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Kalniris has related the 11 coordinate systems in which variables separate in the equation

f. —f, =7*f to 11 symmetric quadratic operators L in the enveloping algebra of the Lie algebra of
the pseudo-Euclidean group in the plane E(1,1). There are, up to equivalence, only 12 such
operators and one of them, Lg, is not associated with a separation of variables. Corresponding to
each faithful unitary irreducible representation of E(1,1) we compute the spectral resolution and
matrix elements in an L basis for seven cases of interest and also give overlap functions between
different bases: Of the remaining five operators three are related to Mathieu functions and two are
related to exponential solutions corresponding to Cartesian type coordinates. We then use these
results to derive addition and expansion theorems for special solutions of f, —f,, =¥°f obtained via
separation of variables, e.g., products of Bessel, Macdonald and Bessel, Airy and parabolic cylinder
functions. The exceptional operator Ly is also treated in detail.

INTRODUCTION

In Refs. 1 and 2, Winternitz and coworkers intro-
duced a group theoretical method for the description
of separation of variables in the principal partial dif-
ferential equations of mathematical physics. We apply
their idea in this paper to study several coordinate
systems in which separation of variables is possible in
the equation

(*) (ai— 3%)]‘(8, t)=— yzf(s, t)’ Y> 0.

The symmetry group of (*) is E(1, 1) the pseudo-
Euclidean group in the plane. Its Lie algebra e(1, 1) is
three-dimensional with basis P;, P;, M and commutation
relations

[M, P,]=P,, [M, P;]= Py, [Py, P;]=0.
A two-variable model of e(1, 1) is
(x¥) Py=23,, P,=9, M=-~sd —19,
in which case (*) becomes
(P}-PY)f=-7".

According to the prescription in Refs. 1 and 2 one
should characterize solutions f of (*) by requiring in
addition that f is an eigenfunction of an operator L,

Lf=)f, where L belongs to the factor space T=S5/SN C.

Here, C is the center of the universal enveloping alge~

bra U of e(1, 1) and S is the space of all symmetric sec-
ond order elements in U. In our case, SN C= {a(P?

— P23}, o any constant. E(1,1) acts on T via the adjoint

representation and we do not distinguish between oper-

ators L on the same orbit.

From the examples presented in Refs. 1 and 2 one
might expect that each system of equations

(PE-PYf=-7%f, Lf=2f

where Py, P,, M are given by (*x), is related to a co-
ordinate system in which () separates, that all separa-
ble coordinate systems can be so obtained, and that
there is a one-to-one relationship between orbits and
separable coordinate systems. However, in Ref. 3
Kalnins has shown that this is not quite true. In fact,
there are 12 orbits and 11 coordinate systems in which
() separates. One orbit (with representative Lz in this
paper) does not correspond to a separable coordinate
system. Of the separable coordinate systems two,
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Cartesian and spherical polar, have well-known group
theoretical interpretations (Ref. 4, Chap. V), three
lead to various types of Mathieu equations, and two cor-
respond to other Cartesian-type coordinates. The re-
maining four systems are related to parabolic cylinder,
Bessel, Macdonald, and Airy functions, respectively,
and correspond to operators Ly, Lg, Ly, L, in T.

A study of parabolic coordinates with respect to the
spectral resolution of L, was carried out in Ref. 5.
Here we undertake an analogous study of Ly, L., L,
and L. In Secs. 1 and 2 we compute the spectral reso-
lutions of the self-adjoint operators L,, G=B,K,A,E,
corresponding to each of the irreducible faithful unitary
representations of E(1,1). In particular, we compute
the matrix elements of the unitary group representation
operators in an L;~basis and we calculate the overlap
functions relating two different bases.

In Sec. 3 we show how to construct models of the ir-
reducible representations of E(1, 1) in which the Lie
algebra operators take the form (*x) and the Hilbert
space vectors f satisfy (x). These models allow us to
apply the results of Sec. 1 to obtain properties of those
special solutions of (*) which can be obtained through
separation of variables. (Of special interest here is L
which does not lead to separation of variables.)

Finally, in Sec. 4 we study the spectral resolution of
L, corresponding to nonunitary representations of the
complex Euclidean group CE(2) and obtain a series of
identities for products of modified Bessel and
Macdonald functions.

