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Abstract

ARTICLE

We describe Jacobi’s method for integrating the Hamilton-Jacobi equation and his
discovery of elliptic coordinates, the generic separable coordinate systems for constant
curvature spaces. This work was an essential precursor for the modern theory of
second-order superintegrable systems to which we then turn. A Schrédinger operator
with potential on a Riemannian space is second-order superintegrable if there are
2n — 1 (classically) functionally independent second-order symmetry operators. (The
2n — 1 is the maximum possible number of such symmetries.) These systems are of
considerable interest in special function theory because they are multiseparable, i.e.,
variables separate in several coordinate sets and are explicitly solvable in terms of
special functions. The interrelationships between separable solutions provides much
additional information about the systems.

We give an example of a superintegrable system and then present very recent
results giving the general structure of superintegrable systems in all two-dimensional
spaces and three-dimensional conformally flat spaces and a complete list of such spaces
and potentials in two dimensions.

1 Introduction

Carl Gustave Jacobi was born in Potsdam in 1804 and was educated at the University of
Berlin where he obtained his doctorate in 1825. Two years after this he was appointed
extraordinary Professor of Mathematics there and was later promoted to Ordinary Pro-
fessor of Mathematics. He later moved to Berlin and died in 1851. Throughout his brief
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life he contributed much to number theory, the theory of both ordinary and partial differ-
ential equations, the calculus of variations, the three body problem, and the development
of classical mechanics and elliptic functions. He was a rare Professor whose research and
teaching were both quite remarkable. As a result he influenced a large number of able stu-
dents. His most celebrated researches relate to the study of elliptic functions which he and
Abel established independently. Our work builds on Jacobi’s researches in mechanics and
overlaps with the notion of Jacobi elliptic functions. In 1842 Jacobi invented the method
of generating functions for solving the Hamilton equations of classical mechanics,[20]

dq _0H dp  9H

- - 1.1
dt op’ dt oq (1.1)

where {¢;,p;} = 0;; and {-,-} is the Poisson bracket. (Jacobi also allowed for explicitly
time-dependent Hamiltonians. We will not discuss this extension here, although such sys-
tems can also be treated by separation of variables methods. Treatment of the appropriate
type of separation, so-called R-separation would take us too far afield.) This method con-
sists of finding a generating function, S(q,a), such that p = V4S(q,@),8 = V,S(q, @)
and the Hamiltonian is transformed to «;. The transformed equations have the form

g 9oH do  OH _

dt _%_( ) 7"'50)5 = 0,

dat 0B
where H = H(q(a, 8), p(a, 8)). The solutions have the particularly simple form

/B(t) = (t‘l' b1, b, ---,bn), a(t) = (al,aQ, ....,(I,n).

The generating function that enables this transformation can be calculated using the
relation p = V4S5(q, @) which results from S(q, &) being a generating function. The other
relation is 8 = V,S5(q,a). The resulting equation for S(q, @) is the (time-independent)
Hamilton-Jacobi equation

H(q,VS(q,@)) = ai, (1.2)

where it is usual to set a; = E. If this equation can be solved for S(q,a) in such a way

that

9*S(q, @)
0¢;0c;

then a complete integral for the Hamiltonian system has been obtained, depending on n
constants of the motion a. The key connection with separation of variables techniques
comes from the additive separation ansatz S(q,a) = > Si(gi, @).

Hamiltonians that correspond to the usual H = Kinetic Energy + Potential Energy
and are of the form H = 3p - p + V(q) can be solved by this ansatz in many physically
interesting cases. The most notable case is that of the motion of a single planet under the
influence of the gravity of the Sun. Written in spherical coordinates the Hamilton-Jacobi
equation has the form

1/, 1/, 1 , G
= — — — 2 =0
2 (p,. + 72 <p9 + sin? 0;%)) r M

det( )#0



Jacobi, ellipsoidal coordinates, and superintegrable systems 3

and can be solved via the substitution
S(r,0,0,a) = Sp(r,a) + Sp(0, @) + Sy(p, @),

where r = (rsinf cos p,rsinfsing,r cosf). In order to solve other nontrivial problems
in mechanics, Jacobi introduced his “remarkable change of variables”, the generalized
elliptical coordinates in n dimensions, [20]. These can be defined by the relations

n 2 n7_.(z —x;)

