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Abstract

Lamé and Heun functions arise via separation of the Laplace equa-
tion in general Jacobi ellipsoidal or conical coordinates. In contrast
to hypergeometric functions that also arise via variable separation in
the Laplace equation, Lamé and Heun functions have received rela-
tively little attention, since they are rather intractable. Nonetheless
functions of Heun type do have remarkable properties, as was pointed
out in the classical book “Modern Analysis” by Whittaker and Wat-
son who devoted an entire chapter to the subject. Unfortunately the
beautiful identities appearing in this chapter have received little no-
tice, probably because the methods of proof seemed obscure. In this
paper we apply the modern operator characterization of variable sep-
aration and exploit the conformal symmetry of the Laplace equation
to obtain product identities for Heun type functions. We interpret
the Niven transform as an intertwining operator under the action of
the conformal group. We give simple operator derivations of some of
the basic formulas presented by Whittaker and Watson and then show
how to generalize their results to more complicated situations and to
higher dimensions.



1 Introduction

Among the most important contributions of Carl Gustav Jacobi to mechanics
was his introduction of the “remarkable change of variables”, the generalized
elliptical coordinates x; in n dimensions, [1]. These can be defined by the
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where the ¢, are Cartesian coordinates and the e are distinct constants. An
equivalent definition is
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where e; < 21 < ey < --- < e, <z, and k = 1,---,n. In the case that
n = 3,4 the elliptic coordinates admit expression in terms of Jacobi elliptic
functions [2, 3]. For n = 3 we have

1
¢q1 = ksna snf sny, ¢ =i—cna cnf cny, ¢q3 = -—dna dnf dnvy,
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where we write r; = sna, 9 = snff and x3 = sny with normalized choice of ¢;
according to e; = 0,e = 1 and e3 = k=2 with k2 < 1, and the k£ dependence
of the Jacobi elliptic functions has been suppressed, i.e., sné = sn(d, k).
Typically the Jacobi elliptic function sn(d, k) is defined by
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These functions have properties analogous to trigonometric functions.
The variables «, 3,y vary in the ranges a € [-K, K|, € [K — iK', K +
iK'] and v € [iK' — K,iK' + K]. In addition to elliptic coordinates in
Euclidean space there are also elliptic coordinates z; on the n-dimensional
sphere. These are defined by relations
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where s+ ---+ 52, = 1. The inverse relations are
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where £k = 1,---,n+1 and the coordinates satisfy e; < 21 < ey < --- < e, <
Zn < enr1- These coordinates enable the ansatz of separation of variables to

2



be used for problems on the sphere analogous to those solved in Euclidean
space. If n = 2, the coordinates can also be written in terms of Jacobi elliptic
functions according to [2, 3]

s1 =k sna snf, sy = i%cna cnf, s3= %
with o and [ varying in the same ranges as for Euclidean elliptical coor-
dinates. The Jacobi elliptical coordinates enabled the problem of geodesic
motion on an ellipsoid to be solved. It was on the basis of these investigations
of Jacobi that subsequent investigations in the theory of separation of vari-
ables developed. Most notable among these were the mechanism of separation
extended by Stéckel [4] to quite general systems of orthogonal coordinates.
Moreover, for product separability of the Helmholtz or Schrodinger equation
AW + X\ ¥ = 0 on a space of constant curvature it was found that the ellip-
soidal coordinates are generic. Every orthogonal separable coordinate system
for these equations is some limiting form of the ellipsoidal coordinates. (For
product R-separability of the Laplace equation AV = 0 the generic coordi-
nates are fourth order surfaces called cyclides.)

Most functions commonly called “special” obey symmetry properties best
described via group theory. They arise as solutions of the PDEs of math-
ematical physics and can be characterized in terms of transformation prop-
erties under the Lie symmetries of the equations. In particular this is true
for functions of hypergeometric type that arise as solutions of the Laplace
equation of Euclidean space via separation of variables [5, 6, 7, 8]: spherical
harmonics, Laguerre polynomials, Jacobi polynomials, Bessel functions, con-
fluent hypergeometric functions, etc. These functions all arise via separation
of coordinates that are degenerate forms of Jacobi ellipsoidal coordinates.
They have been very well studied and shown to obey differential recurrence
relations, generating functions and other identities that relate to Lie sym-
metries and have explicit power series expansions determined by two-term
recurrence relations. However, the special functions that arise via separation
of the Laplace equation in more general ellipsoidal coordinates, e.g., Lamé
functions and general functions of Heun type, have received much less at-
tention since their power series are given via three-term recurrence formulas
and they admit no differential recurrence relations and other properties char-
acteristic of hypergeometric functions. Nonetheless functions of Heun type
do have remarkable properties, e.g., [9, 10, 11]. The most notable presenta-
tion of results related to these functions in the last century is contained in
the classical book of Whittaker and Watson [2]. These authors devoted an
entire chapter to ellipsoidal harmonics and Lamé functions and they called
attention to the earlier pioneering work of Niven [12], in particular the Niven

dna dng (3)
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transform. Unfortunately the beautiful product identities appearing in this
chapter have received little notice in modern special function theory. We sus-
pect that this is because the methods of proof seem obscure and the relevance
to more modern special function theory is unclear.