1. THE REPRESENTATIONS OF £(1,1)
The pseudo-Euclidean group E(1, 1) is the group of
all real matrices
coshé sinhé a
A(6,a,b,)=| sinhd coshd b |,
0 0 1

—©< B a b<o,

It acts on the pseudo~Euclidean plane via the transfor-
mation z -~ Az where

¢
z=|s
1

Copyright © 1974 American Institute of Physics 1025

Downloaded 04 May 2004 to 128.101.10.42. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



1026 E.G. Kainins and W. Miller Jr.: Lie theory

and preserves the form (¢, - ;)% = (s; - s)%.

The irreducible faithful unitary representations of
E(1, 1) are well-known to be indexed by a parameter
y>0. Each such representation can be defined by oper-
ators T(6,a,b),

T(8, a, b) f(x) = expli¥(a coshx + b sinhx) | f(x + 6) (1.2

acting on the Hilbert space L,(R) of Lebesgue square
integrable functions f(x) on the real line. The inner
product is

(&= [ fx)g(®) dx, f,geLy(R).

The Lie algebra e(1, 1) of E(1, 1) contains a basis

{P,, P,, M} with commutation relations

(1.3)

and related to the group via the exponential mapping
A(6, a, b) = exp(aP, + bP,) exp(6M).

The corresponding operators in L,(R) induced by the
group action (1.2) are easily shown to be

[M,P,]=P,, [M,P,]=P,, [P, P,]=0

P, =iy coshx, P,=éysinhx, M=3,. (1.4)

Vilenkin (Ref. 4, Chap.V) has studied the unitary
representation of E(1, 1) in terms of the spectral resolu-
tion for the operator

LM=M2

(or M) on L,(R). In particular, he has determined the
matrix elements of the group operators (1.2) with re-
spect to this resolution. In Ref. 5 the representations
of E(1,1) were examined with respect to the spectral

resolution of the operator

L,=MP, +PM.

It was shown that L, has a one parameter family of
self-adjoint extensions L, ,, 0 < @ <2. Each L, , has
discrete spectrum —2y(a +2#%), n=0, +1, +2,-++ and
normalized eigenfunctions

F2(e) = VET exp(x/2)(1 +ie7)* /A1 - jery sz,

(1.6)

(1.5)

(In every example treated in this paper the L-operator
is initially defined on the subspace of L,(R) consisting
of C*-functions with compact support. One then search-
es for all self-adjoint extensions of this symmetric
operator.)

This case was in sharp contrast to that of L, where
there was a single self-adjoint extension with continuous
spectrum covering the negative real axis with general-
ized eigenfunctions

exp(irx)
vZri
Mp¥ =irf¥, <f>fl:f;.£l>=6(7\_“)-

The spectral resolution was obtained via the Fourier
transform. The relationship between these two bases
was computed in Ref. 5.

flx)= (1.7)

_°O<A<°O’

In this paper we study the spectral resolutions in
L,(R) of self-adjoint extensions of the symmetric oper-
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ators found in Ref. 3:
LB=M2"(P1+P2)2,
Ly=M?+(P, +P,)?,
Ly=M(P, -P,) +(P, - P,)M,
La=M(P, = P,) +(P, ~ P} M +(P, + P,).

(1.8)

For each resolution we compute the matrix elements

of the unitary operators (1.2). In addition we determine
the unitary transformations which allow us to pass from
one spectral resolution to another,

A. The Bessel function or 8 basis
1t follows from (1. 4) that

Lp=D%+y2exp(2x)=v*D? +vD, +y %2,

d d
v=exp(x), D,= % D, = o
This operator is symmetric on L,(R) with deficiency
indices (1,1). Thus there is a one-parameter family
Lg,o s 0 a’ <27, of self-adjoint extensions of L. The
domain of each extension is

Do=1{f€ Dpx_:1im v[h, (0ID flv) = AAv) D, R, (v)] =0}

B erm

(1.9)

where DL*B is the domain of the adjoint of L, in L,(R)
and

hos (V) =J5 (yv) +exp(ia’) J; (yv), B=exp(in/4),
where J,(2) is a Bessel function. (All special functions
in this paper are defined as in Ref. 6.)