' 7=1 J
1+ E = 1.3
=1 Z — )\k: ngl(z — )\k) ( )

for the coordinates z;. An equivalent definition is
H?:l()‘k )
Wjzk(Aj = Ak)”

where \{ < 21 < Ay < --- < A, <zpand kK =1,---,n. In the case that n = 3,4 the
elliptic coordinates admit expression in terms of Jacobi elliptic functions [53, 1]. For n = 3
we have

a =

k 1
q1 = ksnasnfsny, g9 = z'ycnacnﬁcn'y, q3 = deadnﬁdn’y,

where we write 1 = sna, o = snf3 and z3 = sn-y with normalized choice of A\; according
to A1 = 0,A2 =1 and \3 = k™2 with k% < 1, and the k dependence of the Jacobi elliptic

functions has been suppressed, i.e., snd = sn(d, k). Typically the Jacobi elliptic function
sn(d,k) is defined by

s1(6,k) 1
- [ di
o VD) RP)
These functions have properties analogous to trigonometric functions. The variables
a, 8, vary in the ranges ae[—K, K|, Be|[K — iK', K + iK'] and e[iK' — K,iK' + K|. In
addition to elliptic coordinates in Euclidean space there are also elliptic coordinates on
the n-dimensional sphere. These are defined by relations

% 52 _ 7 (2 — ;) (1.4)
P il L (2 = )

where s7 4 --- + s2 ; = 1. The inverse relations are

7, (Ae — )
Ijzk(Aj — k)

where k = 1,--- ,n+ 1 and the coordinates satisfy A\ < 21 < Ay < -+ < Ap < 2y < Apt1-
These coordinates enable the ansatz of separation of variables to be used for problems on
the sphere analogous to those solved in Euclidean space. If n = 2, the coordinates can
also be written in terms of Jacobi elliptic functions according to [1]

2=

1
s1 = ksnasnf, s = i%cnacnﬂ, 83 = ydnadnﬂ (1.5)
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with « and g varying in the same ranges as for Euclidean elliptical coordinates. The Jacobi
elliptical coordinates enabled the problem of geodesic motion on an ellipsoid to be solved.
It was on the basis of these investigations of Jacobi that subsequent investigations in the
theory of separation of variables developed. Most notable among these were the mechanism
of separation extended by Stackel [51] to quite general systems of orthogonal coordinates.
Subsequently Levi Civita [41] gave a set of nonlinear partial differential equations that must
be satisfied if separation of variables is possible in a particular coordinate system. The next
important results were obtained by Eisenhart [6], who gave an intrinsic characterization
of orthogonal separable coordinate systems and also discussed the product separability of
the Helmholtz or Schrodinger equation AW + A; ¥ = 0. Included in his analysis was the
geometrical significance of the additional criterion for product separation to occur, i.e.,
U = II}_,U(gg, A) in some suitable coordinate system ¢. This condition was originally
determined by Robertson [48] in a formal manner. In more recent times the study of
separation of variables has advanced significantly both from the point of view of intrinsic
characterization as well as classification of the various different kinds of separation that
are possible on spaces of constant curvature. With regard to the latter problem it is in
a sense true that “all” orthogonal separable systems on spaces of constant curvature are
limiting cases of the original elliptic coordinates found by Jacobi.

Jacobi’s discovery of elliptic coordinates, followed much later by the development of
quantum mechanics, led to the interest in second-order superintegrable systems. In both
classical mechanics and in its quantum extension there are some special mechanical sys-
tems on Riemannian manifolds, expressed as kinetic energy terms plus a potential, that can
be solved via separation of variables in more than one coordinate system. Such multisep-
arable systems are not only integrable, they are multiply integrable and much additional
information about the systems can be obtained by interrelating the separate separable
solutions. These systems have a theory rich in structure .

Although the definition of second-order superintegrability does not mention multisepa-
rability, we see that, for important classes of superintegrable systems, multiseparability is
implied. We start by studying an important example of a superintegrable system in two-
dimensional Euclidean space, with separation in elliptical coordinates, that illustrates the
typical features of superintegrable systems. In the remainder of this paper we lay out the
essentials of a structure and classification theory for all these systems in two-dimensional
Riemannian spaces and important results for three-dimensional conformally flat spaces.
These results are very recent and the extensive details of the proofs will appear elsewhere.

A classical superintegrable system

H=> gpip; +V(x) (1.6)
ij
on an n-dimensional local Riemannian manifold is one that admits 2n — 1 functionally

independent symmetries S, k= 1,---,2n — 1, where we choose §; = H for conveience,
[564]. That is, {H, Sk} = 0 where

{£,9} = (8, f0p;9 — Op, f0a,9)) (1.7)

