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Abstract

We show that second-order superintegrable systems in 2d and 3d Euclidean space
generate both exactly solvable (ES) and quasi-exactly solvable (QES) problems in quan-
tum mechanics via separation of variables, and demonstrate the increased insight into the
structure of such problems provided by superintegrability. A principal advantage of our
analysis using nondegenerate superintegrable systems is that they are multiseparable Most
past separation of variables treatments of QES problems via partial differential equations
have only incorporated separability, not multiseparability. Also, we propose another defi-
nition of ES and QES. The quantum mechanical problem is called ES if the solution of the
Schrodinger equation, can be expressed in terms of hypergeometric functions ,, F;,, and is
QES if the Schrodinger equation admits polynomial solutions with coefficients necessarily
satisfying a three-term or higher order of recurrence relations. In three dimensions we
give an example of a system that is QES in one set of separable coordinates, but is not ES
in any other separable coordinates. This example encompasses Ushveridze’s 10th order
polynomial QES problem in one set of separable coordinates and also leads to a 4th order
polynomial QES problem in another separable coordinate set.



1 Introduction

It is well known that N-dimensional nonrelativistic quantum systems described by the Hamil-
tonian
1 X 9
H:——Zmﬁ“/(.’bl,xg,...,ﬂ?]v) (1)
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are integrable if there exist N linearly independent and global differential operators Z,, £ =
0,1,..N — 1 and Zy = H, commuting with the Hamiltonian (1) and with each other

[T, H] =0, [T, T;]=0, £,j=12,..N—1. 2)

This particular class of integrable systems is called (maximally) superintegrable (this term was
introduced first by S.Rauch-Wojciechowski in [1]) if it is integrable and, also, possesses 2N — 1
functionally independent differential operators (integrals of motion). The additional N — 1
integrals £y, commute with the Hamiltonian

Lo H] =0, k=1,2,..N—1, (3)

but not necessarily with each other. (These definitions have obvious classical analogs for the
classical Hamiltonian.) Three examples of this kind have been well-known for a long time, viz.
the Kepler-Coulomb problem, the isotropic harmonic oscillator, and the nonisotropic oscillator
with commensurable frequencies.

The existence of additional quantum integrals of motion for these systems leads to many in-
teresting properties not shared by integrable systems. In classical mechanics the corresponding
additional integrals of motion have the consequence that in the case of superintegrable sys-
tems in two dimensions and maximally superintegrable systems in three dimensions all finite
trajectories are found to be periodic.

One of the most important properties for many superintegrable systems (particularly second-
order systems where there are 2N — 1 functionally independent quadratic constants of the
motion) is multiseparability, i.e., the separation of variables for the Hamilton-Jacobi and
Schrodinger equations in more than one orthogonal coordinate system [2, 3, 4, 5, 6, 7, 8|.
(Each separable coordinate system is associated with N commuting second-order constants of
the motion.) For instance, the isotropic harmonic oscillator in three dimensions is separable
in eight coordinate systems, namely in Cartesian, spherical, circular polar, circular elliptic,
conical, oblate spheroidal, prolate spheroidal, and ellipsoidal coordinates. The Kepler-Coulomb
potential is separable in four coordinate systems, namely in conical, spherical parabolic, and
prolate spheroidal coordinates.

A systematic search for such systems in two- and three-dimensional Euclidean space was
started in the pioneering work of Smorodinsky and Winternitz with collaborators in [9, 10, 11]
and was continued in [12]. Particularly, in [10] it was shown that in two-dimensional real
Euclidean space there exist four superintegrable potentials, three of which could be considered
as the singular generalization of Kepler-Coulomb, circular oscillator and anisotropic oscillator
systems. These results were extended for two- and three-dimensional spaces with constant
curvature (both positive and negative) [13], and on the complex two-dimensional sphere and



Euclidean space [14, 15, 16, 17, 18]. The program is continuing for various conformally flat
space spaces [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 5, 6, 7].

In the last fifteen years superintegrable systems have become a subject of investigation from
many points of view: in [13, 18, 31, 32| via the path integral approach, in [19, 21, 22] by solving
the Schrodinger equation with the help of the Niven ansatz [33], in [34, 35, 36, 37, 38, 39]
from the purely algebraic approach, and generally in [40]. As has been shown by a number of
authors, many superintegrable systems generate an algebraic structure which may be considered
as a nonlinear extension of the Lie algebra (in classical mechanics Poisson algebras), namely a
quadratic algebra. The general form of quadratic algebras, which are encountered in the case
of two-dimensional quantum superintegrable systems has been investigated [39, 5, 6].

Particularly useful is the exact solvability of many superintegrable systems. Essentially,
this means that after any separation of variables each of the separated ordinary differential
equations admits an exact solution. However, the term exact solvability is defined differently
by different authors. In [41, 42] (see also the recent paper [43]) we read that “an exactly
solvable quantum mechanical system can be characterized by the fact that in its solution space
one can indicate explicitly an infinite flag of functional linear spaces, which is preserved by
the Hamiltonian” or the “Hamiltonian is exactly solvable if its spectrum can be calculated
algebraically”. Indeed, in spite of an “intuitive” understanding of the term exactly solvable, no
universal definition exists up to now.

On the other hand there are limiting cases of well-known one-dimensional exactly solvable
systems, namely the harmonic oscillator and Coulomb problems with v/z* (y > —1/4) in-
teraction, Morse potential, trigonometric and modified Poschl-Teller potentials, trigonometric
and hyperbolic Manning-Rosen potentials [44, 45], and the Natanson potential [46]. All these
potentials have the general property that the Schrodinger spectral problem has an explicit for-
mula for the whole energy spectrum including the continuous spectrum, and the eigenfunctions
(up to the asymptotic ansatz or gauge transformations [41, 42]) are of hypergeometric type
1F1, oFy. For the bound states we have solutions in term of classical polynomials [47] whereas
for continuous states just infinite series. Moreover, hypergeometric functions describe both the
continuous quantum systems as well as the finite systems and appear also as solutions of re-
lated difference equations, for instance, the finite one- and two-dimensional oscillator expressed
in terms of discrete variables polynomials: Krawchuk, Meixner and Hahn [48].The standard
definitions of exact solvability do not include many of these systems.

Thus, we propose another definition of exact solvability: a quantum mechanical system is
called exactly solvable if the solutions of the Schrodinger equation, can be expressed in terms
of hypergeometric functions ,F,. (Basically, we are requiring that the coefficients in power
series expansions of the solutions satisfy two-term recurrence relations, rather than recurrence
relations of higher order.) It is obvious, that an N-dimensional Schrédinger equation is exactly
solvable if it is separable in some coordinate system and each of the separated equations is
exactly solvable. Further, We say that a superintegrable system is exactly solvable if is exactly
solvable in at least one system of coordinates.

At first sight, such a definition of exactly solvable problems may seem too narrow, but it
leads us to distinguish two kind of models: 1) those which it is possible to study analytically
and 2) those which can be solved numerically via the solution of algebraic equations.

The process of separation of variables in the N- dimensional Schrodinger equation leads to
ordinary differential equations having as solutions many of the special functions of mathemati-



cal physics. A complication of the separated equations involves the N separation constants. In
general we have a multiparameter eigenvalue problem [49]. It is possible to distinguish three
different cases, namely when there is complete, partial or non-separability of the separation
constants. It is obvious that in the case of complete separability (of separation constants) the
initial /N-dimensional Schrodinger equation splits into NV independent second-order differential
equations, each involving a single separation parameter. This situation occurs, for instance,
in the case of separation of variables in the Helmholtz (free Schrédinger equation, which is
also superintegrable) or the Schrédinger equation for the harmonic oscillator in Cartesian co-
ordinates. The second “extremal” case, when complete non-separability exists, is realized, in
separation of variables for the same problems but in ellipsoidal coordinates. In the last case
each separated second-order differential equation contains simultaneously all separation con-
stants (usually depending on dimensional or non-dimensional parameters) [3, 4], for which the
simultaneous quantization becomes nontrivial.

The standard method of solution of a second-order ordinary differential equation, obtained
after separation of variables in N - dimensional Schrédinger equations, involves (after taking into
account the asymptotic ansatz) expansions around one of the singular points of the differential
equation (the standard power series method [50], or the so-called Hill-determinant method [51]).
The problem reduces to the solution of the recurrence relations for the expansion coefficients.
If one can express the equation in a form such that the coefficients obey a two-term recurrence
relation, then the corresponding solution can be written in closed or analytic form or in terms
of hypergeometric functions and we have an exactly solvable problem. Such situations occur
when separation of variables for superintegrable systems is possible in sub-group type coordinate
(spherical, cylindrical and Cartesian) [52] and often in parabolic type coordinates. This method
is also powerful when separation of variables is possible in non-subgroup systems of coordinates
such as spheroidal or elliptic types. In this case we arrive at high-order recurrence relations,
the subsequent analysis of which, allows us to investigate the behavior of the solution and to
determine if polynomial solutions exist.