In this paper we apply the modern theory of variable separation in which
orthogonal separable coordinates for the n-variable Laplace equation are
characterized by n — 1 commuting second order conformal symmetry opera-
tors, e.g., [13]. This approach allows us to exploit the conformal symmetry of
the Laplace equation and obtain beautiful identities for Heun type functions
that have a transparent interpretation. This is particularly true for the Niven
transform which we reinterpret as an intertwining operator under the action
of the conformal group. We will give simple operator derivations of some of
the basic formulas presented by Whittaker and Watson and then show how
to generalize their results, and those of Niven, to more complicated situations
and to higher dimensions.

Section 2 describes the operator characterization of variable separation
for solutions of the Laplace equation and the Laplace-Beltrami eigenvalue
equation on a pseudo-Riemannian manifold. The results are specialized to
the Euclidean space Laplace equations in three or more variables. The ac-
tion of the conformal symmetry group on the solution space of the Laplace
equation is worked out and, following [7], lower variable models of this action
are constructed. The detailed computations in this paper are usually carried
out in these models, for simplicity. In Section 3 we introduce the Niven op-
erator that maps harmonic functions to ellipsoidal functions, and show that
it can be interpreted as an intertwining operator. We work out a number of
identities for Lamé functions that follow from this action. In Section 4 we
interpret product formulas for Lamé polynomials as mappings from a lower
variable model to the solution space of the Laplace equation. Several of the
special function identities in the first few sections of the paper can already
be found in references such as [2, 3|, though with more complicated proofs.
In the later sections, However, we extend our models and the Niven operator
to general Heun functions and to higher dimensional spaces and obtain many
new results.

We acknowledge consultations with Vadim Kuznetsov, who provided the
critical impetus to launch this research.

2 Symmetries and variable separation

Let A, be a Laplace-Beltrami operator for a pseudo-Riemannian manifold V,,
in n dimensions. The Laplace-Beltrami eigenvalue equation (with potential)



for functions ¥ on V,, is H¥(q) = E¥(q). The Laplace equation is HY(q) =
0. The linear partial differential operator S is a symmetry operator for (A, +
V)® = E® if S maps local solutions ® to local solutions S®. Similarly, Sisa
conformal symmetry operator for (A, +V)® = 0 if S maps local solutions ®
of this equation to local solutions S®. The 1st-order symmetry operators for
(A, +V)® = E® form a Lie algebra, the symmetry algebra of this equation.
The associated local Lie symmetry group maps solutions to solutions. There
are similar definitions for conformal symmetries.

A set of orthogonal coordinates {z,} is R-separable for the Laplace-
Beltrami equation if this equation admits solutions ¥ = exp(R(x))II"_, ¥;(z")
efO, where R(x) is a fixed function, independent of parameters, and the fac-
tors W;(z%) are the solutions of n ODEs (the separation equations) ¥/ +
gi(z*)V! — (fz(xz) +30 /\jsij(aci)) U, =0,7=1,---,nand \; = E. The
parameters \; are the separation constants. If R = 0 we have separation,
and if R(z) = ¥, R (2') we have trivial R-separation. There is a corre-
sponding definition of R-separation for the Laplace equation with £ = 0.

A basic result in the theory is [13] that every orthogonal R-separable
coordinate system {z'} for (A, +V)¥ = EV corresponds to a linearly inde-
pendent set {S; = H =A, +V,Sy,---,5,} of commuting 2nd-order partial
differential symmetry operators. The R-separable solutions Uy, .5, (x) =
exp(R(x))II%, ¥;(z*) are characterized as the simultaneous eigenfunctions
of the commuting symmetry operators Sp: SpVUx, .., = AMVUn n,, b =
1,---,n. If E = 0 the characterization is the same, except that the S} are
conformal symmetry operators.

Finding all orthogonal separable coordinate systems q for a given space
V., is difficult. However, for real n-dimensional Euclidean space, the n-sphere,
and the n-hyperboloid of two sheets, we have a graphical procedure to classify
and construct all possibilities, [14, 15].

Special functions of Heun type arise through variable separation of the
Euclidean space Laplace equation in ellipsoidal and related coordinates, but
have no simple transformation properties under the Lie symmetry algebra.
For the Laplace equation

(0% + 05 +07)¥ =0

orthogonal separation is possible in the 11 Helmholtz separable systems [16]
and nontrivial R~ separation in 6 additional systems [7]. Each system is
characterized by a pair of commuting 2nd-order conformal symmetry opera-
tors for the Laplacian. The conformal symmetry algebra of this equation is
10-dimensional, with basis

1
PX - ax, MYX - _MXY :YOX —Xay, D - —(5 +X8X +Y8Y +Z8Z),



Ky = —-2XD — R*9y

etc., where R? = X? +Y? + Z2. The 55 2nd-order operators formed from
this Lie algebra of differential operators satisfy 20 relations on the solution
space, among which are

P-P=P;+P}+P;=0, M-MEM§X+M§Z+M§Y:i—D2. (4)
Every R-separable solution set is characterized by a pair of 2nd-order com-
muting conformal symmetries. For ellipsoidal coordinates (R = 0) the op-
erators can be chosen as M- M + (a — 1) P + aP%, M%, + aM%, — aP3,
whereas for conical coordinates (R = 0) they are M - M, M%, + aM%,.
The complicated characterizations suggest what is true, that the Lamé func-
tions associated with these separable systems have no simple transformation
properties under the symmetry algebra, [3].