=1

is the Poisson bracket for functions f(x,p),g(x,p) on phase space, [13, 10, 11, 14, 42].
(We refer to these functions as symmetries because each leads to a conserved quantity
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for the associated physical system. Furthermore they are examples of generalized sym-
metries in the Lie sense. Finally, for spaces of constant curvature the quaratic terms in
the symmetries can be identified with second order elements in the universal enveloping
algebra of the Lie symmetry algebra of the Hamilton-Jacobi equation.) Note that 2n—1 is
the maximum possible number of functionally independent symmetries and, locally, such
symmetries always exist. The main interest is in symmetries that are polynomials in the
pr and are globally defined, except for lower-dimensional singularities such as poles and
branch points. A system is integrable if it admits n functionally independent symmetries,
including the Hamiltonian itself, that are mutually in involution, {S;, Sk} = 0. Some-
times the definition of superintegrable systems also requires integrability, but we shall not
require this here. Many tools in the theory of Hamiltonian systems have been brought
to bear on superintegrable systems, such as R-matrix theory, Lax pairs, exact solvability
and quasi-exact solvability, [49, 12, 52, 17, 40]. However, the most detailed and com-
plete results are obtained from separation of variables methods in those cases for which
they are applicable. Standard orthogonal separation of variables techniques are associated
with second-order symmetries,e.g., [7, 8, 44, 29, 45, 21, 46] and multiseparable Hamilto-
nian systems provide numerous examples of superintegrability. Here we concentrate on
second-order superintegrable systems, that is those in which the symmetries take the form
Sk = 3 a¥ (x)pip; + W) (x), ie. they are quadratic in the momenta. (We show for all
cases treated in this paper that second-order superintgrability implies integrability.)

There is an analogous definition for second-order quantum superintegrable systems with
the Schrodinger operator

H=A+V(x), A= % ZJ: O, (v/35) B, (1.8)

where A is the Laplace-Beltrami operator on a Riemannian manifold, expressed in lo-
cal coordinates z; [8]. Here there are 2n — 1 second-order symmetry operators S, =
55 i 6%(\/5(13;))6% +WH®(x), k=1,---,2n — 1, with S; = H and [H, S;] = HS), —
SipH = 0. Again multiseparable systems yield many examples of superintegrability. There
is also a quantization problem in extending the results for classical systems to operator sys-
tems. This problem turns out to be very easily solved in two dimensions and not difficult
in higher dimensions for nondegenerate potentials. Most of the standard solvable mod-
els in basic quantum mechanics are second-order superintegravle [39]. The inverse-square
Calogero system for two and three particles on a line turns out to be second-order super-
integrable [2] but the general Calogero systems for n particles, though superintegrable,
correspond to symmetry operators of higher order than two.

To illustrate the main features of superintegrable systems we give a simple example in
real Euclidean space. Consider the Schrodinger eigenvalue equation HV = EV or [16, 31]

1 52 52 1 k21 k21

0z2 | y? z y

This equation admits multiplicatively separable solutions in three systems: Cartesian
coordinates (z,y); polar coordinates, z = rcos#, y = rsinf, and elliptical coordinates,

o _ o(wm —e1)(ug —er) 2 _ 2 —er)(uz —eg)

e (e1 — e2) ’ (e2 —e1)
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The bound state energy levels are degenerate with energies E, = w(2n + 2 + k1 + ks) for
integer n. The corresponding wave functions are

1. Cartesian:

1 n1lng! 1 1
N — 93 (k1tka+2) (k1+3), (ka+3) 1.10
ni,n2 ("Ll’y) w? F(nl + kl + 1)F(n2 _I_ kQ + 1) z 2 y 2 ( )

e_%(”zﬂﬂ)Lle1 (wa)L,’;‘; (wy2), n =mni + ng,

and the L% (z) are Laguerre polynomials [9].

2. Polar:

2m/!
o — (k1k2) 1(2¢+k1+ka+1) 1.11
(r,0) = @1k (9)w2 R PaE Sy sy (1.11)

—wr?)2), (2q+k1+ka+1) 7 2q+k1+ka+1 2 _
6( wr/),,,(q 1t+k2 )Lng 1+k2 (wr), n=m+gq,

q'T'(ky + ko +q+1)
F(k‘g + q + 1)F(k1 + q + 1)

Blk1k2) (9) = \/2(2q + k1 + k2 +1)

x (cos 0)F11(1/2) (gin g)k2+(1/2) Pq(kl’kz) (cos 20)
and the Pq(kl’kz) (cos 26) are Jacobi polynomials,[9] .

3. Elliptical:

n 2 2
\Ij — e—w($2+y2)mkl+% k?"‘% ( T + y _ 02> , 112
y ml;[l Om —e1 Om — €2 ( )
where ) )
z I Y _62:_62(’“1—9)(“2—9)
—e1 0—ey (0—e1)(0—e)

These are ellipsoidal wave functions, [53, 1].

A basis for the second-order symmetry operators is

1 _ k2 1 k2
S) =02+ 7(4 2 ) — w?z?, So = 65 + 7(4 ” 2) — w?y? (1.13)
2 1 2 y2 1 2 z’
S3:(.’an—yam) +(Z_k1)p+(1_k2)?