There is another general approach for solving the Schrodinger equation by exploring the
Niven - type ansatz [33], based on the existence of polynomial solutions. According to this
method the complete solution can be constructed without direct separation of variables and
computed in terms of the zeros of the corresponding polynomial. This method has been used in
papers [19, 21, 22] for the investigation of two- and three-dimensional superintegrable systems
in Euclidean and curved spaces. We illustrate the difference between systems that are merely
separable and those that are superintegrable. Consider the problem of motion in the plane for
a charged particle with two fixed Coulomb centers with coordinates (£D/2,0) (the so-called
plane two center problem)

Viz,y) =

(073} (6D
Jv2+ (@ +D/2)2  \Jy*+ (z— D/2)?
This system is not superintegrable and separation of variables is possible only in two-dimensional
elliptic coordinates (see eq. (70)). Upon the substitution v (v, u; D?) = X (v; D?)Y (u; D?) and
the separation constant A(D), the Schrodinger equation splits into a system of two ordinary
differential equations

d’X lDQE

(4)

Yl 5 cosh® v + D(ay + ) cosh v + A(D)] X =0, (5)
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d*Y D’E

cos? p1+ D(a1 — ag) cosp+ A(D)| Y = 0. (6)

Both equations (5)-(6) belong to the class of non-exactly solvable problems. In general
polynomial solutions do not exist even for the case of discrete spectrum F < 0!, and each of
the wave functions X (v; D?) and Y (u; D?) is expressed as an infinite series with a three-term
recurrence relation.

Let us now put ap = 0. Then the potential (4) transforms to the ordinary two-dimensional
(2d) hydrogen atom problem, which is well-known as a superintegrable system [53, 54, 55]
with dynamical symmetry group SO(3), and admits separation of variables in three systems of
coordinates: polar, parabolic and elliptic. In this case we can see that the separation equations
(5) and (6), namely

d>X [D?F
Yl + cosh® v + Da; cosh v + A(D)] X =0, (7)
d*y [D?’E
T cos” i1+ Doy cos 1 + A(D)] Y =0. (8)

transform into each other by the change u <> tv. Thus separation of variables in elliptic coor-
dinates for the 2d hydrogen atom gives two functionally identical one-dimensional Schrédinger
type equations with two parameters: coupling constant E and energy A(D) (correspondingly
energy and separation constant for 2d), but one defined on the real and the other on the imag-
inary axis. In other words, instead of the systems of differential equations (7)-(8), the problem
reduces to solving only one of the equations (7) or (8) for which the “domain of definition” is
the complex plane. The requirement of finiteness for the wave functions in the complex plane
permits only polynomial solutions (see for details [56]). As result we obtain simultaneous
quantization of the energy spectrum

o

Bp=—g——l ),
2(n + 1/2)

n=0,1,2,.. (9)

and the elliptic separation constant As(D) where s =0, 1,2, ...n (as a solution of an nth-degree
algebraic equation). The polynomial solution is defined by a finite series with three-term
recurrence relations for the coefficients. They cannot be considered as exactly solvable and can
be investigated only numerically. A similar situation occurs, for instance, in the case of the
two-center problem in three-dimensional Euclidean space (the so-called prolate spheroidal radial
and angular Coulomb wave functions) [57] and three-dimensional sphere (Heun wave functions)
[58], where after eliminating one of the Coulomb centers the problems reduce to superintegrable
systems admitting only polynomial solutions. These (and many other) examples suggest a
deep connection of the notion of superintegrability and existence of polynomial solutions of the
corresponding Schrodinger equation.

We note that each of equations (7) or (8) has the form of a one-dimensional Schrédinger
equation with the parameter F and eigenvalue A(D), and could be separately considered in the

ITo be completely correct let us note that polynomial solutions exist only for special values of parameters
ay,as and R.



regions y € [0,27] or v € [0,00), correspondingly. Then for arbitrary values of constant E (for
example when FE,, =0 (n — 00) the equations (7) and (8) transforms to periodic and modified
Mathieu equations, which are non-exactly solvable) the solutions of eqs. (7) or (8) expressed
via infinite series and only on the “energy surface” of the 2d hydrogen atom (9), split into poly-
nomial and nonpolynomial sectors (each of these sectors is non complete) and for fixed number
n, only some of the eigenvalues A4(D), (s = 0,1,2...n) can be calculated from an nth-degree
algebraic equation. We can say that egs. (7) and (8) “remember” their polynomial solutions. It
is obvious that the spectrum of A4(D), (s = 0,1,2...n) and occurrence of polynomial solutions
of each of the equations (7)-(8) coincides with the eigenvalues of separation constants and the
wave function after the reduction to one of the regions p € [0,27] or v € [0,00)] for the 2d
hydrogen atom.

These phenomena have been intensively discussed in the literature in the late 1980’s and
called quasi-exact solvability (this term was first introduced by Turbiner and Ushveridze in
[59]) and models of this type called quasi-ezactly solvable systems [60, 61, 62] (see also [63]
and references therein). The crucial example that stimulated the investigation of quasi-exactly
solvable systems is the Hamiltonian (1) with anharmonic potential

Ol [ Gy

1
V(z) = §w2x6 + 28w + (26%w? — 20w — A)x? + 2 5 , (10)
x
where w, 5, 0 > 1/2 and A are constants. As noticed by many authors [64, 65, 66], this system

admits polynomial solutions only for special values of constant A = w(2n + 1), (n =0,1,2...)
U(z) ~ 2073 e 5§ 09" P (3?), (11)

There are different approaches to the investigation of quasi-exactly solvable systems. In the
algebraic approach formulated by Turbiner in [60] quasi-exact solvability is explained in terms
of a “hidden symmetry algebra” sl(2, R) 2. More precisely this means the following: The
one-dimensional Hamiltonian (1) after suitable changes of variable z = £(x) and “gauge trans-
formation” H = e *®*)He*?) can be written in the form

H= Z Cuwdodp + Z C,J, (12)
a,b=0,£+ a=0,%+

where the first-order differential operators {J., Jo} satisfy the commutation relations for si(2, R)
[60].

The above mentioned analysis for the 2d hydrogen atom shows that, despite the elegance
of the algebraic approach, the phenomena of quasi-exactly solvability has deeper roots than
can explained via the “one-dimensional” model (12). Other examples are the hydrogen atom
and oscillator problems on two and three-dimensional spheres [19, 67] and two-dimensional
hyperboloids [22], which generate not only hyperbolic and trigonometric but elliptic quasi-
exactly solvable systems (see also [68, 56, 69, 70]). We should also mention Lamé polynomials.
They come from separation of variables for the Helmholtz (also superintegrable!) or Schréodinger
equation in elliptic coordinates on the two-dimensional sphere. As also determined in [37]
(without showing the mechanism of this phenomena) some of the quasi-exactly solvable systems

2This is not a hidden dynamical symmetry in the usual sense because the Hamiltonian (12) belongs to the
enveloping algebra but is not a Casimir operator.



can be obtained through dimensional reduction from two and three-dimensional superintegrable
models with quadratic invariants (second-order superintegrability).

A second approach, known as analytic, was formulated by Uschveridze (see for example
[61, 62, 63]) and represents a one-dimensional reduction of the Niven-Stieltjes method for solv-
ing multiparameter spectral problems such as the generalized Lamé equation (or ellipsoidal
equation) [33]. The solution in this method is determined by the zeros of polynomials P, (z?).
Then the wave function (11) can be rewritten in the form

U(z) g 2o 1P [0 (2% — &), (13)

where the numbers (&1, &, ...§,) satisfy a system of n algebraic equations (see section 2.3).
According to the oscillation theorem, the number of zeros in the physical interval & € [0, c0)
enumerates the ground state and first n - excitations, described in terms of all zeros (complete
solutions of the systems of algebraic equations and including non physical section &; € (—o0, 0])
as

B =14 [ﬁw+§a. (14)

Two natural questions occur in this approach: what is the physical meaning of the negative zeros
&, and why in the correct formula for the energy spectrum (14) do n zeros of the polynomial
P,(z?%) appear?

With this article we begin an investigation of second-order superintegrable systems on con-
stant curvature spaces (Euclidean, sphere, hyperboloid and pseudo-Euclidean) based on the
superintegability and direct solutions of the Schrodinger equation. We pay special attention
to non-subgroup type coordinates and prove the existence of polynomial solutions for several
of these systems. We demonstrate that quasi-exact solvability is directly related with multi-
separability of second-order superintegrable systems, on one hand, and with the presence of
polynomial solutions for these systems on the other.