Computations involving separable solutions of the Laplace equation are
simplified by making use of a 2-variable model for the solution space: we
represent solutions ¥(X,Y, Z) in an integral form

U(X,Y,7) = /01 dﬁ/é2 do h[B,|exp[B(iX cosp +iY sinp — Z)] = I(h),

where h is analytic on a complex domain that contains the integration con-
tours C; X Cy and is chosen such that I(h) converges absolutely, and arbitrary
differentiation with respect to X,Y, Z is permitted under the integral sign.
For each h, ¥ = I(h) is a solution of the Laplace equation and the action of
the conformal symmetries on the solution space corresponds to the operators

1
PX = iﬁwla PY = iﬁwZa pZ = _ﬁa D = ﬁaﬂ + 5’ MXY = _w28’w”

MZX = iwlﬁag + iwgawl, MZY = iwgﬁag — iwlwgawl (5)

where w? + w2 = 1. (Indeed, we can take w; = cos ¢, ws = sin¢.) We shall
not make use of the conformal symmetries K.

Let us find an integral representation for solutions ¥ that are eigenfunc-
tions of the dilation operator D with eigenvalue —¢ — % We choose C'; and
Cy as unit circles in the § and t = €'¥ complex planes, respectively, and
require £ to be a non-negative integer. Setting Dh = (—¢ — 1)h we find
h(B,t) = B¢ 15(t), 5(t) = 2 __, amt™. Then we evaluate the 3 integral by
residues to obtain

2 .
U(X,Y,Z) = I(h) = / [X cos p + Y sin g + iZ]' j(€)dy.
0
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Since M- M = } — D? we have M- MW¥ = —{(¢ + 1)¥. For j(¢) = t™,
—¢ < m < £ we have M°U = mV¥ so ¥ must be a multiple of the solid
harmonic R‘Y;™(6, ¢), expressed in spherical coordinates. This model has an
obvious extension to the Laplace equation in n dimensions.

It is easy to extend this analysis to Laplace equations in N dimensions.
We give the pertinent details for N = 4:

(0% + 0% + 0% + 02)U = 0. (6)

The conformal symmetry algebra of this equation is 15-dimensional but we
consider only the 11-dimensional scale-Euclidean subalgebra with basis

PX:aX’ PY:aY7 PZ:aZ7 PT:aT MYX:_MXY:YaX_XaY;

Mxz = 20z — Z0x, Mzy =20y —Y0z, Mpx =T0x — X0r,
Mrpy = TOy—Y 8, Mry=T0;—Z08p, D =—(X0x+Ydy+Z0;+T0r).

Each element of this Lie algebra maps a solution of (6) to another solution.
Note the relations

P-P=Py+ P+ P+ P=0,

M-M= My + My, + Mgy + M7y + My + M7, = —D(D — 2).

These identities hold only on the solution space of (6).

The various spherical and ellipsoidal separable solution sets for (6), are
each characterized by a triplet of second-order commuting scale-Euclidean
symmetry operators for (6). Here computations involving separable solutions
of the Laplace equation are simplified by making use of a 3 variable model
for the solution space. We represent solutions ¥(X,Y, Z,T) in the integrable
form

dw1 d’U)Q

U= d@//emwmmX+wﬁCH@Z+ﬂﬂM@w) = I(h),
C1 D

(7)
where w? + w3 + w3 = 1, h is analytic on a domain in the space of three
complex variables that contains the integration domain C; x D, where C}
is an analytic curve and D is a two-dimensional Riemann surface over w; —
wy space, and is chosen such that I(h) converges absolutely, and arbitrary
differentiation with respect to X,Y, Z is permitted under the integral sign.
Then it is easy to check that for each h, ¥ = I(h) is a solution of the
Laplace equation. Moreover, integrating by parts, we find that the action



of the symmetries Px,---, D on the solution space of the Laplace equation
corresponds to the operators

Px = pwi, Py =pwy, Pz=pws, Pr=if, D=p0s (8)

Mxy = w10y, — W20y, Mxz = —w30y,, Myz = —w30y,,
Mopx = —iw; + iw, 805 + i(1 — w?) Dy, — 1w W20y,
Mypy = —iwg + w2805 — iwow1 0y, + i(1 — W3) Oy,

Mrz = —iws + w305 — 1wswi Dy, — 1W3wWe0y,.

Let us find an integral representation for solutions ¥ of the Laplace equa-
tion that are eigenfunctions of the dilation operator D with eigenvalue —/¢:
DU = —¢¥. We choose (] as a unit circle about the origin in the g plane,
and require ¢ to be a non-negative integer. Setting Dh = —{h we find
h(B,w) = 8% 1j(w). Then we can evaluate the 3 integral by residues to
obtain

d’LUl d’U)Q

U=1(h) = //D [ X + woY + wsZ + 4T j(w) 9)

w3

to within a multiplicative constant. Since M - M = —D(D — 2) we have
M- MV = —{(¢{ + 2)¥, so ¥ can also be considered as a function on the
complex three-sphere.