1
3

(Note that —2H = S; + Ss.) The separable solutions are eigenfunctions of the symmetry
operators S1,S3 and S3 + €251 + €152 with corresponding eigenvalues

Ae = —w(2ny + k1 + 1), Ap = (2 + Ky + ke +1)2+ (1 + K+ KD),

Ae = 2(1 — k1)(1 — ko) — 2eqw(ky + 1) — 2e1w(ka + 1) — w?erea—
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q
k141 ko +1
4 [62 1+ te 2+
oo Om — €1 Om — €2
respectively.

The algebra constructed by repeated commutators is
[S1,S3) = [S3,S2] =R,  [Si,R] =4{S;, S;} +16w?S3,  i#3, i,5=1,2, (1.14)
[S3, R] = 4{51, S3} — 4{S2, 53} + 8(1 — k3)S1 — 8(1 — k1) Sy,
2 _ 8 64 2 @2 2\ @2
R* = 5{51752353} + ?{51552} — 16w"S3 — 16(1 — k3)5]

12
—16(1 — k%)S2 — TSwQSg — 64w? (1 — k2)(1 — k2).

Note that these relations are quadratic. Here {A, B} = AB + BA, is a symmetrizer.
The classical algebra has basis

1 2 1 2
S = 2 Z_kl_ 2,2 S, = 2 Z_kQ_ 2,2 1.15
1_p$+ :1:2 w T, 2_py+ y2 wy, ( )

2 72
Ss = (zpy — ypz)? + (% — k1) % + (3 —K3) 2 —2H = 81 + Sa.

The classical quadratic algebra relations (with {-,-} the Poisson Bracket) are
{81783} = {83782} = R’ {S’LaR} = SSZSJ + ].6(.(}283, [ 7& ja Za] = 1727

{S3,R} = 85183 — 85,83 + (4 — 16k3)S1 — (4 — 16k?)Ss, (1.16)
R? = 1685,5283 — 16w>S2 + (4 — 16k3)S? — (4 — 16k?)S3 + 4w?(1 — 4k3)(1 — 4K3).
Note the following features.

e The algebra generated by Si,S2,S3, R is closed under commutation, [15, 47].
This is remarkable but typical of superintegrable systems with nondegenerate po-
tentials. Closure is at level 6 since we have to express the square of the 3rd-order
operator R in terms of the S; basis of 2nd-order operators.

e The eigenfunctions of one separable system can be expanded in terms of the eigen-
functions of another and this is the source of nontrivial special function expansion
theorems [43, 30].

e The quadratic algebra identities allow us to relate eigenbases and eigenvalues of
one symmetry operator to those of another. Indeed the representation theory of the
abstract quadratic algebra can be used to derive spectral properties of the generators
L; in a manner analogous to the use of Lie algebra representation theory to derive
spectral properties of quantum systems that admit Lie symmetry algebras [5, 3, 50].



8 E G Kalnins, J Kress and W Miller

e A common feature of quantum superintegrable systems is that after splitting off a
multiplicative functional factor,
pkE1+3) (k2 +3) o= % (@ +97)

y (&

in the example, the Schrodinger and symmetry operators are acting on a space of
polynomials, [35]. There is a Hilbert space structure and the variable separation
yields bases of multivariable orthogonal polynomials.

e There is a close relationship to the theory of exactly and quasi-exactly solvable
systems,[40]. In the example the one-dimensional ordinary differential equations
obtained by separation in the Cartesian and polar systems are exactly solvable in
terms of hypergeometric functions and the energy eigenvalues are easily obtained.
The elliptic system separated equations are quasi-exactly solvable and polynomial
solutions are obtained for only particular values of £. However, these values are just
the energy eigenvalues obtained in the Cartesian and polar systems!

In the example the potential is nondegenerate, i.e., it depends on 3 arbitrary param-
eters (or 4 if we include the trivial constant that we can always add to a potential). In
n > 2 dimensions the nondegenerate potentials depend on n + 2 parameters. Systems with
nondegenerate potentials have the most beautiful properties, but there are also superin-
tegrable systems with degenerate potentials depending on fewer than n + 2 parameters.
For n = 2 we show that all of these are in a certain sense specializations of the nonde-
generate systems. For degenerate systems first-order symmetries may exist. Note that in
the classical case the symmetries corresponding to a constant potential are just Killing
tensors.

Many examples of such systems are known and lists of possible systems have been
determined for constant curvature spaces in two and three dimensions as well as a few other
spaces, [16, 26, 28, 27, 47, 36]. Here rather than focus on particular spaces and systems we
employ a theoretical method based on integrability conditions to derive structure common
to all such systems. We firstly consider classical superintegrable systems on a general two-
dimensional Riemannian manifold, real or complex, and uncover their common structure.
We show that for superintegrable systems with nondegenerate potentials there exists a
standard structure based on the algebra of 2 x 2 symmetric matrices, that such systems
are necessarily multiseparable and that the quadratic algebra closes at level 6. This is
all done without making use of lists of such systems so that generalization to higher
dimensions [36], where relatively few examples are known, is much easier.