The first part of this paper is devoted to two (singular anisotropic and singular circular
oscillators) from the four possible superintegrable systems in two-dimensional real Euclidean
space (see for example [19]. The other two systems may be transformed (only for the discrete
spectrum!) to the singular circular oscillator (for V3) or ordinary shifted oscillator (for V)
systems by the help of the Levi-Civita mapping [71], so are less fundamental for our purposes.
In the second part of the paper we give some examples of superintegrable systems in three
dimensions that reinforce our definitions of exact and quasi- exact solvability. In particular we
exhibit a quasi-exactly solvable superintegrable system which is not at the same time exactly
solvable in any separable set of coordinates. In one set of separable coordinates this provides
deeper insight into an example of Ushveridze, [63], page 155, (the 10th order polynomial QES
problem) and also leads to a 4th order polynomial QES problem in another separable coordinate
set. In addition we indicate precisely how the eigenvalues of the symmetry operators which
describe separation can be calculated from a determanental condition. For these examples we
will work with complex superintegrable systems and not address the relatively simple issue of
determining the distinct real restrictions of the complex spaces. These examples greatly clarify
the concepts and show how the extension to N dimensions can be achieved.



2 The singular anisotropic oscillator
Let us first consider the potential (kg > 0)

1 k3 — 1
Vilw,y) = gu(4a® + ) + o + =54 (1)

(second potential on table 1.), the singular anisotropic oscillator. The Schrédinger equation
has the form

2

0? 0? 2,4 9 2 2_%

For ky > 1/2 the singular term at y = 0 is repulsive and the motion takes place only on one of
the half planes (—oo <z < 00, y > 0) or (—o0 < z < 00, ¥y < 0), whereas for 0 < ks < 1/2 in
whole plane (z,y). The Schrédinger equation separates in two systems: Cartesian and parabolic
coordinates.

2.1 Cartesian bases

Separation of variables for eq. (16) in Cartesian coordinates leads to the two independent
one-dimensional Schrodinger equations

dzwl + (2)\1 - 4w2x2 — 2k1$)¢1 =0. (17)

dx?

d2w2 2 2 kg -

dy2 + (2)\2 —wWyYy — y2 4 ’([)2 =0. (18)
where

U(z,y; ki, £ka) = 1 (x; k1) (y; £k2) (19)

and Aq, Ay are Cartesian separation constants with \; + Ay = F.

Equation (18) represents the well-known linear singular oscillator system (see for instance
the books [72, 73] and articles [10, 20, 74]). It is an exactly solvable problem and has been
used in many applications, for example as a model in N - body problems [75], or fractional
statistics and anyons [76, 77]. The complete set of orthonormalized eigenfunctions, (on 1/2) in
the interval 0 < y < oo of eq. (18), can be expressed in terms of finite confluent hypergeometric
series or Laguerre polynomials

2w(lik2)n2!
(77,2 + kg +1

Lip, 1.2
Una (Y3 k) = J 7 )yzi’”e 2V Ly (wy?) (20)
where Ao = w(2ns + 1 £ ky). We assume that the positive sign at the ky has to be taken if
ks > % and both the positive and the negative sign must be taken if 0 < ks < 3, so that the
polynomials have finite norm. Let us also note that unlike the potential (15) the wave function



is not invariant under the replacement ky — —ko and splits into two families of solutions that
transform to one another under this change.

The second equation (17) easily transforms to the ordinary one-dimensional oscillator prob-
lem. In terms of Hermite polynomials the orthonormal solutions (in region —oo < z < ©0)
are

2w\ 1/4 —wz? k
Umlik) = (2) = HaVB02), 2=+, (1)

T 2min, ! 4w

2
8’;—12. Thus the complete energy spectrum is

where \; = w(2ny + 1) —

k,Q
E:)\1+)\2=w[2n+21k2]—8—;2, n=mns+mny, =012, .. (22)

and the degree of degeneracy for fixed principal quantum number n is (n + 1). Finally note
that the separation of variables in Cartesian coordinates leads to two exactly solvable one-

dimensional Schrodinger equations and the complete wave function may be constructed with
the help of formulas (20), (21) and (19).

2.2 Parabolic bases

1.2.1. Separation of variables.
Parabolic coordinates & and 7 are connected with the Cartesian x and y by

1
r=5E-m), y=&, EER >0 (23)
The Laplacian and the two-dimensional volume element are given by
0? 0? 1 0? 0?
=+ —=—=|s5+=> dv = dxdy = (62 + n*)dédn. 24
32 T 3 52+772<a§2+8772> v =drdy = (£ +1°)dédn (24)
The Schrédinger equation in parabolic coordinates (23) is

2 1
kQ_Z

€2772

2 2
5241—772 (a : * ; qj) " lQE—M(gl =&+ ') = k(& = n?) -

5 " ]\11:0. (25)

Upon substituting
(€, m) = XY (n)

and introducing the parabolic separation constant A, the equation (25) splits into two ordinary
differential equations:

d2X k3 — 3
d—f2 + <2E§2 — w2§6 - k1§4 - %) X =-AX, (26)
Y kS — 1
d—772 + <2E7]2 - (A)2776 + k1774 o 2772 4) Y =+)Y. (27)



Equations (26) and (27) are transformed into one another by change £ «— in. We have
V(& m E,\) = C(E,NZ(& E, N Z(in; E, A) (28)

where C(E, A) is the normalization constant determined by the condition
| dn [ e+ ) wie m BN =1 (29)

and the function Z(u; E, \) is a solution of the equation

2

d? 2 6 4 2 k2_%
_d—;LQ+ w +k1,u —2Eu” + /~62

Z(u; E,N) = MZ(p; B, N). (30)

Thus, at p € (—o00,00) we have eq. (26) and at p € [0,700) - the eq. (27). Note that in the
complex p domain the “physical” region is just the two lines Im g = 0 and Re = 0,Im p > 0.
Our task is to find the solutions of eq. (30) that are regular and decreasing as yu — oo and
W —> 100 .

1.2.2. Recurrence relations.
Consider now the equation (30). To solve it we make the substitution

w k 1
Z(u; B, \) = exp <_Z“4 - ﬁ;f) pEER (s B, ), (31)
and obtain the differential equation
d*p  [2(5 £ ko) , ki \] dy s -
du2+l p wuu+2w2 du+[ ,u+)\]1b 0 (32)
where
~ k2 N ky
E=E+—L —w@2Lh), A=X——(1%k). (33)
8w? w
Passing to a new variable z = y? in eq. (32), we have
d*y ki \| dy 1 -~ 1
We express the wave function 1(z) in the form
Y(z; E,N) =Y A(E,N)2°. (35)
s=0

The substitution (35) in eq. (34) leads to the following three-term recurrence relation for the
expansion coefficients A; = A (FE, \),

11k
(s+1)(s+1+k)Agrs + Z[A—i(?s—l—lﬂ:l@)]fls
1 k .
+ §[E+—8w2—w(25ik2)] =0, (36)
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with the initial conditions A_; =0 and Ay, = 1.
As shown in the Appendix, the asymptotic behavior of the expansion coefficients A, =
A (E, \) for large s is A; ~ v/E£\/%, depending on whether s is even or odd, and

o(e) ~ VRN 7

Then we have for z > 0 [the case of eq. (26)]

> % >4/ Eelwz?)? = &, cosh (gzz) + {4 sinh (522> . (38)

s!

This function does not belong to the Hilbert space. If k; > 0 then we must make the re-
placements by, — —b; and & — —&;. This has the effect of replacing z by —z in (37). Now
the asymptotic solution is oscillatory. However, for z < 0 [the case of eq. (27)] the solution
doesn’t belong to the Hilbert space. The solution we have found is the minimal solution of the
three-term recurrence relations. There is a linearly independent solution, but the coefficients
grow more rapidly than the minimal solution coefficients.

1.2.4. Energy spectrum and separation constant.
The function Z(u) cannot converge simultaneously at large p for real and imaginary p and
therefore the series (35) should be truncated in order to obtain convergence. The condition

for series (35) to be truncated results in the energy spectrum (22) where now the coefficients
As = A(ky, £ky) satisfy the relation

A
(S -+ 1)(8 + 1+ kQ)A5+1 + ﬁSAS + W(n + 1-— S)Asfl = 0, ﬁs - Z

_ f—:}(Qs F14ky). (39)

The three-term recurrence relations (39) represent a homogeneous system of n + 1 - algebraic
equations for n + 1 - coefficients {Ag, A1, Ay, ...A,}. The requirement for the existence of a
non-trivial solution leads to a vanishing of the determinant

Bo 1Lk
wn B 2(2E k)
D,(\) =] - . . . . =0. (40)
2w Bno1 n(ntky)

w Bn

The roots of the corresponding algebraic equation give us the (n+1) eigenvalues of the parabolic
separation constant A, (ki, +ks). It is known that all roots for such determinants are real and
distinct [78]. Thus all values of the separation constant are real and can be enumerated with
the help of the integer ¢, namely the values are A, (k1, £ko) — Anq(k1, ko), where 0 < g < n.
The degeneracy for the n - energy state, as in the Cartesian case, equals n + 1.