Each Ly ,, has discrete spectrum and an orthonormal
basis of eigenfunctions

FRex(v)= V2@ F2n) J,,q,000),
v=exp(x), n=0,1,2,c0-, (1.10)

where 0 <o < 2 and the fixed parameters o, o’ are re-
lated by

o (¥ -3i) - (1356 ) w5

{(Our computations of spectral resolutions for first and
second order ordinary differential operators, while
certainly nontrivial, are straightforward,’ so we omit
the details. )

The relationship between different bases is easily
computed:

FEo) = 5 (e, pems) p3eoatw),

(fro, fBr2y =2 /{a; FIm)(a, +2n) ’/0 Jal,zm(v).faz,z,,(v)d—;

= Yo T am) (o ¥ on) sinnl{a, — @,)/2 +m —n]
e, — @,)/2 +m -n](a, +a;)/2 +m +n] °

(1.11)

The matrix elements of the unitary operator T(0, a, a),
a>0 are

15:%0,a, a)={expa(P, +P) R, FR
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* dv
=2V({a+2n)a+2m) | e “"Ja,z,,(v)sz,,,(v)—v'
0
2V(e +2n)(a + 2m) (4g?)2 mmg=it (asmem)
T'(a+2n+ DI (a+2m)
‘e+nt+m,a+tn+m+i,a+tn+m+s,
1
X Fq a+n+m+l |3

\e+2m+1,a+2n+1,20+2m+2n+1

1.12)

where T'(z) is the gamma function and oFq is a general-
ized hypergeometric function.

Further,

T2:%(0,~a,~a)=TE:%(0,a,a).

The integral in (1.12) is evaluated with the help of
Lebesgue’s dominated convergence theorem and the de-
vice of expanding J ., () 4., (v) into a power series in
v and integrating term by term. There is a similar

unenlightening expression for the matrix elements
T2:%(0,a,-a) which we omit.

The matrix elements of the operator T(6,0,0,) are

T2, (6,0,0)=(exp(6M)f 2= , £3:)

=2V (oz + 2”)((1 + zm)f o +2n e U)Ja+2m(v)_

V(ia+2n)a+2m)T(a+n+m)

_e-(d*Zm)G
- T(a+2m+1)I'(1+n-m)

at+nt+tm,m-n
X F e
a+2m+1

=28

for 6= 0, (1.13)
[This is a Weber-Schafheithin integral (Ref. 6, Vol,
II.)] Furthermore,

TE:%(~6,0,0)= 72,2 (9,0, 0).
Note that the matrix elements (1.13) vanish if m=2#n+1,

B. The Macdonald function or K basis
From (1.4) it follows that

Ly=D%~Ye*=1v?D2+yD - 2. (1.14)
This operator is symmetric on L,(R) and has de-

ficiency indices (0,0). Thus L, has a unique self-ad-

joint extension (which we also call L) and a complete

set of orthonormal eigenfunctions of Ly, f¥, which

form a basis for the representation space. The spectral

resolution of L can be obtained from the known form

of the Lebedev integral transform (Ref. 6, Vol. II).

The spectrum of L, is continuous and an orthonormal

basis of eigenfunctions is (shz=sinhz, chz=coshz)

ff(v):;lr-\/ZzshnzKiz(yv), O0<z<eo, (1.15)
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These basis functions satisfy the delta function
normalization

f9f5>=6(x—y)°

The matrix elements of the unitary operator T(0,a,a),
a>0, are in this basis

TE(0,a,a)=(expa(P, + P,)fk, rK)
7> ° . dv
=5 Vxyshrxshry /; exp(iav)K,, (y0)K, (yv) ~
=06(x-y)

+ 1117_2 vxyshrxshry [%a(chnx - chmy)

1+ix+iy 1+ix—=iy 1+i4y—ix
><41:3< 2 y’ 2 ’ 2 ?

l—ix=iy 1§ 3, 1.2
2 52y by 25 —3a

tq? {chax + chry)

V-2 ’

ilx +y)
F3(1+Ty-

i(x —y) i(x =)
1+(2y’1+1(2y.,

1———l(x+y);%,%,2;—%az)]a (1.16)

2

This integral is evaluated by expanding the exponential
in a power series in » and integrating term by term. We
omit the evaluation of the matrix elements of the opera-
tor T(0,a,~a).