Then we study the Stéckel transform, or coupling constant metamorphosis [4, 19],
for two-dimensional classical superintegrable systems. This is a conformal transforma-
tion of a superintegrable system on one space to a superintegrable system on another
space. We prove that all nondegenerate two-dimensional superintegrable systems are
Stackel transforms of constant curvature systems and give a complete classification of
all two-dimensional superintegrable systems. We discuss briefly how to extend these
results to three-dimensional systems and the quantum analogs of two-dimensional and
three-dimensional classical systems.
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2 Maximal dimensions of the spaces of polynomial constants
in 2D

From the example in the preceding section we see that it is important to compute the
dimensions of the spaces of symmetries of superintegrable systems that are of orders 2, 3,
4 and 6. As illustrated by the example these symmetries are necessarily of a special type.

e The highest order terms in the momenta are independent of the parameters in the
potential.

e The terms of order 2 less in the momenta are linear in these parameters, those of
order 4 less are quadratic and those of order 6 less are cubic.

The system is second-order order superintegrable with nondegenerate poten-
tial if

1. it admits 3 functionally independent second-order symmetries and

2. the potential has 3 parameters (in addition to the usual additive parameter).

V(zay) = alv(l) ("I"a y) =+ O‘QV(Z) ("L"y) + a3V(3) ("I"a y)’ (21)

that is, at each regular point we can prescribe the values of V;, V, and V,, arbitrarily.
Nondegenerate potentials exhibit the most structure and one can show that superintegrable
systems with potentials depending on 1 or 2 parameters are special cases or limits of 3-
parameter systems. The following result is proved using the integrabilty conditions for the
requirement that a symmetry S of a nondegenerate superintegrable system must satisfy
the condition {#,S} = 0, and the parameter restrictions listed above.

Theorem 1. Let H be the Hamiltonian of a two-dimensional superintegrable system with
nondegenerate potential.

e The space of second-order constants of the motion is exactly 3-dimensional.
o The space of third -order constants of the motion is at most 1-dimensional.
e The space of fourth-order constants of the motion is at most 6-dimensional.
e The space of sixth-order constants is at most 10-dimensional.

An ordered pair of complex numbers xq = (zg,¥p) is a regular point for a superinte-
grable system if the potential is defined and analytic and the three basis symmetries are
functionally independent in a neighborhood of xg.

Corollary 1. The quadratic terms a” = a?* of a second-order symmetry
§=Ya"(x)pip; + W(x)

are uniquely determined by their values a"(xq) at a regular point xy.
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By assumption every two-dimensional superintegrable system admits 3 functionally
independent second-order symmetries. Our strategy is to choose a basis of 3 second-order
symmetries and show that the second- and third-order polynomials in these basis elements
form a basis for the fourth- and sixth-order symmetries, reaching the maximum dimensions
given in the theorem.This implies closure of the quadratic algebra. Of course third-order
symmetries cannot be expressed in terms of polynomials of second-order symmetries andwe
have to study this case separately. Again the result is obtained through a careful study of
integrability conditions for the symmetry.

Theorem 2. Let K be a third-order constant of the motion for a superintegrable system
with nondegenerate potential V :

2 2
K=Y a"(z,9)prpipi + Y _ 0", y)pe- (2:2)
k=1 =1
Then )
. 1°1%
Vi) = F(m9) 5 —(@.y)
=1 K
with

feyj"i_fj!E:Oa 1<4,j <2,

and the a* and bt are uniquely determined by the number

£ (0, 90)

at some regular point (o, yo)-

Let
81 = Z al(cf)pkpj + Wy, S2= Z ag)pkpj + W)

be second-order constants of the the motion for a superintegrable system with nondegen-
erate potential and let A;)(z,y) = {al(cij) (z,y)}, i = 1,2, be 2 X 2 matrix functions. Then
the Poisson Bracket of these symmetries is given by

2

{81,821 = > ' (a,y)prpipi + V' (z, y)pe, (2:3)
k,j,i=1

where
fH =203 (gt — ol
J
Thus {81, S2} is uniquely determined by the skew-symmetric matrix
[Ae), Al = Ag)An) — AnAe), (2.4)
hence by the constant matrix [A(s) (7o, y0), A(1)(To, yo)] evaluated at a regular point.

Corollary 2. Let V be a superintegrable nondegenerate potential. Then the space of third-
order constants of the motion is 1-dimensional and is spanned by Poisson Brackets of the
second-order constants of the motion.
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Corollary 3. Let V be a superintegrable nondegenerate potential and S1 and Sa be second-
order constants of the motion with matrices Ay and Ay, respectively. Then

{81,821 =0 = [Ap1), Ag)] =0 = [A(1)(x%0), A(2) (%0)] = 0 (2.5)

at a regular point xg.