Note that eq. (40) is invariant under the simultaneous transformation k; — —k; and
A — —A. Thus if one of the A = A, (k1, +k2) is a root of eq. (40), then A = =\, (—ky, +ko) is
also a root of the same equation. We see that for the odd energy state (n-odd) the range of
Ang(k1, £k2) splits into two subsets A{}) and A{Z) connected by the relation A{)(ki, ko) <—
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—)\(an),(—kl, +ky). For n-even, there exists the additional root Au(k1, tks) = —Ang(—k1, £ko),
which equals zero when k; = 0.

1.2.5. Wave functions.

We will term the polynomial solutions of eq.(34), or eq.(32), as Mkn,(z; k1, £ks), and the
function (31) as T'ang(2; k1, £k2). > Then the physical admissible solutions of eq. (34) have the
form

Mkyg(z; k1, £ko) = ¢(2; E, N) = ZA?q(kl, +ko) 2°, (41)

s=0
and the corresponding solution of eq. (31) is

Tang(; k1, ko) = exp (—%u“ - f—lu ) T Mg (1% by, ko). (42)
Observe that parabolic wave functions (and also Cartesian wave functions) split into two classes
and transform to each other via ko — —ks. In the case ko = 0 (when the centrifugal term
disappears), the solution (42) becomes an even and odd parity wave function under the exchange
= — i
It is known that there exists a direct connection between the quantum numbers ¢ and num-
bers of zeros of the polynomial (41) and, therefore, the eigenvalues of the separation constant
Ang(k1,£ks) may be ordered by the numbers of nodes of the wave function Ta,,(u; k1, ko).
Indeed we will see that these are orthogonal polynomials, hence [50], all the n - zeros of the
Mkypq(z; k1, £ko) are situated on the real axis —oo < z < 0o, and all zeros have multiplicity
one. Assume that the separation constants A,,(k1, +ks) are enumerated in ascending order, i.e,

/\nO(kla :*:kQ) < /\nl(kla :I:kg) < ceeenans < /\n,nfl(kl, :I:kg) < )‘n,n(kla :i:kg) (43)

Then according to the oscillation theorem [79], the quantum number ¢ also enumerates the zeros
of polynomials Mky,(z; k1, £ks) in the region z > 0, or the real axis of u. Let us now introduce
two quantum numbers ¢; and ¢, which determine the zeros of polynomials Mk, (2; k1, £k2)
for z > 0 and z < 0, correspondingly. Then ¢; + ¢o = n, and

Anql (lﬁl, :*:kQ) == —)\nq2(—k1, :*:kg) (44)

For p = £ the function (42) gives the solution of equation (26), and for p = in the solution of
equation (27). Thus the parabolic wave function (28) can be written in the following way

\I]nlhqz (57 n; ]{11, :l:kZ) = quu]z (kla ik?) Tamh (57 kl: ik?) Tanqz (“7; kla ik?) (45)

1.2.6. Orthogonality relations and normalization constant.
The wave functions (45) as eigenfunctions of Hamiltonians are orthogonal for quantum number
n, or for n # n’

| dn [ A€ 4 Wi (€ )W, 61 i, ) = O (46)

3The notation Ta is in memory of Professor V.Ter-Antonyan (1942-2003).
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Because the energy spectrum is degenerate there exist additional orthogonality relations for
quantum number ¢. Using the equations (26) and (27) it is easy to prove that for ¢; # ¢} and

@ # @
/o:o AT ap g (& k1, £ho) Tang, (& k1, £ha) = /000 dnT apg (1; k1, £k2)Tang, (in; ki, £ko) = 0. (47)
Thus we have for g # ¢'

7 dn [ g€ 4 Wi (67, ) W (€ iy ) = 0. (48)

Let us now calculate the normalization constant Cyg,q, (K1, £k2). From the explicit form of the

wave function W7 (&, 7m; ki, +ko) and the normalization condition (29), it follows that

1 " /
g\qulqz(/ﬁaikﬂP Yo (F1)T Ak, ko) AY (i, k)

8,8, t,t'=0

X AP (kr, £ho) AL (kv, ko) {F, ) ES Y+ FAE Y =1 (49)

8,8’ s,

where

FEVA - 50
it > o (50)

m=0

o0 F(%%—iii) E\™
m! .

2.3 Niven approach

Let us express solutions of the Schrédinger equation (16) in the following form [19]
k1 y2 2
U(a,y) = O I it g (g ), (51)

From egs. (20), (21) and (31) follows that the function ®(z,y) is a polynomial (product of two
polynomials) in terms of the variables (x,y?) in Cartesian coordinates and (£2,7?) for parabolic
ones. It satisfies the equation

RO(z,y) = —2EP(x,y), (52)

where the operator R is

0? 0? (1 + 2ky) 0 ki | 0 k2
= b | oy | = — 4 S w2t S

52 + By + l ; wy 3 w |z + 12| 52 w(2 £ ko) + 57 (53)

Taking into account that
Mbkyg(z; k1, £ko) = Z AM(ky, ko) 2° = I}, (2 — ), (54)

s=0

where oy, £ = 1,2,...n are zeros of polynomials M#k,,(z) on the real axis —oco < z < oo, and
that in parabolic coordinates
Y (& —a)(n*+a)

—+2r—a= , (55)
« «
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we can choose a solution of eq. (52) in the form
2
B(013) = My (€ b ) M (iP5, k) =02 (L 20 a). 66)

Then from (52) it follows that the zeros o, must satisfy the systems of n - algebraic equations

n 2 1+k k
L UEk) woy = -, £=1,2,..m, (57)
mze O = Qm Qy 2w

and for the energy spectrum we again have a formula (22). The system of algebraic equations
(57) contains 7 - sets of solutions (zeros) (\?, al?, .....a(®), ¢ = 1,2, ...n and all zeros are real.
The positive zeros oy > 0 define the nodes of wave functions for equation (26), whereas negative
zeros oy < 0 define the nodes of wave functions for equation (27).

The eigenvalues of the parabolic separation constant can be calculated in the same way via
the operator equation A®(z,y) = A®(z,y) (see for details [19]). A more elegant way is to use

directly the differential equation (34) [63]. We first rewrit the eq. (34) in the form

d? k1 d ky
{42@ + 4 [(1 + kz) —wz (Z + 2—Lﬂ>] % + [471&)2 — ;(1 + kQ)] } Mknq(Z, kl, :|:]€2)

= )\Mknq(z, k1, :I:kz) (58)

Putting the wave function Mk, (z; k1, £k2) in the form of (54), we arrive at the following result
ky "1

Ang(ky, k) = 4(1 £ ky) | =+ ; xollk (59)

(in case of n = 0 the sum must be eliminated) where the quantum number ¢ = 1,2, ..n labels
the eigenvalue of the parabolic separation constant.

3 The singular circular oscillator
The potential of the singular circular oscillator is (kq, ko > 0)

L(k—5 k-3
. 60
5 (At (60)

1
Va(w,y) = 5w (@ +9°) + 5 )2

The corresponding Schrédinger equation separates in three different orthogonal coordinate sys-
tems: Cartesian, polar and elliptical coordinates.

3.1 Cartesian bases

From the asymptotic ansatz

U(z,y) = 2250 y2#R exp[—w(2? + y?)] X(2)X (y) (61)
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we obtain two independent and identical separation equations

0? 1+ 2k; 0 .
[azg + (—Qw + 2 ) Vo T (1 £ 2k)w| X (x;) = 20X (), i=1,2 (62)
where 1 = 2,29 = y and A\; + Ay = —F. As in the case of the singular anisotropic oscillator
we assume that the positive sign of k; has to be taken if k; > % and both the positive and the
negative sign must be taken if 0 < k; < %
The last equation is just that for confluent hypergeometric functions. The quantization rule
gives
Ai=—w2n; £ ki + 1), n; =0,1,2,.... (63)
and the solution of eq. (62) in terms of Laguerre polynomials is X (z;) = LE¥ (wz?). Thus the

corresponding set, of orthonormal eigenfunctions which are normalized in quadrant x > 0,y > 0
(on 1/4) is

UERHR) (2, y) = O (2) 41 (y) 242 3O Lt (wa) Lt (wy?) (64)
where
Ot = J W mydng! . (65)
nim T(ni % ki + ) (ng £ ko + 1)
From (63) we have
E,=w2n+2+k tky), (66)

where n = n; +ny = 0,1,2, ... is the principal quantum number and the degree of degeneracy
isn+ 1.

3.2 Polar bases
Separation of variables in the Schrédinger equation for the potential (61) in polar coordinates
T = 7COS ¢, y = rsin ¢, 0<r<oc, 0<¢<2m (67)

gives us the orthonormal solution in polynomial form

2wn,!
\Il(:tkl’ik2) — T (2m:|:k1:|:k2+1)
nran (75 ®) T(n, + 2m =+ ky £ ko + 2) (ver)

w

1“2
X e 2 Li‘iiklik”l(wTQ) P(FhrEk) () n.,m=0,1,2,...  (68)

(b(:l:kl,:l:kz)(qs) —

X (cos @)'/#: (sin §)/H2 PRk (cos 26) (69)

where P(*#)(z) is a Jacobi polynomial and E = w(2n + ki & ky +2), with n = n, +m and with
the same degree of degeneracy (n + 1).