The matrix elements of the operator T(6,0,0) are
T%,(6,0,0)= (exp(- OM)¥ rX)
:-3—2 @m'/:Kix(v)K”(eev)d?v
=cos{6y)6(x - y)

+ #nyshnxshwy

r'(l-iy)
@y ~1)/2]T[ (= ix =iy —=1)/2]

X [emr[(ix -

iy =1 —ix—iv—1
X2F1<1x ;y , = zzy ;—iy;exp(-ze))

(1 +iy)
+exp(-iyf)y I(ix + iy - 1)/2]T] (= ix + iy = 1)/2]

tiy-1 —ixtiy—1
sz(zx iy | mix zzy ;zy;exp(—ZG))}

(1.17)

for 6>0,

For 6<0 the matrix elements can be obtained from
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the relation

TX(-6,0,0)=TF (6,0,0).

C. The exponential or £ basis

The basis defining operator in the realization (1.4)
has the form

Ly=1y(2e™D, - e™)=iy(2D, ~v™").
Solutions of the eigenfunction equation L F(v)=2F(v)
then are

F(v)=0v1/2exp(-?‘—v). (1.18)

2y
These eigenfunctions do not form a complete set
on the Hilbert space /* on which the representation
(1.2) is defined, i.e., the space of functions f(v) for
0<y<ew, y=e*, The correct group® in which to realize
this basis is E'=E(1,1)®{R, I} where R is the reflection
operator in the pseudo-Euclidean plane and 7 is the
identity operator. R acts on the generators of E(1,1)
according to

R:M—M, R:P,~-P; (i=1,2) 1.19)
The Hilbert space H on which the irreducible represen-
tation labelled by v is realized is now the direct sum of
two Hilbert spaces H=4*® 4~ with 4~ the space of
functions f(v) for =« <p <0 which are square integrable
with respect to the measure dv/v and transform under
the group E’ according to (1.2) with v =¢* (remember
R:e*——¢¥), In fact, we can write symbolically /-
=RH*. Accordingly, each f) € H (~ = <y < =) satisfies
the integrability condition

= dv
./:Q' f(’l))‘z—v-<co

with the group action given quite generally by (1. 2) with
e*=v. The operator L is then essentially self adjoint
and the eigenfunctions correspond to a form of the ex-
ponential solutions of the momentum operator. The
spectrum of L  is the real axis and a complete set of
orthonomal eigenfunctions is

st =3(59) e (-5 )

where

f,ffl>=_/_-”ff(v)ff:fv dTU

(1.20)

(1.21)

=56 =)').

In (1.21) we make the consistent convention that the
square root (-2)!/2 for v positive be taken as + |v|/2,
The matrix elements in the E basis can be easily
calculated.

The matrix element for the unitary operator T(0,a,a)
is

fo.(O,a,a)=Z_';1;f exp(-;;(x' —A)+im)vdv
=5(A =2 —27%a). (1.22)
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For the operator T(0,a,-a) we have the result

-1 [ i iYa

E ——— =\ - -
Tw(O,a,-a)—My‘/; exp(z_y(x A+ > ) dv

=5 =8 =A") +y¥2a/(V = 1) sign(x’ =)

XJ,(2aVr =), (1.23)
This matrix element can be evaluated by expanding
exp(iya/v) in a power series then integrating term by
term in the sense of generalized functions. ® Alterna-
tively, contour integration of the regular part of the
matrix element will give the same result.

The matrix element of the operator T(9,0,0) is

-1 f(" i
B - Lo oef
Tn,(G,O,O)._MY Lexp(zy()\ e 7\)1)) dv

=6(ex —2"). (1.24)
D. The Airy function or A basis
In the realization (1.4) L, has the form
L, =iv(2e™D, —e™) = v’ (1.25)

=iy(2D, = v = Y2t.