3 Niven operators

Niven constructed an operator that maps harmonic functions, i.e., solutions
of the n = 3 Laplace equation that are homogeneous of degree ¢ in XY, 7,
into ellipsoidal solutions. Indeed, it maps a conical coordinate solution to an
ellipsoidal solution, and is an infinite-order differential operator. A detailed
technical construction is given in [2]. Here we give a much simpler treatment.
Our theory extends to cover Niven operators in n dimensions and for many
new coordinate systems.

Let H,; be the space of solutions of the Laplace equation, homogeneous
of degree ¢. There is an operator Fj, the Niven operator, such that relations

(M-M+ (a—1)P}+aP})F, = F,(M-M)
(M)2(Z +alMy , + aP%) Fr = F(Mx;+abMyy), (10)

— 1
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hold on H,, where M - M is given by (4) and ¢Fi(-) is a hypergeometric
function [5]. Thus F} is an intertwining operator on H, between the spaces
of separated conical solutions and of separated ellipsoidal solutions, each
expressible in terms of Lamé functions [2, 3]. We verify (10) using the model,
on the space H, of functions h(B3,t) = B7¢1j(t). Setting t = € we have

(a — )Py + aPZ = B*(asin® p + cos® ).

Set F; = Fy(x), where x = B%(asin® p + cos? ). Thus on H, the Niven
operator is just multiplication by an ordinary analytic function of z. The
first equation (10) on , then reduces to a second-order ODE for F:

dxF) + (-4 +2)F, — Fy = 0. (11)

The solution bounded at 0 is Fp = oFy(—¢ — 1/2;2/4), [5]. An independent
solution for ¢ not a negative half-integer, is

fg :$£+%0F1 ( £+g ,%33) .

(Usually we will employ the solution bounded at z = 0.) Similarly, the sec-
ond condition (10) is satisfied provided exactly the same equation (11) holds.
Transferring this operator over to the solution space via F,¥ = I(F;h) we
obtain the required result. Note that a solution of the intertwining equations
is given by Wy = I(h) where h = F,837¢1j(t). Here, j(t) satisfies the eigen-
value equation for Lamé functions, [3], (M%,+aM?%,)j = A1 for operators
M on the space of functions corresponding to homogeneity of degree £, ex-
actly the same equation as satisfied by the conical coordinate eigenfunctions.
Thus we obtain the classical result [2] that if L}*(«) are Lamé polynomials
then

L@ =c [ Pl I)ds

p = k*sna snf sny snd — (k?/k")ena enfB eny ené — (1/k)dna dnj dnvy dné

where P(z) is a Legendre polynomial and ¢ is a normalization constant.
Niven’s operator can be extended to Laplace equations in /N dimensions.
We give the details of one extension for N = 4 and then exhibit the basic
mechanism that will allow us to extend the construction to all N. The
Laplace equation (6) admits separation in rotational conical coordinates

X+iY:R\/?ei¢, Z:R\/(U—l)(w—l)’ T:R\l (U—a)(w—a)’

l1-a a(a —1)
(12)




where R? = X2 4+ Y? + 7?2 + T?, determined by symmetry operators
Fl :M)Q(Y: FQ: M)2(T+M)2/T+G(M)2(Z+M)2/Z)7 1—‘3 :MMa (13)

and in rotational ellipsoidal coordinates

X+iY = %ew, Z:\/(“—U(Ti:?(w—l)’ T J (u—a)(v—a)(w — a)

determined by symmetry operators
[ =My, Th=Mip+ Mg +a(Myy + Myy,) —a(Px +P7),  (15)

Iy =M- M+ P} + aP7.

Let H, be the space of solutions of the Laplace equation (6) that are
homogeneous of degree ¢. There is an operator Fj, the Niven operator, such
that the identities

F;-Fg =FI;, 7=1,2,3. (16)

hold on H,. The operator can be chosen in the form

1
Fz:0F1<_£_1 QZ(P§+CLP72“))-

Thus the Niven operator is an intertwining operator on H, between the
spaces of separated rotational conical solutions and of separated rotational
ellipsoidal solutions. Since Fy is a function of a partial differential oper-
ator, it appears to be rigorously defined only for the case where / is a
non-negative integer. However, again, we can remove this requirement by
making use of the three-variable model. Indeed we will verify (16) using
model (7), on the space H, of functions h(3,w) = B~ !j(w). In this
model we have P% + aPi = —%(w? + w3 + a — 1). Set Fy = Fy(z), where
r = —B3*(w? +w? +a—1). Thus on H, the Niven operator is just multipli-
cation by an ordinary analytic function of z. The first equation (16) on #,
is trivial; the second reduces to a second-order ODE for F;:

Az F) — AF, — Fy = 0. (17)

For ¢ not a negative half-integer, a basis for the solution space is

_ - . 1 r _ A2 - . 1
fe—0F1<_€_1,ZiE>, Fe=z 0F1<£+3,Z$>-
(Usually we will employ the solution bounded at z = 0.)
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We show that the second condition (16) is satisfied provided exactly the
same equation (17) holds. Write Myy = Mg+ fuy where Mg, is the pure
differential operator part of Myy and fyy is multiplication by a function.
Thus, fxr = —iwy, fyr = —iwq, and fxz = fyz = 0. Then we have the
operator identity