Thus the quantum system (60) is exactly solvable in the Cartesian and polar systems of
coordinates.
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3.3 Elliptic bases

3.3.1. Separation of variables.
Elliptic coordinates (v, u) connect with Cartesian ones by (0 < v < oo, 0 < p < 27)

T= cosh v cos i, y= sinh v sin p, (70)

where D is the inter-focal distance. The Laplacian and volume element are

2

A= S o + o dv = D—(cosh 2v — cos 2u)dvd (71)
"~ D2?(cosh2v — cos2u) \Ov2 = ou?)’ 8 KGR

The Schrédinger equation with (60) can be rewritten as

O’y 0 D’E D*w?
_¢+_1/) + { (cosh 2v — cos2u) — ~

(cosh? 2v — cos® 2u)

ov? ~ ou?
e R o Bt WP
cos? [ sin” p sinh” v cosh”v
and after the separation ansatz
Y(v, 1 D*) = X (v; D*)Y (13 D?) (73)

transforms to two ordinary differential equations

d*X [ D°E D'w’ ki—g k-3

haliniel h2v — h?9y - “2 4 L 41X = \DH)HX 4
dv? + I 4 Cosh 2V 64 o8 v sinh?v  cosh? I/] ( ) ’ (7 )
Y [D’E D*w? k-5 k-1

- 2 — 29 L 4,2 4\y— 1 \DYY 75
0 i cos 2/ cos® 21 + — + SiHQM] +A(D?)Y, (75)

where ) is the elliptic separation constant. These equations can be written in the unit form

d2Z(C) D4w? ) D2E k% _ 1 k% _1
2C — 2¢ — 4 _ 4
dc? 64 ¢ 4 ¢ cos2(  sin’¢

] 20 = \DIZQ)  (76)

where at ( € [0,27] we have the equation (75) but at ¢ € [0,i00) - equation (74). In other
words, in the complex ¢ plane the “physical regions” are only the shaded domains on the two
lines Im ¢ = 0 and Re ¢ = 0.

For ki o > % the centrifugal barrier is repulsive and motion takes place in only one of the
quadrants, as ¢ € [0,7/2], whereas for 0 < k2 < % it takes place in the whole region ¢ € [0, 27].
For the particular case k1 = ky = % the equation (76) transforms to the problem of the ordinary
two dimensional oscillator and has been investigated in detail in the paper [69]. In this article
we have shown that the solution of eq. (76) (for k; = ko = 1/2) is described by Ince polynomials
[80].

In the case where k; and ko are integers, eqs. (74) and (75) coincide with those that have
been found via separation of variables in the Schrodinger equation for the four dimensional
isotropic oscillator in spheroidal coordinates [70].
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3.3.2. Recurrence relations.
Let us now consider the equation (76). First, introducing the function W (¢; D?) according to

2 D 2
Z(G; D7) = exp | —— == cos 20| W((; D7), (77)
we have the equation
EW  D?w AW [D% D2E 2ol g2_1
20— 2¢ — 2Lt 42 4 = 0.
a2 + 1 sin 2¢ i —l—l cos 2¢ cos” ( o C s MW =0. (78)
For k1 = ky = 1/2 this is the Ince equation, [50].
Next the substitution
W(G; D) = (sin¢)2*** (cos )2** U((; D?) (79)

yields the equation
2 D2
szg 4 [(1 4 2k9) cot ¢ — (14 2k) tan ¢ + =2
where

D2 ; D? D?’E  D*w?
= Slw@thtk)-E, A=i+ Yt k) + (14 by £ k) — 2 62«)

sin 2@“]663—2{ + [pcos? ¢ — AU =0, (80)

Passing to a new variable ¢ = cos? ( we find

2

-y, {(1 k)=t — (14 k)t 2

D4“’t(t _ 1)} ‘th 1[pt AU =0 (82)

dt?

Finally, looking for the solution of the last equation in the form
U(t; D*) = 2 A (DHt? (83)

for coefficients A;(D?) we have the three-term recurrence relation

ws—l—— A,

(s+1)(s+1xtk)As1 — |s(s+1Lki+ko)+ 1 1

1
o+ Duls — 1A, 1 =0 (34)
with A_; = 0 and initial condition A4, = 1.

3.3.3. Energy spectrum and separation constant.

In analogy with our asymptotic solution of the recurrence relation for the singular anisotropic
operator in the parabolic basis we use continued fractions. For the minimal solution of the
recurrence relations we find for s ! <« 1

As—|—1 DQ(.L)
A, 4s

(1 Lo (85)

)
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Thus we have

(%)
1
As st
and
D2 \* 2
Ulcos¢) ~ > % cos ¢ ~ exp(% cos 2¢). (86)

Therefore we see that for this case the function Z(cos(; D?) as ( — ico is not normalizable.
There is a linearly independent solution of the recurrence relations, but the coefficients grow
even faster. Hence it follows that the series (83) should be truncated. The condition that the
series (83) be truncated gives us well known formulas for the energy spectrum (66) and reduces
the solution to polynomials:

Uﬂ(’:tkl,:l:kz)(t; D2) — i Ag:l:kl,:l:k2) (DZ)ts’ (87)

s=0

where now the coefficients A, = AFk1:%k2)(D?) satisfy the following three-term recurrent rela-
tions

2

(s+1)(s+1+k) At + Ay — ——(n—s+ 1A, 1 =0, s=0,1,..n (88)

with

D?w D?w D*w?

(2s—n+4+4k)— (2+k ko) —

+AD?)| (89)

1
Bo=—1 (2s+ 14k +ky)*+

and A*l = An+1 = 0.
The recurrence relations (88) become a system of (n + 1) linear homogeneous equations for
the coefficients A,. Equating the corresponding determinant to zero

Bo  (L£k)
~Den B 22+ k)

Dy(A) = ) ' ' =0 (90)
—Dw ﬁn,1 n(n + ]{]1)
D2w

2
- Bn

leads to the algebraic equation of degree (n+ 1) which determines the eigenvalues of the elliptic
separation constant AE*1:+52)(D?). The quantum number ¢ = 0,1, 2, ..n labels the (n+ 1) roots
of eq. (90) and therefore the degree of degeneracy, as in the polar and Cartesian cases, for
the n-th energy state is n + 1. It is also known that the corresponding enumeration of the
quantum number ¢ defines the numbers of zeros of the polynomial (87), which has exactly n -
zeros situated in the open interval 0 < t < oo, and therefore, the elliptic separation constant
A(EkLER2) (D?) may be ordered also by the numbers of the nodes of the eigenfunction of equation
(76).

3.3.5. Wave functions.
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The condition of finiteness of the solution of eq. (78) allows the following polynomials:

I,(j;kl’ikz)(C; D2) = (sin C)%ﬂ:kz (cos C)%:I:kl ZAgikl’ikz)(DQ)(COS C)Qs’ (91)

s=0

while the corresponding solution of eq. (76) is
2Ld
Zy(;;kh:th)(C;DQ) — e*D1_s cos 2 Iy(:;khik?)(c;DQ)- (92)

We will denote the polynomials Z{Ek1:%%2)(¢; D?) as associated Ince polynomials. In the case
of k1 = ky = 1/2 these polynomials transform to the four types of ordinary Ince polynomials,
which are even or odd with respect to the changes ( — —( and { — { + 7 [80, 69].

At ¢ = p the wave functions (92) give us the solution of the angular equation (75), and
for ¢ = iv the solution of the radial equation (74). For each of the wave functions, radial or
angular,there corresponds a definite number of zeros which can be represented by two quantum
numbers ¢; and ¢y, obeying the condition ¢; + ¢, = n. Then the complete elliptic wave function
(73) may be written as

‘Il(ikl’ih) (Va s D2) = qulqz (j:kla :tk?; DQ) Z(ikl’ikz) (/1'7 DQ) Z(ikl’ib) (ZV D2) (93)

ngiq2 ngi ng2

where Cpg,q, (K1, £ko; D?) is the normalization constant. It could be calculated from the
condition

D2 fo'e) s 1
T/o dl//o2 dp (cosh? v — cos? p) \Ilfj(;f;fb)*(z/, 7% Dz)\IJ%ﬁ}fk?)(y, w; D?) = 7 (94)

3.3.6. Orthogonality relations.
The wave functions (93) as eigenfunctions of the Hamiltonians are orthogonal n # n'/

/ / \IJ (Lk1,Lk2)x* v, ; D2)\Il(:tk1’ik2) (y’ W DZ)dV = 0. (95)

n’q1q2 nq1q2

Egs. (74) and (75) enable one to prove the property of double orthogonality for wave functions
Z&Ekl’ik?)(g; D?), namely

/ ZCERARD (), D?) 2L (i, D) = 0 (96)
/ 2¢ :I:k1,:l:k2 D2)Zr(bzglkl,:l:k2)(u; D?)du =0 (97)

for ¢; # ¢} and ¢, # ¢}, and therefore when ¢ # ¢’
/0 dv /05 dy (cosh? v — cos? p) \I!%Eé’ik”*(y, 1 DQ)Q%j;fééikZ)(y, w; D?) = 0. (98)

4 Three-dimensional space

So far we have considered only superintegrable systems in two dimensions. To make clearer our
approach and how it extends to all dimensions, we consider some 3d examples.
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4.1 The harmonic oscillator

As is very well known, the Schrédinger equation for the 3d harmonic oscillator (a superinte-
grable system) is exactly solvable in Cartesian coordinates. We consider it in elliptic coordinates
where the separation equations are QES. We will show explicitly that the polynomial solutions
of the uncoupled 3d problem can be found directly and that the results greatly simplify the de-
termination of the polynomial solutions of the separated QES equations. In elliptic coordinates
the Schrodinger equation has the form

(u—vl(u w[4“ au /P ) —wi = By
(v—u)l(v—w 4y P 81} /F (v* = B)]
* (v—w)l(v—u v (VP (w? = Byu?)]