The solutions of the eigenfunction equation L ,F(v)
=MF(v) are
=l 2expflypio LA
F)=v exp(6 -3 711). (1.26)
As with the E basis these eigenfunctions do not form a
complete set on the space A of functions f(v) with 0 <y
<, This space is extended in exactly the same way as

for the E basis. A complete set of orthonormal eigen-
functions on H=/*® 4" is then

1/-p\¥/2 i iX
A__ .2 - 3 .=
f**2<w) exp(s wi=y y”)

with

(1.27)

£, A)=8(0~").

The matrix elements in this basis can be easily calcu-
lated. For the translations T(0,a,+a) the results are
the same as for the E basis, viz., (1.22) and (1.23).
For the matrix element of the operator T(6,0,0) we
have a new result:

Tﬁ,(ﬁ,0,0):%f exp(% y(e*® -1)113+2—’y-(x’ -x)v) dv

A=A

=Z_yi<27> M2 (g9 _qyars M(W) (1.28)

for 6> 0 and where Ai(z) is an Airy function. The
matrix element for 6 <0 can be obtained by using the
result

TA.(-6,0,0)=TA,(6,0,0).
2. OVERLAP FUNCTIONS

In this section we compute functions of the form

UG,H =

n,m r?!f:)z‘[_:ff(x)]_;z(x)dx (2.1)
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which allow us to pass from the {f¢} basis to the {7}
basis via the expression
FS)=2USH fH(x). @.2)

(For H=M,K,A.E the sum should be replaced by an
integral. ) Note that

UrIG,:II m.n (2.33.)
Use=s, ., n,m discrete,

=06( -m), n,m continuous, 2. 3b)
U H—E Unl Uy (2.3c)

In the following we compute the various US'¥ by sub-
stituting the explicit expressions for f$(x), f” (x) from
Sec. 1 into (2.1) and evaluating the integral. In case
both L; and L, have continuous spectrum then expres-
sions (2.1), (2.2) must be interpreted in the sense of
generalized functions.

First we relate all bases to the standard M basis:
1 (= .
U= 5= f _fitexp (- irx)dx.

The results are

Ve +2 «
UBr = (f22, fi)= -—;—Ef J g2 (Y0 0o 2.4)
, 1/2
= (;Ot+2n) (y/2)* Tl a+n-1r/2)
m 2 T[+n+(a+ir)/2]’
UIx{,'xMZ x’ x>
_—_;r-3175 szhnx/(J v K, (w)dv
_ i x 1/2 (27,)1'{;: (2')/ -ix
=2 (nshnx) (I‘(l e R ¢ purm R
L 1 (xsh'trx>< ) (zx—zx) (zx+z)\) @.5)
47 m
— i ” ~ia-1/2 o
Uk, =372y z./; v ( )
— L(z=id) cGrsaemyn | K |V
“2mv2y © 5y 2.6)
where e=+1if K<0 and -1 if K> 0. We have
AM _ C ¥ -ia1/2 (34 s_l_lﬁ
UK,A_zﬂ.(z.y)l z[ v exP(Gv ZYU) dv
_ i Y (2ix-1) /6 i) I‘[(n-ih)/3+l]
~2r(2N) 2 \6i n=0 n!
e it/8K\n [6\n/3
X - .
(=) E) @.7)

This expression can also be written as a sum of three
Fala;d, c;2) hypergeometric functions.
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It should be mentioned here that the overlap coeffi-
cients which we have given relating the E and 4 bases
to the M basis are not the complete coefficients with
respect to the group E’ and hence are not unitary. The
coefficients we have calculated only relate these bases
on the Hilbert space #/*. A similar calculation for the
space 4~ can be made but we do not do this here. For
the unitary irreducible representations of E’ in a B, K,
or M basis we have basis functions labelled by an addi-
tional discrete label corresponding to the eigenvalues
+1 of the reflection operator. This is because R com~
mutes with the operators L, L,, and L,. For the A
and E bases however R does not commute with L, or
L. Hence no such labels are required. For the pur-
poses of this paper we have not introduced this discrete
label, it being understood whenever we give an overlap
function,

We now give a number of further overlap functions of
interest:

Uf,xK _ (fB,oe ,fK>

:-z——w/—(m
% Tln + (a +ix)/2]0[n + (a —ix)/2]
I'(l+a+2n)
2F<n+ ;”,n+“'2i";1+a+2n;-1), 2.8)
UBA=(FE, fi)

== (2yH)BAI(( =) @YA)VE),

iveshme  (2y)2ix1/2 . ,
UESE =- - (2;11_)\)’“1/2 TG +ix)T(E-1ix)
+ix
X F1(2+zx,z+zx,1,2:: ) 2.9)

3. A TWO—-VARIABLE MODEL FOR £(1,1)

As mentioned in Sec. 1, E(1,1) acts as a transforma-
tion group in the pseudo-Euclidean plane. We choose
this action in the s-f plane so that the Lie derivatives
corresponding to the Lie algebra basis {Pl,Pz,M} are

P, =3, P,=0,, M=—13_—s0,. (3.1)

We now construct models of the irreducible repre-
sentations of E(1,1) where the Lie algebra acts via the
operators (3.1) rather than (1.4). In particular, we
construct the two-variable analogs of the basis functions

iret.

In the one-variable model we have (P2 — P?) G = 4?f¢
for each basis function f, so we would expect the same
equation to hold in the two-variable model, i.e.,

(83 = 82)FS(s, 1) = v*FS(s, 1),

where FS(s,t) is the two-variable function corresponding
to f%(x). In the following we will define a mapping f(x)

— F(s,t) from L,(R) to functions on the pseudo-Euclidean
plane such that (32 — 92)F=»*F and such the eigenfunc-
tions f¢(x) of L, map to eigenfunctions F¢(s,t) of the
corresponding operator L, constructed from (3.1).
Because of the close relationship between separation of
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variables and operators L; we can find simple expres-
sions for the {F¢ (s, #)} in terms of the coordinates as-
sociated with L,. (The single exception to this state-
ment is the case G=_FE where there is no associated
coordinate system in which the variables separate.)

To make our construction precise we introduce the
functions

h, ,(x) = expliy(scoshx +tsinhx)], s, teC. (3.2)
which belong to L,(R) for Imy(s+¢) > 0. Given f(x)
€ L,(R), we define a function F(s,?) by
Fls,0)=(f,hy = _flo)h, ,(x)dx. (3.3)

In particular, corresponding to a basis {f¢} for L,(R)
we obtain functions
Fo(s,8)=(% k). (3.4)
The action (1.2) of E(1,1) on L,(R) induces an action on
the F(s,t) which satisfies the homomorphism property:

[T(6,a,b)F(s, ) =(T(6,a,b)f, k)

=<fy T(o’ a, b)'%:ﬁ

=F((s + a)cosh8 - (t + b)sinhé,

(¢t +b)coshé— (s +a)sinh8). (3.5)

It is easy to check that the Lie derivatives correspond-
ing to the group action (3.5) coincide with (3.1). Thus
the operators (1.4) acting on f correspond to the
operators (3.1) acting on F.

On the other hand, for f a basis vector ¢ we have

[T(6,a,0)F¢1(s,)=(T(6,a,b) fC,h, ,)

(3.6)
=276 (6,a,b)FS(s,?)
m
where the T¢ are the G-basis matrix elements. It fol-
lows from (3.5) and (3. 6) that the {F¢} transform under
E(1,1) exactly as the basis vectors {’}f} In particular,

(P PR =FS, LoFS =M S .7
[where P,,P,,L, are expressed in terms of the opera-~
tors (3.1)], provided L f¢ =1, fS. Relations (3.6) also

hold even for Imy(s+¢)=0 if the '{fff} belong to L,(R).

If b, € L,(R) it follows immediately that

Sit

o ()= FEOFLLs, 0 (3.8)
where the right-hand side converges in L,(R) and also
pointwise. (As usual, if L, has continuous spectrum we
replace the sum by an integral.) We can consider (3.8)
as the expansion of a plane wave in a {FG,} basis of solu-
tions of the Helmholtz equation.

It follows directly from the definition of &, ,(x) that

Chy, 1y by g = 2Ko(ivl(s, - 5,02 ~ (1, - 1°17/%). (3.9)
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On the other hand, use of (3.8) yields

(g s bg, 1) =20 Filsy, 1)FS (5, T,). (3.10)
Comparison of (3.9) and (3.10) yields another generating
function for the {F%.