M%]Vfg = [MOUV{L']z}—é, =+ [MO?]V.I]]'; =+ Qfé[MoUvéU]MUV =+ .FgM?]V. (18)
Using the facts that
[MCxpx] = —2iaB*w,, [M"iTx] = 2aB%(1 + w?),
[(MOyra] = =2iaf?wy, M%) = 205%(1 + wj),
[MOxz2) = 28%w3w1,  [M% 2] = 28°(2w? + wi — 1),
[Moyzx] = 252’(1)3’(1)2, [Mog’Z‘x] = 252(w% + 2’(1)% - 1)7
we evaluate the operator expression
(M?XT'{'M%T"‘(LMgfz‘i‘G/M%/Z_U:Pg(_axfp}%)fz_ff(Mg(T+M%/T+aMA2)(Z+U/M€'2)

and verify that it is the zero operator on Hy, provided 4aF; —4¢F;— F; = 0,
the differential equation for the Niven operator for N = 4. Transferring this
operator over to the solution space of the Laplace equation via F,¥ = I(Fzh)
we obtain our result.

To clarify the mechanism behind the Niven operator construction we con-
sider the case of general ellipsoidal coordinates for the N = 4 Laplace equa-
tion. General ellipsoidal separable solutions for the Laplace equation (6) are
characterized by the commuting operators

Iy = M-M+ ((a+b+ab)P}+ (a+b)PE+ (1+b)P;+(1+a)P}),
Iy = (a+b)Myy + (L+b)My, + (14 a)M3y + M7, + aMy, + My,
+ ((1+a+0b)P} +abPE +bP; +aP}),
[, = abMyy +bM%,; +aMy; + abPs. (19)
Here, we have chosen the parameters for the ellipsoidal coordinates as
(e1,e2,e3,e4) = (0,1,a,b), 1<a<hb.

The associated conical coordinates are characterized by the commuting op-
erators

Ih = M-M
Iy = (a+b)Mxy + (1 +b)Mzy+ 1+ a)Mzp +bM3, + aMyp + My,
I3 = abMyy +bM3, +aMy . (20)

11



Note that I'; = T'; + ®;, j = 1,2,3, where the ®; are linear combinations
of squares of linear momentum operators. Thus,

g

It follows that the commutivity of the F;- implies the important commutation
relations
[, @]+ [®;,1;] =0, 1<4,57<3. (21)

Theorem 1 Let Hy be the space of solutions of the Laplace equation (6) that
are homogeneous of degree £. There exists a Niven operator Fy, such that the
identities

F;-Fg =Fll;, j7=123. (22)

hold on H,. The operator can be chosen in the form

1
Fe:0F1(_£_1 ;Z((1+a+b)P§+(a+b)P§+(1+b)P§+(1+a)P7%)>.

PROOF: We will verify (22) using some of the relations (21) and the model
(7). In this model we have

z=0 =(1+a+bPx+ (a+b)Py+(1+bP;+ (1+a)P;

=B {(1+a+b)wl+ (a+byws + (1 +bwi —1—a}.

Set Fy = Fy(z). Thus on H, the Niven operator is just multiplication by an
ordinary analytic function of z. Since M - M = —D? + 2, the first equation
j =1(22) on H, reduces to the usual (for N=4) second-order ODE for F;:

AxF, — MF, — Fp = 0. (23)

The solution bounded at 0 is

— 1
F£:0F1<_£_1 ,13?)

We show that, due to relations (21), the second and third conditions
(22) are also satisfied. Write Myy = M, + fuy where MY, is the pure
differential operator part of Myy and fyy is multiplication by a function.
Then, using the identities (18) we see that each of the last two operator
expressions (22) takes the general form

> o[ MPa]Fyp+ > o[ Ml Fy + 2F,(Y0 cu[ Mz M;) + > i PiFe = 0,
(24)

12



where I'; = Y a; M?, ®; = Y v, P? for j =2 or j = 3. Our task is to verify
that (24) holds. In the model, each of the operator identities [M - M, ®;] +
[,T';] = 0 takes the form

AQ- WP (1 + Bg) + 2 cu[ Mzl M + Y~ [ M*z] = 0. (25)
If we apply both sides of (25) to = we find the function identity
1223 % PE + 2 ai[Mz]? + 20, (M) fiz + Y ci[MPz]lz = 0. (26)

Note that the functional (non-differential operator) component of (25) is the
identity

A3 WP+ 2> Mozl fi + ) ai[ M) = 0. (27)
Substituting (27) into (26) we obtain
> ai[Ma]* = —4z Y 3Py, (28)

and restricting (25) to H, we obtain
2) MM, + > ai[MPx] = 40> 1 PR). (29)
Substituting (28,29) in (24) we obtain
Q- wPi) (e F] — ALF, = Fo) =0,

which is implied by the differential equation for the Niven operator for N = 4.
Q.E.D.