2.1 A standard form for two-dimansional superintegrable systems

For superintegrable nondegenerate potentials we see that there is a standard structure
that allows the identification of the space of second-order constants of the motion with
the space of 2 X 2 symmetric matrices and allows identification of the space of third-order
constants of the motion with the space of 2 x 2 skew-symmetric matrices. Indeed,

e if x( is a regular point, then there is a 1 — 1 linear correspondence between second-
order operators S and their associated symmetric matrices A(xp). Let {S1,S2} =
{82, 81} be the reversed Poisson Bracket. The map

{81, 82} = [A(1)(x0), Ag2) (%0)] (2.6)
is an algebraic isomorphism.

e Let £Y be the 2 x 2 matrix with a 1 in row 4, column 5 and 0 for every other matrix
element. Then the symmetric matrices

AWL:gﬂf+ﬂ6=AWL ij=1,2, (2.7)
form a basis for the 3-dimensional space of symmetric matrices.

e Moreover,

(A6, AkO] = (63-;68(”) + 8,08 4 6,,BU0 +5M3<jk)), (2.8)

N =

where
gl = Lgii _gity = _gn, =19,
2 7 7 7
Here B(%) = 0 and B2 forms a basis for the space of skew-symmetric matrices.
Thus (2.8) gives the commutation relations for the second-order symmetries.

e We define a standard set of basis symmetries SU¥) = 3~ azé?k)(x)piph + WUk (x)

corresponding to a regular point xy by

1 41 1112 , ,
(B B) =20 (G ) =AA™, WO =0. (29
L 72 /xo X0

The condition on WU¥) is actually 3 conditions since W %) depends upon 3 param-
eters.
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2.2 Multiseparability of two-dimensional systems

Necessary and sufficient conditions for variables to separate in the Hamilton-Jacobi equa-
tion for a classical system are well-known [45, 46]. They require a second-order symmetry,
S, as well as an algebraic condition on the matrix of S. However, for superintegrable
systems with nondegenerate potential the conditions simplify.

Theorem 3. Let V be a superintegrable nondegenerate potential and S be a second-order
constant of the motion with matriz function A(x). If at some regular point xo the ma-
triz A(xq) has 2 distinct eigenvalues, then H and S characterize an orthogonal separable
coordinate system.

Note: Since a generic 2 X 2 symmetric matrix has distinct roots, it follows that any
superintegrable nondegenerate potential is multiseparable.

2.3 The quadratic algebra

Theorem 4. The 6 distinct monomials,
(8(11))2, (8(22))2, (8(12))2, 8(11)8(22), 8(11)8(12), 8(12)8(22),
form a basis for the space of fourth-order symmetries. The 10 distinct monomials,
(8@))3, (83 (§0))2807)  (86))286)  (8())28(H) = s11) 5(12) §(22)
1,7 =1,2, 1 #£ j form a basis for the space of sixth-order symmetries.

These theorems are proved by computing the values and first derivatives of the symme-
tries at a regular point to verify linear independence of the monomials. Since the number
of monomials listed is the same as the maximum possible dimension of the space of sym-
metries, they must form a basis. Note that by use of the standard form for symmetries
one can explicitly expand any 4th- or 6th-order symmetry in terms of the standard basis.

3 The Stackel transform for two-dimensional systems

The Stéckel transform [4] or coupling constant metamorphosis [19] plays a fundamen-
tal role in relating superintegrable systems on different manifolds. Suppose we have a
superintegrable system

P} +ps

H=-1""2
A(.Tl,.’EQ)

+V(21,22) (3.1)

in local orthogonal coordinates with nondegenerate potential V(z,y). This 4-parameter
family is uniquely characterized by a system of partial differential equations of the form

Voo = Vi1 + A2V, + B2V,

V'lz — A12V1+Bl2v'2_ (32)
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Now suppose U(z1,x2) is a particular solution of equations (3.2) which is nonzero in an
open set. Then the transformed system

2 2
=Pt | g ) (3.3)
A(z1,T0)

with nondegenerate potential V (z, z2):

1222 = Vi + A22V1+§22172,

195 ~ o0 A4
Vip = AV, + B2V, (3-4)
is also superintegrable, where
< -~V
A=AU, V=—
bl U,
~ Uy -~ U, - U, -~ Us
A2 g2 _Y2 22 422, oYl pr2_pi2 Y1 g2 pn  5Y2
U i U’ U

Let S =Y a“p;pj+ W = Sy+W be a second-order symmetry of H and Sy = " a¥“p;p; +
Wy = Sy + Wy be the special case of this that is in involution with A=!(p? + p3) + U.
Then W )

G U

S=5 U H + UH
is the corresponding symmetry of H. Since one can always add a constant to a nondegen-
erate potential, it follows that 1/U defines an inverse Stéckel transform of H to H. See
[4, 27] for many examples of this transform. We say that two superintegrable systems are
Stéckel equivalent if one can be obtained from the other by a Stackel transform.