The overlap functions computed in Sec. 2 carry over
immediately to the two variable model. Indeed, expres-
sion (2.2) relating the bases {f¢} and { f7} yields

Ff(s,t)=;)UG'”I«*'(s,t) (3.11)

mm- m
with the same overlap functions US 2.

It follows from these remarks that the functions {Fﬁ}
will necessarily satisfy the identities (3.5)—(3.11)
where the matrix elements T, (6,a,b) and overlap
functions US'# have already been computed from the
one-variable model. Moreover, due to the relationship
between the operators L, and separation of variables
for the Helmholtz equation we can find simple expres-
sions for the function {Ff} in terms of the coordinate
system related to L,. Indeed, evaluating the integral
(3.4) in each case, we find

F¥[p, 6]=V2 /ne"™K,,(ivp),

s=pcoshf, t=psinhé, (3.12)

F2-o[g,n)=2exp[3in(a +2n-1)/2]D_, ;... (/=27 &)

XDa‘z"-uz(V‘z‘V n, (3.13)
s=ign, t=*-£)/2,
FB:2[y, v]=2V2{a +2n) J 0, (WK 4,0, (= iy0),  (3.14)
_EHER R R ~wPR R 1% <1
- 2uv ? 2uv ’ v ’
2 .
Fflu,v]="Vxshnx K, (K, (- ivv), (3.15)
2 _ 42,2 _ .2 2 2_ 2
=Y Wt —v =Y + v — v , £l>1:
2uv 2uv v

Ff[s , t] =./°° exp<i7(32+ f) v+ ZV(;U_ t)>ff(v) gvﬁ

i
= axpVy(F = $%) = /Y =),
2V2y%(s +1) = 2x

S+E>A/P2, t>s, (3.16)

i
= — cos VY (s = ) =~ /) (s = 1),
2\/2?‘3 +7) =9

s+t>n/y?, s>t.

Similar expressions can be given for the other ranges of
s and ¢:

Fﬂx“ xz] =’/o‘an exp (i‘y(82+ t) » +'L'}’(gv— ﬁ)f‘)?(v) %}2
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=A¢1(3’1)¢1(3’2) + B(d’l(yl) ¢2(y2)

+ ¢1(3’z)¢2(3’1)) +C¢2(y1)¢2(3’z), (3.17)

where

¢1(’V)— F (3’9 ), ¢z(’y)— F (3 »9 y1)

The coefficients are given by

1/6 in, 5/2 2/3
A=EB(8) g (o)
6y 3 v

_16’i711/2 <6>5/6 E
c==5—1{3) T§)

s and ¢ are given by the relations
2s= =3 (x; =20, + (6, + 1),

2t =500, — 2,0 = (x, +x,),

and

1 A
=35 (29)
The expression we have given for the A basis functions
in the two parameter model can also be written as a
sum of products of Airy functions. One comment should
be made here concerning the F§ [s,¢] functions. These
functions indicate that for the two variable model the
E basis functions do not afford a separation of vari-
ables. This is in agreement with an earlier result.?

(i=1,2).

4. REPRESENTATIONS OF CE(2)

For the purpose of relating Lie group theory to
special functions it is imperative to study group repre-
sentations which have no Hilbert space structure, in
particular representations defined on spaces of analytic

. functions. Some example of these were given in Refs.
5 and 9. For such representations one can always as-
sume that the group is complex and we shall do so here
'by allowing the parameters 6, a, b in (1.1) to take ar-
bitrary complex values. Thus, we shall consider rep-
resentations of the complex Euclidean group CE(2).