It is clear from this proof that the same construction goes through for all
ellipsoidal coordinates and their conical counterparts for the Laplace equa-
tion in N dimensions. The only novelty is that the Niven operator in N
dimensions takes the form

_ D2
°F1<—£—N/2+1 ;T)

where D? is a linear combination of squares of the P,. Moreover there is a
Niven operator corresponding to any degenerate limit of these coordinates,
such as the rotational ellipsoidal system considered previously. (Two other
degenerate examples are prolate and oblate spheroidal separable solutions
for N = 3, obtained by Niven operators applied to the spherical harmonics.)

13



3.1 Niven operators for the complex Laplace equation

It is obvious that the Niven construction can also be extended to the com-
plex Laplace equation and its other real forms, such as the various real wave
equations. We will use the two-variable model (5) for the case N = 3 to clar-
ify the commuting operator foundation of the construction. Any separable
system for the complex Laplace equation contained in the space of solutions
that are homogeneous of degree ¢ is characterized as a system of simultaneous
eigenfunctions of the commuting symmetries

1 3
EiMMI%ﬁzMM%M+M%% (30)

jk=1
where aj; = ay; and these constants are not all zero. Here, Mxy =

Ms Myzx = My, Mzy = M,. We always have P - P = Z?Zl P? = 0 where
P1:P)(, PQZPy, szpz.
The question is when do there exist quadratic forms

®, = AP} + BiP; + C,P; + D\P,P, + E\P,P; + F\ P, P,
Dy = APl + BoPy + CoPy + DoPi Py + EyPi Py + Fy Py Py,
not identically 0, such that the operators
F'1=F1+(I>1,F'2:F2+<I>2, (31)

commute? (Since P -P = 0, without loss of generality we can require A; +
B;+C; =0, j =1,2. Furthermore, by adding an appropriate multiple of I'}
to I'} we can always achieve a;; = 0, and we shall assume this.) Note that
since

[F;-, =10 Tk] =[®;,P] =0, j,k=1,2,

we must require the important commutation relations
[Fl, q)g] + [(I)l, FQ] = 0 (32)

Now we assume that the coefficients o, not all zero, are given, and we use
the model (5) to compute the possibilities for the operators ®;, ®,. In the
model, the operator ®; becomes multiplication by the function

T = 2 (a + bwy + cwy + dw% + ewlwz) ,
where w? + w2 = 1. Here,

a:CI_Bla b:_iEla C:_iFla d:Bl_Al, €:—D1.
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Similarly, in the model ®; becomes multiplication by a function of the form
y = B2 (a' + bwy + dwy + d'w? + e'wlwg) ,

Since [M - M, y] = —6y — 4yB0p, the operator equation (32) becomes
(Wlth 11 = 0)

1
6y+4y 505+ _ cujr((Myzl My+[Mya] M) +35 3 aje (M Myl +[MeM;z])
jk jk
(33)
Equating the coefficients of 0,,, on both sides of this operator equation, we
obtain the 7 conditions

0 2(112 929 2’i0¢23 —2i0!13 0

0 — 929 2(112 2’i0¢13 2i0[23 a 0
2019 21093 21013 0 Q99 — (i33 b 0
—210u93 20019 —Q33 —210u93 —2i03 c 0
—27;0{13 —Qlg9 + (Y33 —20{12 0 —2iC¥23 d 0
4&12 0 0 20&12 oo — 20&33 € 0
—Q99 0 0 —Q9o + (Y33 0 0

(34)

Similarly, equating the coefficients of d,,, on both sides of the operator equa-
tion we obtain the expression for y in terms of the expansion coefficients for
x:

a' %6&12 + %’I;bﬂm

b %CQQ + ba22 — %’i@&g:}

C’ = %bau + %’L'E(,hg (35)
d’ —%’ibam + (a + d)agz — %ica’gg

e (2a + d)ayy — %icalg + %6&22 + %’ibagg

The equation obtained by equating the functional (non-operator) terms on
both sides of the operator equation is redundant; it is already implied by our
preceeding two relations.

It is straightforward to check that for not identically zero {cy}, the rank
of the 7 x 5 matrix in (34) is always 4. Hence the conditions (34) always have
a nonzero solution, unique up to multiplication by a constant. Thus we have
proved the following.

Theorem 2 For each set of operators

3
> (M My + My M;)

jk=1

Fle'M, F2:

N | =

15



where o, = op; and these constants are not all zero, there is a set o
j j ’
quadratic forms

®, = A\ P} + B\P; + C,Pj + D\P,P, + E\ P, P; + F, P, P,

®y = AyP? + ByP2 + CoP? + DyP Py + E,P, Py + F, Py P,

such that the operators ') = I'1+®,, ', = ['y+®y, are commuting symmetries
of the complex equation (P + P} + P})¥ = 0. ®; and ®, are unique, up to
multiplication by a common constant.

It follows from this theorem and our earlier results that we can construct
Niven operators corresponding to all of these cases. Though we don’t give
the details here, we note that limiting forms of our Lamé and Heun identities
yield nontrivial product formulas for hypergeometric functions, particularly
Legendre and Bessel functions.