H =

where
E1=€1+€2+€3, P()\)z()\—el)()\—eg)()\—eg).

Here the elliptic coordinates are given by
2 _ (u—e)(v—e)(w—ei) 2 _ (u— e2)(v = e2)(w — €3)
(e1 —e2)(e1 —e3) (e2 —e1)(e2 — €3)
2 _ (u—es)(v—es)(w—es)

(e3 —ea)(e3 — €1)

The separation equations that describe the solutions of HU = EV are

[4,/P(A)%(,/P(A)a%) — WX+ (=B + E)A?) + L) — LyJA(N) =0

for A = u, v, w. The operators that describe the separation constants are

vw 0 0 20 — Bl
L= Pl (P ) — 0~ Bu)

s iy PO PO — 0 — )
b P (Pl 5) - w0 - )
and
L = oty P (P04 — (0 — B
PO (PO - R - B
b s iP5 (Pl ) — 6w - Fu?)



In order to find square integrable solutions to this problem it is natural to remove an
exponential factor according to

U(u,v,w) = exp(—g(u + v+ w))P(u, v, w).
Then there are polynomial solutions for ®(u, v, w) of the form
S (u,v,w) = H;Zl(u —0;)(v—10;)(w—6;).
The zeros of the polynomials satisfy the relations
4

3
1
—4w—|—§ +E =0

i#j ;i —0; =0 —e

It follows that the eigenvalues E and ¢;, ¢, of the operators L; and L, can be expressed in
the form

61:—47"2E1+2(3+4T)20]+ —(1+4’/’)E2+4E1291—20J2 w—E3w2

Jj=1 J=1 Jj=1

T
ly==2r(2r+1)—-22r+1)Bw+4w »_ 6; — Fow’
j=1
where Fy = ejep + ege3 + eje3 and E3 = ejegzes. Because of the relations among the zeros 0;
there are also alternative expressions available for these eigenvalues. We now turn our attention
to calculating the eigenvalues. Let us first consider the special case »r = 1. If we choose a basis
of functions of u,v and w Fy=1,F, =u+ v+ w, F5 = uv + uw + vw and F3 = uvw then we
can find solutions
O (u,v,w) = agFy + a1 F1 + as Fs + a3 F3.

If we look for eigenfunctions for the operator L; that correspond to this form we obtain the
conditions
(2E3w? + 5Eyw + 4E) + £1)as + (4E\w + 6)ay + dwa; = 0,

(—2E2 — 4E3w)a3 -+ (61 + UJEQ =+ w2E3)a2 = 0,
(—2E2 — 4E3w)a2 + (61 =+ CJEQ + w2E3)a1 = 0, (—2E2 - 4E3w)a1 + (61 + wE2 + w2E3)a0 =0.

For these equations to have a nontrivial solution the corresponding determanental condition
must hold viz.
(b + wEy + W?E3) (63 + (4E| + TEyw + 3F3w?) 3+

(14E3F5w® + (24, F3 + 11 E3)w” + (16 By Ey + 24E3)w + 12E,) ¢+
E3(20E1E3 + 11E3)w* + (5E3 + 188E3 + 32, By E3)w® + 4E, (6 E1 By — 14E3)w? + 28 Eyw) = 0.
For the operator Ly the corresponding relations among the a; are

(6 + 4y + Fow? + 6wF1)as + dwas =0, (64l + Fiw + E2w2)a2 + dwaz = 0,

—(2E2 — 4E3w)a3 + (—4E2w + 4E1)a2 + (E2w2 + 2&)E1 + Ez)al = 0,
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—(2E2 — 4E3Ld)0,2 + (—4E1 -+ 4E2w)a1 + (£2 + 2E1(,L) + E2w2)a0 = 0,

with the determanental condition
(EQ + 26«)E1 + CUZEQ)(E% + (14wE1 + 3w2E2)£§

+(3w*ES + 28w EL By + w?(60E? 4 40F,) + 112wE; + 36)4;
+wWOE3 + 140° B\ E2 4 4w Ey(15E2 + TEy) 4+ w?(72E3 + 208 E, E,y — 343F5)
2 2 1 1
+w?(240E7 + 100E;) + 168wE);) = 0.

This illustrates clearly that our method gives the eigenvalues of L; and Ly as solutions of
polynomial equations. If we substitute in this way into the Schrodinger equation itself then we
obtain the conditions

(E+Tw)a; =0,7=1,2,3,

(2Ey + 4E3w)as + 4(Ey + wEs)as + 2(3 + 2wE1)ay — (B + 3w)ag =0

yielding the two eigenvalues —7w and — 3w for E. This method has obvious extensions to
F=2,

Note that if we look for polynomial solution of the separation equations then we obtain
different equations. In particular if we look for solutions of the form A()) = exp(—4A)(A —¢)
in the separation equation

3 8 2 3 2
P(A)a(w/P(A)ﬁA(A)) + (W= + (B1 — E)A*) + oA — £1)A(N) =0
we obtain the relations
02 4+ 0y (6 4+ SwE + 2w?Ey) + 4wty + W E2 + W3 (8ELEy + 4Fs) + W?(12E?% + 26E,) + 28w = 0,

£1£2+w (E2+E3W)€2+w (6E1+wE2)€1+E2E3w4+w3 (6E1E3+E§)—|—w2 (6E1E2+22E3)+14E2w = 0,

where
C = ((12 + 2£2) + 6C&)E1 + WQEQ)/4OJ.

If we were to pursue this approach further then we would obtain more complicated relations
among the ¢; and /5 which could be uncoupled to produce the individual equations for ¢; and
£y respectively. This example shows clearly how study of the full 3d superintegrable system
yields results for solutions of the separation equations that could not easily be obtained from a
direct study of the separation equations themselves.

4.2 Ushveridze’s separation of variables example

A critical further example is that studied by Ushveridze on page 115 of his book [63]. He
takes two copies of an ordinary differential QES problem (polynomial potential of order 10)
and combines them to form a single 2d partial differential equation from which the original
ordinary differential equations can be obtained by separation of variables. However, the partial
differential equation that he obtains is merely separable, not multiseparable. In particular it
is not superintegrable. Here we show the increased insight and greater simplicity obtained by
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using three copies of the QES problem to form a 3d superintegrable system. We proceed as
follows. Consider the Schrodinger equation HV = EV where

1 0? 210 8 9 ¢ p(l—p)
H = (U,2 . U2)(U2 _ w2) [3u2 - 36k1u - 48k1k2’u, — 8(2k2 —+ 3k1k3)u + = ]
! o 8 2 6, p(1—p)
+ o7 — a0 (o7 =) [81)2 _ 36/{:%1)10 — 48k kov® — 8(2k5 + 3k1k3)v° + 2 |
1 0? 210 8 9 s p(l—Dp)
+ (’LU2 — U2)(w2 — u2) [8’(1]2 — 36k1w — 48k1k2w — 8(2k2 + 3k1k3)w + 7]

This equation is clearly separable in the u,v,w coordinates. Passing to Cartesian coordinates
z = wuvw and
1

1 1
Tty = 5(“27}2 + v’w® + v*w?) - Z(U4 +ot+w?), z—iy= §(UZ + 0% +w?),

we can recognize the Hamiltonian operator in the form

82 82 82 . ' .
= 92 + a2 + 922 + 36k3(2(z — iy)® — 4(z® + y*) — 2%) + 48k1k2(3(z — iy)® — (z + 1y))
plp—1)

—16(2k3 + 3k1k3)(x + iy) — >

) (99)
This in turn can be recognized as essentially the complex Euclidean space superintegrable
system with nondegenerate potential

V=« <22 —2(z —iy)® + 4(2? + y2)) +p (Z(x +iy) — 3(z — iy)22) +y(z +1y) + z%’ (100)

in which the six basis second-order symmetry operators can be taken in the form
H=08+0,+8+V, (101)

S1= (0, —i0,)° + fi, Se=02+4fo, S3={0,, Jo+ihi}+ fs,
S = (a0 = 0} = (@ +i0,) + fi Sy = (o +idi)? +2i{0u, ) + i,

where {A, B} = AB + BA, the J; are the angular momentum operators, e.g., J; = 20, —
y0;, and the f; are appropriate functions. There is a quadratic algebra generated by these
symmetries. This is a direct consequence of the observation that this potential is an example
of a nondegenerate potential in three dimensions,[7, 8|.

