 )
1/2

;
(2Ey − a)2

2E3/2

)

and

1F1

(
1
8 ( 6E3/2+(4b−λ1)E−a2

E3/2 )
3/2

;
(2Ey − a)2

2E3/2

)
.

Here G(y) is the general solution of the equation S1 G(y) = 0, equivalent to
the above where

S1 =
d2

dy2 −
2(2Ey − a)√

E
d
dy
− (2E3/2 + 4bE − λ1E − a2)

E
.
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Exact and Quasi-exact solvability

Another QES example. 6
Assuming b = −4c2, λ1 = −2

√
E − 32c2, the equation for the inverse square

root system is equivalent to S2f = 0 where

S2 = y
d2

dy2 −
d
dy

+ 4(y2a− 4c2y + c − Ey3).

We define operators K and Q by

K = exp(
ay√

E
− y2

√
E)

(
d
dy
− 4y

√
E + 4c +

a√
E

)
,

Q = exp(
ay√

E
− y2

√
E)

(
y

d
dy
− 4y2

√
E + 4cy +

ay√
E
− 1
)
.

Then it is straightforward to verify the operator identity

S2K = QS1.

This shows that K maps the solution space of the restricted Cartesian
separation equation to the solution space of the restricted parabolic
separation equation and provides explicit solutions for the 1D inverse square
root potential.
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Conclusions and Outlook

Conclusions. 1

We have reviewed the theory of 2D 2nd order superintegrable Laplace
systems and shown that they encode all the information about 2D Helmholtz
or time-independent Schrödinger superintegrable systems in an efficient
manner: there is a 1-1 correspondence between Laplace superintegrable
systems and Stäckel equivalence classes of Helmholtz superintegrable
systems.

The separation equations comprise all of the various types of hypergeometric
and Heun equations in full generality. In particular, they coincide with all of the
1D Schrödinger exactly solvable (ES) and quasi-exactly solvable (QES)
systems related to the Heun operator.

The separable solutions of these equations are the special functions of
mathematical physics. The different systems are related by Stäckel
transforms, by their symmetry algebras and by Böcher contractions of the
conformal algebra so(4,C) to itself, which enables all of these systems to be
derived from a single one: the generic potential on the complex 2-sphere.
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Conclusions and Outlook

Conclusions. 2

Distinct separable bases for a single Laplace system are related by interbasis
expansion coefficients which are themselves special functions, such as the
Wilson polynomials. Applying Böcher contractions to expansion coefficients
for ES systems one can derive the Askey scheme for hypergeometric
orthogonal polynomials.

This approach facilitates a unified view of special function theory,
incorporating hypergeometric and Heun functions in full generality.

All of our considerations generalize to 2nd order superintegrable systems in
3D and higher dimensions.
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