4 Lamé polynomials.

As we have seen, if ¥(X,Y, Z) satisfies Laplace’s equation and is homoge-
neous of degree ¢ (an integer) then ¥ may be represented by the integral

27
v :/ (iZ + X cosp + Y sin )’ f(¢)dyp
0

for a suitable 27-periodic function f(g). If we set

X:R\/%T’ Y:R\l(u—l)(v—l), Z:R\l(u—a)(v—a)’ (36)

(1—-a) ala —1)

Laplace’s equation can be written as

(8% + aR+—{—[\/ w)du(y/P(u)d,) — \/P(0)3,(\/P(v)3,)]})¥ = 0

where P(u) = u(u—1)(u—a). If ¥ = R‘®(u,v) we see that ®(u,v) satisfies
the partial differential equation

{uiv[\/P L(VP()d,) = /P(©)3,(/P(v)2 ]—N+1)} ®(u,v) = 0.

Now if ®(u,v) = U(u)V (v) then U and V satisfy the separation equations

(\/P(w)0y(\/P(u)0y) — (£ + 1)u + \)U(u) = 0.
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(\/P(0)0,(y/P(v)d,) — £(£ + 1)v + AV (v) = 0.

Setting u = sn?(u, k) and a = 1/k* we see that the equation satisfied by

Ulp) = U(u) is A
(02 — k?sn*(p, k) + A\)U () = 0.

Similarly we can put v = sn?(v, k) and obtain the differential equation
(82 — k2%sn%(v, k) + )V (v) = 0 where V(v) = V(v). The operator which
characterizes A is

1 2 2

If we check the action of the rotation group in X,Y, Z we obtain the repre-
sentation

Mxy =0,, Mxyz =i(l+1)cosp+isinpd,, Myyz = i({+1)sinp—icospd,.

We now look for eigenfunctions of the operator L = 5 M%y + M%,. In
this representation they must satisfy

[(a — sin” 0)32 — (2¢+ 3) sin pcos 0, — (£ + 1)(¢ +2) cos”t + £+ 1 — M| f(p) = 0.

Here, f can be recognized as a Lamé function as follows. With sinyp =
sn(w, k) and a = 75 this equation becomes

» | U+ DR B
(a W—MH)—A) W(w) =0

where W (w)dn(w, k)*' = f(¢). If we now choose the new variable w =
w + K this equation has the form of the Lamé equation

(2 — K20(£ + 1)sn*(w, k) — A) Q(w) = 0.

This is exactly the separation one would obtain from the original Laplace
equation that involved the use of coordinates v and v. Indeed if we choose the
elliptic coordinates u = sn?(u, k) and v = sn?(v, k) the X,Y, Z coordinates
can be taken to be

ik .
X = Rksu(u, k)sn(v, k), Y = Rycn( uk)en(v, k), 7= R%dn(u, k)dn(v, k).
We readily obtain the product formula

L(p, k)L(v, k) = K,/[ ikk'sn(p, k)sn(v, k)sn(w, k)— ll: n(p, k)en(v, k)en(w, k)

17



+%dn(u, k)dn (v, k)dn(w, k)]*L(w, k)dw, (37)
where L(z, k) is a solution of the Lamé equation
(02 — k*0(£ + 1)sn®(z, k) — \)L(2,k) =0

and the integral is over the path —2K < w < 2K. We now look at other
examples involving Heun functions. However, the basic method has been
outlined in this first example.

5 Rotational Heun functions

Here we consider rotational types of coordinates giving rise to Heun func-
tions that are not of Lamé type. Consider solutions of Laplace’s equation in
four dimensions with Cartesian coordinates X, Y, Z, and T. We choose new
coordinates

R e
(38)

In these coordinates the Laplace equation becomes

0= (0% +8§+82 +02)U =

@t 2ot gt P o, (fup o) | T o, (fopw)an) + Loz

Setting U = RZ(I> (u,v, ) we find that the equation for & is

{u_v[\/ au(yfuPt)a) -7} (UP(U)&)]—U%GZ—E(EJFQ)}@:O.

The separation equations have the form

P i~ % <2 900 =0,
\/7 (JoP()3)) _——v€(€+2)+)\)v()_0’

where we have chosen the ¢ dependence to be ®(u,v,¢) = U(u)V (v)e??,
If we put u = sn®*(u, k) and take as usual a = 1/k% then with U(u) =
(sn(u, k))~Y2U (), the differential equation satisfied by U is

YA+ + 200 () = 0.

iV — K0+ )(£+3) (p,k)+4

2 e
O+ an(u, k) 2

18



An identical equation is satisfied by V() where V (v) = (sn(v, k)) Y2V (v).
The operator characterizing the variable separation is

A= (a + 1)M)2(Y + G(M)Q(Z + Mx%z) + M)Q(T + M12/T'

Just as in the preceding section, we can realize any homogeneous solution of
degree ¢ as an integral transform from a model:

U= / /(T + 14X sinf cos ¢’ + 1Y sinOsin ¢’ + iZ cos 0)° f(6, ¢')dOdy'.
The generators of the rotations acting on the functions f(0, ¢') have the form
Mxy =0y, Mxz = —cos¢'dy+ cotfsing'dy + cos ' cot b,

My z = —sin¢'9p — cot O cos 9’0, + sin ¢’ cot 6,

/ : !

Myt =i(£+1)sinfsin @’ — isinfsin 'y + iC(?S(P Op — i31‘n<,0 ;
sin 6 sin 6

sin ¢’ cos ¢’

Mxr = —i(f + 1)sinf cos ¢’ + icosbcos 'Oy — iﬁa ;- i_(p

sinf ? sinf’

Mz = —i(£+1)cosf — isin00y.