The Lie algebra ce(2) of CE(2) consists of all complex
linear combinations of the generators M, P,, P, with
commutation relations

[M,P,]=P,, [M,P,]=P,, [P,,P,]=0. (4.1)
We consider a model of this algebra in which the gen-
erators are given by

M:zi

az’ P*=pz,

P =pz1?
(4.2)

P*=P P,

acting on the space 7* of functions f(z) analytic in the
domain |z| >0 with periodicity f(e?"{z) =e*f(z). Here
ve C is not an integer. The eigenfunctions of the opera-
tor L, =M?+ (P, + P,)* =M? + (P*)? on this space are
easily seen to be

fE@)=d,,,(p2z), n=0, +1,
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LefE=@+npPfK (4.3)
to within a constant factor. Moreover, as shown in Ref.
10, p. 204, every fe 7 can be expanded as an infinite
series in the eigenfunctions f¥

fle)= Z €, ,en0Z), 4.4)
where the coefficients c, are given by
_ 1 av+n)
=9 | sinm(v +n) ff(z)J_,,_"(pz) (4.5)

and the pointwise convergence in (4.4) is uniform on
compact subsets of the annulus. The path of integration
in (4.5) can be chosen as a circle centered at the origin
with radius > 0.

It follows from (4.2) thatthe action of CE(2) on 7¥ is
given by operators T(6,a,b),

[T(8,a,b)flz) = expg[(a +b)z + (a-b)/z]flef2),
(4.6)

and that 7¥ is invariant under this action. Thus, we can
use expressions (4.4) and (4.5) to compute the matrix
elements of the operators M, P* and T(6, a,b) in the
{f¥} basis. It is straightforward to show

P =T (- 1ntn+ 2+ 1) s

Ff 2(V+n)(f fn+1) (4'7)
x_ (V+n) x
MfE=—5—fF E( 1)’"(v+n+2m+2)fn,2m2,
T(0,a,a,,,
(11=1 , 11 1
@oTwim+1) (2072 T2 272 | -4
v 4l'3 2
T(+n+ 1) 1=, —y=m+1, v+n+1
fm-n=10=0,
0 if m —n<0, (4.8)
_(pPa/2y T (v +m +1)
70,8, =@ =1, T T DT =+ 1)
x0F3<—V—m+1, vtu+l, n=m+1;
4a2>
T(G,0,0)m,"
(=1) ™ (y+m +1) F —Lytm=i o
1 21 >
NT(y+n+1) pintl

ifm-n=21,1=0,1,2,...,

0 otherwise.
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l=.
s >
4_

FIG. 1. Contour of Integration.

Note that in our model P2 - PZ=p*pP~=p?,

Next we construct a model of this representation in
terms of functions FX (s,?) in the complex s —¢ plane.
Here,

P,=3,, P,=b5,, M=-13,-s3,, (4.9)
80 the basis functions F¥(s,t) analogous to f¥(z) must
satisfy the equations

(87 ~ 82 FK(s,8) = - p*F¥(s,#), L, F¥(s,?)

=(v+n)Fk(s,?). 4.10)

In analogy with a similar construction in Ref. 5 and
(3.3), we set

F¥(s, #) = fc e Blels +0)+27(s - D115 E,

Re(s+1) <0, (4.11)
where C is the contour in the complex z plane (see Fig.
1). By differentiating under the integral sign in (4.11)
and integration by parts it is easy to show that the gen-
erators (4.2) acting on fX¥(z) correspond to the genera-
tors (4.9) acting on F¥(s,#). Thus Egs. (4.10) must
hold. This suggests that the FX(s,#) are simply express-
able in terms of the u-v coordinates,

w2 — 1272 + p?
y 1=
2uv

u2 + uzvz + ,U2
S=
2uv

Indeed, a direct computation yields
F¥[u,v]
=44 expi(n/2)(n - v) sinm2(v +7) 1,, (- puK,, (- pv),

lu/v] <1, 4.12)
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From (4.9) it follows that the action of CE(2) on the

“basis F¥(s,?) is given by

[T(6, a,b)FE)(s,) = FX((s + a)cosh® - (¢ + b)sinh8,
(t +b)coshé — (s + a)sinhé). (4.13)

On the other hand, by construction we have

[T(6,a,8)FE](s,0) =2 T(0,a,b),,,F5s, 1),

Re[(s +t+a+b)e?]<0, 4.14)

where the matrix elements 7(9, a, b)m are given by
(4.8). Comparison of expressions (4.12)—(4.14) yields
addition theorems for the basis (4.12) whose direct
derivation is not at all obvious. Other choices of the
contour C in (4.11) will yield different bases satisfying
(4.13) and (4.14),
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