The separation equations for the Schrodinger equation have the form
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o — 36K°A'0 — 48k ko N® — 8(2k2 + 3k k3)A\® + p(—p) + EX* + 0502 + £3]A(N) = 0,
ON2 2

A
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essentially, Ushveridze’s 1d QES problem. The operators with the separation constants as
eigenvalues are

02 + w2 52 p(1 —p)

L, = () (a2 ) (522 ~ 36kiu' — 48k kou® — 8(2k3 + ki ks)u® + ——(102)
t _1;22;2;’2_ 7 [aa—; — 36K200 — 48Ky kav® — 8(2k2 + 3kks)v® + W]
+ w? _1:)22;252 — ) [ a(?; — 36k;w'® — 48k kow® — 8(2k3 + 3k1ks)w® + 1‘%}
and
Ls = (o UZ;Z; —] aa; — 36k2ul® — 48k, kou® — 8(2K2 + 3kyks)u + 1‘%} (103)
o UZ;‘; — [aa—; — 36k20'0 — 48% kov® — 8(2k2 + 31 k)0 + W]
+ (0 — UZ;); — ) [ 88;2 — 36k;w'® — 48k1kow® — 8(2k3 + 3k1k3)w® + 1’%1.

In searching for finite solutions of HV = EV we write
W (u,v,w) = exp(ki(u® +v° + w®) + ko (u* + v* + w*) + k3(v® + v* + w?)) (vow )P @ (u, v, w)
where
®(u, v, w) = Ij_, (u? — 0;)(v* — ;) (w® — 6;).
The zeros of the polynomials satisfy the relations

o +1 1
T 1907 — Akl — ks + 3

=0.
20, = 0; — 0;

Solving these equations we see that the eigenvalues of the operators H, L, and L3 have the form

E = —(30 4 247 + 12p)ky — 16koks, €o = —4k5 — (124 167)ks — 24k1 > _ 0;,

i=1

l3 = —(2+8r + 4p)ks — 16ky Y 0; — 24ky Y 62

i=1 i=1

Because of the relations among the zeros there are many other expressions for these eigenvalues.
If we look for solutions of the form

(I>(u, v, w) = CLQG() + alGl + UQGQ + agGg
where Gy = 1,G1 = v?2 +v? +w?, Gy = v?0? + v?w? +v?w? and G5 = v?v?w?, i.e., second order

polynomial solutions, and substitute this expression into the eigenvalue equations, we obtain
the following polynomial equations for the eigenvalues
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(E + k(54 + 12p))*(E + k1(30 + 12p)) = 0,
(C + 2ko(4p + 1) + 4k2) (63 + (12k3 + (68 + 24p) ko) £5
+(192k1k3 + 16(2p + 7)(6p + 13)k3 + 32k3ky(6p + 17) + 48k3) 4,
+64(17 + 6p)koks + T68k1 ks + 64(2p + 7)(6p + 13)k3k3 + 768(2p + 7)k1koks
+64(2p + 3)(2p + 7)%k3 — 1152(2p + 1)k? = 0,
(b5 +2ks(p+1)) (€3 4+ 2(6p+ T)ksl2 +4(6p+11) (14 2p) k203 +8(1 +2p)? (12k, + 2pk2 + 5k3)) = 0.

On the other hand, if we study the separation equations individually and look for a solution

of the form
A(X) = exp(k1 A + ko A* + ks )N (N — ¢)

in the above separation equation then we obtain different relations

02 4 (4ko (10 + 4p) + 8k32) 0y + 24k 03 + 16k3 + 8(4kok2 + 6k1ks3) (5+2p) + 16k2(2p+7)(2p+3) = 0,

lols +2(2p+ 1)y + (4ky (204 T7) +4K3) 05 + 48k (14 2p) + 8koks(2p+7) (2p+1) +8(1 +2p)ks = 0,

where

1
c= —E(%(p +7) + 4k3 + £5).

The above computation extends in an obvious manner to the computation of polynomial solu-
tions of any order. There is a clear relationship with Ushveridze’s equation on page 115 of [63]
through the correspondence a = 6k1,b = 4ky, ¢ = 2k3 and s = (2p + 1)/4.

We now look for solutions determined by other second order constants of the motion and
corresponding (possibly separable) coordinate systems. First consider our basic equation HV =
EV written in terms of different coordinates £ = x+1iy,n = x — iy, 2. We can find nonseparable
solutions in these coordinates of the form

U = exp(2y/[A + (ks + 3k:)%n

/[_ 3k1 (ko + 3k1€) E(—9K2E% + k1 kol + 6k1ky + 4k3) + F
A+ (k2 + 3K:£)?] VA + (k2 + 3k1€)?)

exp(—3k122)2"Ln ? (6k12°)

Jd€)

where
E=FE—6k(4n+2p+1)

and Lfn(t) is a Laguerre polynomial. It is clear that the above £ integral can be calculated
in terms of elementary functions but we prefer the form given as it is more compact. This
possibility for an explicit solution comes about from the existence of a symmetry of the form
v+ f.
If we choose new separable coordinates u, v, z defined by
) 1 9 )
x+zy:—§(u—v) , T—iy=u-+uv
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then the Schrodinger equation has the separable form

1 0
HY = [——[(5—5 — 144k{u’ — 96k kyu® + 16(2K3 + 3k ks)u’)— (104)
9 0’ p(1—p
(5,5 = 144k30" — 96k ksv® + 16(2Kk3 + 3kiks)o?)] + 55 — 36k12" + %}ql — EV.
The symmetry operator L associated with separation in these coordinates is of the form
1 0
LY = [ —[o(55 - 144Kk2u* — 96k kou® + 16(2k2 + 3k 1 ks)u?)—
0
(55— 144k3v* — 96k1kov® + 16(2k3 + 3k1k3)v®)] 0.

Searching for finite solutions using these coordinates, we see that they can be taken in the form

U = exp(4ki(u® + v°) + 2ko(u® + ) — 2(2—% + k) (u + v))IIT_o[(u — 6;) (v — ;)] %

1
exp(—3k1z2)szfl+2 (6k127).
For solutions of this kind these zeros satisfy

ko
0, —0;,

—kiky — 2k + dkiky S0, + 1262502 + S

i=1 i=1 j#i

0.

The eigenvalues of L and H' have the form

ki k2ks r k3
A= —dg —8—— 4k5 — 4(1 +2r)ks — 24)_0;, E, = 16koks + 16k—2 — 24(r + 1)k,

and F = E, + 6k, (4n + 2p + 1).

It is clear that we can find solutions of the form given above but with a choice of polynomial,
say ¢iuv + co(u + v) + ¢3 for illustration. The resulting polynomial equation for the eigenvalues
of L is

(NK? 4 4k3K2 + dkok? + 4Ky + 8kyksk2) (k1A% + 8k2 (2kok? + k3k? + 2k ksk? + k) A

—96ksk} — 48k2kT + 64k2k kg + 16k5kT + 128k3ksk? + 64k3k3k2 + 64k5k? + 96k kyk?
+64kSkiks + 16k5 = 0.

These are finite solutions, clearly different from those given previously. The above analysis can
be extended in an obvious manner to yield polynomial solutions of any order.
Note that for this last coordinate system we have given an example of a QES problem with
a quartic potential, something hitherto not known to be possible (as mentioned in Ushveridze’s
book). Indeed the separation equations have the form
0? k2

(@—144kf£4—96k1k2£3+16(2k§+3k1k3)£2—{16k2k3+16k—3+6k1 (4n—4r+2p—3))0+X\, }A(¢) = 0
1
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where A = U,V and £ = u,v. There are typically r + 1 solutions
]{12
A(0) = exp(4k £? + 2k 02 — Q(k—2 + k3)O)TT_y (£ — 6;)
1

of this equation, with corresponding eigenvalues A\(*), s = 1, .., 7+1. It is clear from our definition
of QES that if we look for series solutions then the recurrence relations involved will contain
more than three terms. The analysis then proceeds in analogy with what has been demonstrated
for the case of three terms and the requirement of polynomial solutions (to within a factor)
is a consequence of the solutions generated in this manner being well behaved at the regular
singular points.

It is clear that in higher dimensions there are many examples which generalize the examples
occurring in [63]. The utility of the use of partial differential operators, rather than ordinary
differential operators, is evident. Finally, we note in the superintegrable example presented
here, though our system is multiseparable there are no separable coordinates in which the
separated equations are each exactly solvable.