If A is the metric of a space that admits a nondegenerate superintegrable system, then

it is always possible to choose coordinates z,y such that Ajo = 0 [38]. In [22] we prove the
following basic result.

Theorem 5. If ds?> = \(dz?+dy?) is the metric of a nondegenerate superintegrable system
(expressed in coordinates x,y such that Ao = 0), then A\ = u is a solution of the system

al2 _ gl2
pa =0,  poo— p11 = 3pi(Ina'?); — 3ps(Ina'?) + (711(112 2)u, (3.5)
where either
I) a?=X(@)Y(y), X"=d'X, Y"=-02%, (3.6)
or
2X'(2)Y'(y)
1) o= 3.7
) B + Y ) (37)
1 1
(XI)2 — F(X), XII — §FI(X), (Yl)2 — G(Y), YII — EGI(Y)
and

F(X)Z%X4+%X3+%X2+’Y3X+’Y4, (3:8)
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G(Y) = _ﬂy4 + Aél ys 22 2Y? 4 yY — . (3.9)

Conversely every solution X of one of these systems defines a nondegenerate superintegrable
system. If X\ is a solution, then the remaining solutions p are exactly the nondegenerate
superintegrable systems that are Stackel equivalent to A.

Corollary 4. Every nondegenerate superintegrable two-dimensional system is Stackel
equivalent to a nondegenerate superintegrable system on a space of constant curvature.

The nondegenerate superintegrable potentials on two-dimensional constant curvature
spaces have already been classified [32, 33]

There is an extensive literature on what amount to superintegrable systems with zero
potential. In this case the second order symmetries are called Killing tensors [37, 18]. In a
tour de force Koenigs [38] has classified all two-dimensional manifolds with only isolated
singularites that admit exactly 3 second order Killing tensors, i.e. no potentials, and listed
them in two tables: Tableau VI and Tableau VII.

TABLEAU VI
[] ds® = c1 CO.S:213+C2 " C3CO_Sg+C4 (da? — dy?)
SN x sm- Yy
[c1coshz +co  c3e¥ +cy 2 2

2] ds®> = dz* —d
[21 ds sinh? z * e%y ]($ v)

9 [ce®+er | c3e¥ 2 2
[3] ds* = o + 2 ] (dz® — dy*)
[4] ds* = |ci(z? —y)nL ] dz? — dy?)
[5] ds* = |ci(z?® —9?) -I— — + c3y + 04]

[6] ds®* = [ei(z®—y )+02w+03y+04] dz? —dy)
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TABLEAU VII

it = | (soen ~wem) * (eem ~wem)
Y e )+c4(sn(mk)—sn( 1) (@a? - )

*(z, (y, k)
) 1 1 1
2] ds* = |a 57— | + e 77 oo + ¢3 (cos 2z — cos 2y)
sin?z  sin?y cos cos?y
+ ¢4 (cosdz — cos 4y)] (dz? — dy?)

[3] ds> = [ci(sindz — sindy) 4 co(cos 4z — cos 4y) + c3(sin 2z — sin 2y)
+  cacos 2z — cos 2y)] (dz? — dy?)
1 1
[4] ds®* = [01 (E — E) + co(z? — ) + es(a* — y*) + ca(a® — yﬁ)] (dz? — dy?)
B ds? = [er(e — 1) + ea(a? — ) + ea(a® — ) + ealat — )] (Ao — dy?)

Our theorem above shows easily that these are exactly the spaces that admit superin-
tegrable systems with nondegenerate potentials. (We do not list the potentials here due
to space requirements. One space may correspond to several distinct superintegrable sys-
tems.) Our derivation is very straightforward and simpler than that of Koenigs. From our
point of view Koenigs’ impressive contribution shows that every two-dimensional mani-
fold that admits 3 second order Killing tensors also admits at least one nondegenerate
potential.

4 Nondegenerate quantum superintegrable systems in two
dimensions

Now we consider the operator version of superintegrable systems. For a manifold with
metric ds?> = \(z,y)(dz? + dy?) the Hamiltonian system

_ pl+p3

Mz, y)

is replaced by the Hamiltonian (Schrodinger) operator with potential

+V(z,y)

H = @(811 + (922) + V(:v,y) (4.1)

A second-order symmetry of the Hamiltonian system

2

S = Z akj($,y)pkpj + W(a:,y),

k,j=1
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with a¥9 = aJ*, corresponds to the operator

1
Az, y)

2
D Ok(a™ (2, y) Nz, 9)0;) + W (z,y), o =a’*. (4.2)
k,j=1

S =

Lemma 1.
{H,8} =0 < [H,S]=0.