5 Conclusions and summary

We have demonstrated that solutions of the Schrodinger equation for the potential V; may be
constructed via separation of variables in two different ways. Using Cartesian coordinates we
arrive at two independent exactly solvable equations (17) and (18), each of them representing a
one-dimensional non-parametric spectral problem where the Cartesian separation constants \;
play the role of energy. To obtain solutions in the form of Laguerre and Hermite polynomials,
both separation constants are quantized and as a result the energy spectrum for the two-
dimensional Schrodinger equation is obtained. For the second separable system which uses
parabolic coordinates the solution method is more complex. We have shown that the separation
procedure reduces to an ordinary differential equation for real and imaginary variables. It has
been proven that the requirement of convergence for solutions of eq. (30) at the singular points
p = +oo and g = ioo leads to only polynomial solutions (42) with the restriction for the energy
spectrum F in the form (22) and for a fixed energy (or quantum number n) gives the spectrum
of the separation constant as the root of an nth-degree polynomial equation. In contrast to the
solution in Cartesian coordinates the coefficients of the polynomial solutions satisfy three-term
recurrence relations and cannot be written in explicit form in general. For this reason we refer
to the equation (30) as quasi-exactly solvable.

On the other hand , the substitution of the formula for the energy spectrum into eq. (30)
gives rise to the equation

2 2 _

2 1
[—dd—/ﬂ + <w2u6 + kpt + I% —w@n+4+ 2@)] 1+ %—24)] Zn(p) = AZn (1), (105)
which on the real axis completely coincides for k; = 4Bw? and 1 &+ ko = 26, with the one-
dimensional spectral problem (10), and is called a quasi-exactly solvable problem. Now it
is easy to understand the origins of the occurrence of quasi-exactly solvable systems. The
requirement of convergence just in real space (which is possible to determine following [37] as
the dimensional reduction) in the vicinity of singular points g = 400 requires that there are
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polynomial solutions of the form (41). We also can shed light on the mystery of the zeros of
the polynomial P,(z?). Indeed, the substitution of the wave function (11) into the Schrodinger
equation with potential (10) leads to the differential equation for polynomial P,(x?) in the same
form as equation (58) (in variable z? = z), but with the difference that the physical region of
eq. (58) is the whole real axis z € (—o0, 00), and therefore all zeros (for positive and negative
z?) of P,(x?) correspond to the zeros of two-dimensional eigenfunction of singular anisotropic
oscillator in parabolic coordinates.

The situation is repeated in the case of the second potential (60). We have determined
that the separation of variables in two-dimensional elliptic coordinates leads to a Schrodinger
type equation (76) in the complex plane and the requirement of convergence at the point
¢ = 0,27 and { = ioco requires polynomial solutions and defines the energy spectrum (66). As a
consequence trigonometric and hyperbolic quasi-exactly solvable systems (see potentials 5 and
8 in [61]) are generated in the form

d?X % o? k2 -1 k2 -1

- — In+2+k +k h?y — — cosh*v — 214 24 L\ X =0,
0 + _<4 + a(2n+ 1 2)) cosh” v — =~ cosh™ v Sinh21/+cosh21/+

dZY —(1/2 (1/2 2 1 2 1

— = = on+2+k +k 2y — — cos™ L 4.2 4400 Y=0
a2 _<4 +a2n+ 1 2)> CO8™ pu — — - €8 w+ cos? 1 + sin? ) + ,

where o = D%wv/2. Thus we have established that an integral part of the notion of quasi-exact
solvability is the reduction of superintegrable systems to one dimensional problems.

Indeed, we can express our observation in the form of the following hypothesis: All quantum-
mechanical problems which are expressible as one-dimensional quasi-exactly solvable systems
can be determined via separation of variables in an N-dimensional Schrédinger equation for
superintegrable systems.

This analogy prompts us to use the term quasi-exact solvability for the equations of type
(30) or (76), defined in the complex plane and which are not exactly solvable but which admit
polynomial solutions. Thus we suggest calling quantum mechanical systems first-order quasi-
exactly solvable if the polynomial solution of the one-parametric differential equation of the
kind of Schrodinger equation or N -dimensional equation after separation of variables is defined
through recurrence relations which must always contain three terms or more and the discrete
eigenvalues can be calculated as the solutions of algebraic equations. According to this definition
systems (30) and (76) are first order quasi-exactly solvable.

In 3 dimensions we have provided even more striking examples of 1d QES problems obtained
as restrictions from superintegrable systems. We exhibited a quasi-exactly solvable superinte-
grable system which is not at the same time exactly solvable in any separable set of coordinates.
In one set of separable coordinates we obtain Ushveridze’s 10th order polynomial QES problem
and in another set a 4th order polynomial QES problem. We have shown how the eigenvalues
of the symmetry operators which describe separation can be calculated from a determanental
condition. These examples, and more to come on other manifolds and in higher dimensional
spaces, indicate that our modified definition of QES systems can be extended to N-dimensional
spaces and fine tuned to distinguish between the number of parameters in the systems. These
matters will be taken up in other papers in this series.
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Appendix: Asymptotic behavior of coefficients
To understand the behavior of the solutions of relations (36) for large s we use continued
fractions theory [81]. Setting

A,
A T 0 (106)
i) = [PLGHRER 45+ MG £ +5+1)

AT(E+1)I(E2 + s+ 1)D(2 24541y

where I'(z) is the Gamma function, we can write the recurrence relation (36) in the standard
form

1

T 107
b \/gr(g+§)r(i%+g+%)r(%
° W DS+ 1) (k2 4+

828 [N+ B (25414 k)]
+1)I(& 4+ &
where o = —(E + k1 /(8w?))/2. Note that

(2tky+s+1)

f(3+1)f(8):w(s+1)(ik2+s+1)'

Stirling’s formula for the Gamma function I'(z) = 2*~%2e7%/27(1 4+ O(1/2)) as |z| — oo with
larg z| <, gives f(s) = —\/g(l +0(1/s)) and bs = :I:Zw%(l + O(1/s)). In the following we
take k1 < 0, ko, A, E real and w > 0. Without loss of generality we can assume by is positive for
sufficiently large s since, otherwise, we could make the replacements by — —bs, & — —&;.
Since > b, = 00, it is a consequence of the Seidel-Stern theorem that the formal continued

fraction expressions for the &, converge:

1 1 1
&s = bytbopit - ADgipte -
Moreover, standard continued fraction theory tells us that
A
& = imy BY (108)
where
a)=( AT = (1 (109)
B_s% 0 ’ B(()S) 1 )
and



Furthermore the relation A®BY, — A®) BG) = (—1)n-1 holds for all n > 0, which implies

n—

Al _ Aﬁf)l R
BY B!

B B(s) Br(zs).

n—1

o)

n—1

This result in turn implies that the sequence Agif / Bg;) is, for large s and n, monotone increasing
in n and goes to & in the limit, whereas Agjf

& in the limit. For example,

1/ Bésn) +1 is monotone decreasing in n and goes to

Ay A b o

By, B BYIBLL
It follows from (108), (110) that

P g las (111)
B((Js) n=1 Béi) éfz)+2

Simple estimates using the recurrence relations (109) give

Bg;) > 14 b5t Z bomts; Bé?—kl > Z bom+1+s-

m=1 m=0
Substituting these results into the identities

Béi) = Z b2m+sB§‘:r)Lfla Béz)+1 = Z b2m+s+1B§fr)1

we get refined upper bounds for Béfb), Béfb) +2- We can approximate the sum Y7 1/4/m by the
integral [;' ﬁ dx and use similar approximations to get an upper bound for the series (111):

|£s| < Kl/) \/m(yQ I 1) + Ko
for positive constants ; independent of s. This shows that || is uniformly bounded in s.
Since &1 = —bs + 1/&; and by — 0 as s — oo it is also true that |1/&| is uniformly bounded
in s.

It follows from (107) that

é. _ é. _ §5—1 - (bs + 55—1)(1 - bs—lgs—l)
s+1 s—1 — 1— b5—1§5—1 .
Now choose sg so large that by < bs; and b€ < 1 for all s > s5. Note from this identity that if
&, -1 > 1 for some s; > s¢ then &, 11 > &, 1 > 1. Thus the sequence &, 195 1 is monotonically
increasing for all £ > 0. Since |&;| is bounded, it follows that in this case limy_, o &5, 4061 = &4
exists, and &, > 1. Since ;41 = —bs + 1/&;, bs — 0 as s — oo and |1/&;| is uniformly bounded
in s, then the sequence &, 19k is also convergent, limy_, o &5, 1ok = - where 0 < & < 1.
The other possibility is that £ < 1 for all s > s¢. Since 1/&; —&;41 = bs — 0 as s — 00, and
1/€s > 1, &1 < 1 for all s > sq it follows that limy o & = &, = & = 1. Thus in all cases the
sequences &g and Egiyq converge.
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We conclude that

Al ps 4 1)6, = \/@ﬂ +O(1/5), &6 =1,

depending on whether s is even or odd.
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