(This lemma is not generally true for higher-dimensional manifolds, where the quanti-
zation problem requires a modification of the potential.) It follows from Lemma 1 that the
classical results for the space of second-order symmetries corresponding to a nondegener-
ate potential can be taken over without change. Thus the maximal dimensions of the the
spaces of formally self-adjoint symmetry operators of orders 2,3,4 and 6 are the same as for
the classical case. Also we can construct a basis of second-order symmetry operators S
in the neighborhood of a regular point xg in exact analogy with the classical symmetries

Sig) |

If A, B and C are linear operators, we define their symmetrized products by
< A,B>=AB+ BA, <A,B,C >= ABC + BAC +CAB + ACB + BCA+ CBA.
Theorem 6. The 6 distinct monomials

< SN g1 5 £ g(22) §(22) 5 o g12) g(12) 5 L g(1) g22) 5
< 50 g012) 5 . g(12) g(22) 5
form a basis for the space of fourth-order symmetry operators.
Theorem 7. The 10 distinct monomials
< 8 gU) gli) 5 = gUig) glid) §d) 5  gl) ¢id) glid) 5« g) gGi) gii) -
< 8l gta) glit) 5 (1) g(12) ¢(22) -
fori, 5 =1,2, i # j form a basis for the space of sixth-order symmetries.

These theorems establish the closure of the quadratic algebra for two-dimensional quan-
tum superintegrable potentials: All fourth-order and sixth-order symmetry operators can
be expressed as symmetric polynomials in the second-order symmetry operators.

4.1 The Stackel transform for two-dimensional quantum systems

The quantum analog of the Stackel transform or coupling constant metamorphosis for
Hamilton-Jacobi systems is straightforward in the two-dimensional case. Suppose that we
have a superintegrable system

H =

e (011 + 022) + V(z,y) = Hy+ V (4.3)
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in local orthogonal coordinates with nondegenerate potential V(z,y) and suppose U(z, )
is a particular case of the 3-parameter potential V', nonzero in an open set. Then the
transformed system

- (; (00 +02) 4 V(w,0) (4.4

is also superintegrable, where
A=)\U, V=

ST

Theorem 8. 1.

[H,5]=0 < [H,S]=0.

- 1 s 1 — W, WyV V
tJ

Corollary 5. If SV S@ are second-order symmetry operators for H, then
S, 80 =0 = [sM, 5@ =0.

Theorem 9. Every nondegenerate second-order quantum superintegrable system in two
variables is Stackel equivalent to a superintegrable system on a space of constant curvature.

5 Conclusions and further results

In this paper we have described the classification of all two-dimensional superintegrable
systems with nondegenerate potential. (In [23, 22] the details of the proofs are given and
the results are extended to systems with degenerate potentials.) We have shown that
all these systems are Stickel equivalent to superintegrable systems on spaces of constant
curvature the potentials of which have already been classified in detail [26, 28, 27]. We
have proved the closure of the quadratic algebra and have shown in principle how to
compute the structure of the algebra in individual cases.

The integrability condition approach of §2 that works for superintegrable systems
on two-dimensional Riemannian manifolds extends to three-dimensional conformally flat
spaces (2n-1=>5 functionally independent constants of the motion) with some complica-
tions. In two dimensions the quadratic form a* has 3 independent components and there
are 3 functionally independent second-order symmetries. Thus the value of the quadratic
form at any regular point can be prescribed and this uniquely defines a symmetry. For
n = 3 there are 5 functionally independent second-order symmetries, but the the quadratic
form @™ has 6 independent components. This is a major complication. In [24] we over-
come this problem by proving a 5 = 6 Theorem, that is, 5 functionally independent
second-order symmetries for a nondegenerate superintegrable three-dimensional system
imply 6 linearly independent second-order symmetries. Then we demonstrate that for
three-dimensional conformally flat superintegrable systems with nondegenerate potential
the maximum possible dimensions of the spaces of second-, third- fourth- and sixth-order
symmetries are 6, 4, 26 and 56, respectively and these dimensions are achieved. Again



18 E G Kalnins, J Kress and W Miller

the three-dimensional quadratic algebra generated by the second-order symmetries always
closes at level 6 and there is a standard structure for the algebra.

The passage from the three-dimensional conformally flat classical superintegrable sys-
tems to quantum superintegrable systems is still straightforward, but requires modifying
the quantum potential by an additive term proportional to the scalar curvature, [25].
Work is in progress to determine all three-dimensional superintegrable systems.

Jacobi’s contribution remains central to this program. Indeed all orthogonal separable
coordinates for n dimensional superintegrable systems on conformally flat manifolds are
generalized Jacobi elliptic coordinates and their limiting cases [34].
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