We now seek eigenfunctions of A with eigenvalue A. If we look for solutions
of the form f(f,p) = W(w)e®? where sinf = sn(w, k) then with W (w) =
dn(w, k) ~¢32cn(w, k)/?Q(w) where w = w + K, we see that Q(w) satisfies
the differential equation

2

1
4 1 3 1
o . B T (R ~)sn? —(1 2 22 Qw) =
<w+sn2(w,k) ( +2)(£+2)sn (w,k)+4( +E)+ kN Qw) =0,
which is the exact same equation that arises from the separation of the
Laplace equation. We can similarly give a suitable product formula. In
fact
(sn (s, K)sn(v, ) ~2M (i, k) M (v, k)e™* = (39)
/f//[—ik'sn(u, k)sn(v, k)en(w', k) cos(¢ — ¢') — ken(p, k)en(v, k)sn(w', k)
+%dn(,u, E)dn(v, k)dn(w', k)]bsn(w’, k)2 M (W', k)e?? dw'dy’,
where M (z, k) is a solution of the ordinary differential equation
1 2
2 1 b
(9 + sn?(z, k)

and the integral is over the domain 0 < ¢’ < 27, 0 < ' < 2K. The ¢
integration of this product formula could in principle be calculated.

— k> (0 + %)(12 + g)an(z, k) + 3(1 + k%) + K2 A)M(z,k) = 0.
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6 General Heun functions

We now develop a product formula for reasonably general Heun functions.
We choose the coordinates

. -1 - 1) .
X+¢Y=R,/%e“", Z—i—iT:R\/(u =) . (40)

1—a

. (u—=a)(v—a) ;
U+zV:R¢ ala— 1) el

In these six coordinates the Laplace equation has the form

(0% + 05 + 0% + 02 + 05 + 02)¥ =
@+ 200+ - [Du(P()2,) ~ 0(P)D) + 07
l-—a 9 a(a —1)
w—Dw-D"" u—a)w-a
We look for solutions of the form ¥ = R‘f(u,v,p,v,0) and find that f
satisfies

051} = 0.

+

—4 [P(u)0y(P(u)8,) — P(v)0,(P(v)d,) + 2 52

u—v wv ¥

1—a ) ala —1) 2 _
@ Do DT a0 (e +4)f =0.

Assuming f = U(u)V (v)e®¥T4¥+i0 the separation equations have the form

[

+

a, (I1-a), ala—

{40, [u(u—1) (-2, - 2p Y2 ut(era)-2Uw) =0,

u—1 u—a
Y e e T VI TORT)
If we write U(u) = [u(u — 1)(u — a)]""/*U(u) then U(u) satisfies
(/PP (4 D)+ Dyt 2ot )+ 2+ E 2D gt
=Dl ow =0,

with a similar equation for V(v) If we use our standard substitution u =
sn?(u, k) then this equation has the form

2 1.2 § ? 2 § 2 # 1 L 1
((9“ k (g+2)(€+2)sn (1, k)+4(1+k )+sn2(u,k)(4 +cn2(,u, k)
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k’2

]‘ 2 2 2 _
+m(——r)—k MU (p) =0,

4
where U(y) = U(u). There is a similar equation for V (v). The operator with
eigenvalue A is

A = a(Myz+ Mg+ Mg+ M)+ Mgy +Myy + My + Mgy + (a+1) Mz

+(a — )Mz + (1 — a) My,

As usual we write our solution of Laplace’s equation as a transform of a
model:

U = /(V + iUSl + iZSQ + iT$3 + iYS4 + Z.XS5)ef(81, S2, 83, S4, 6‘5) ds

where s? + s2 + s2 + 52 + s2 = 1, we take ds as the differential on the four-
sphere, and integrate over the four-sphere. Again we need to calculate the
operators of the rotations on the space of functions f in coordinates that we
take to be

sy =cosf, s, =-sinflcospcosA, s3=sinfcospsinA,

s4 =sinflsinpcos B, s5=sin#sinpsin B.

In terms of these new variables we have f(s1, Sq, 83, 84,85) = f(0, ¢, A, B).
We do not give the expressions for these operators although they have been
computed by Maple. If we look for eigenfunctions of Mxy, Mzr and Myy
we see that the function f must have the form

sin 6

— (in f) -1
f(eawvAaB)_(Slne) (1+0080

)ireipAHfo(gD).

This follows from the expressions for the generators of the group acting on
the functions f(g, 8, A, B). We now seek the eigenfunctions of the operator
A and obtain the ordinary differential equation for f(y) viz.

a 1 —a)cos
+( ) cos

2 Va2 | o
_ o —2 — 0
((a — cos® )0, + sin p(—2€ cos ¢ cos o sin o )0+
(> —r*)cos® p+p*—ar’ —¢* — 0> =20 — °_p —a_zlqz—)\)f(@zo-
cos? ¢ sin” ¢

Substituting cos ¢ = sn(w, k) and a = 1/k?, and writing

f(p) = (sn(w, k)en(w, k))l/an(w, k)’£’5/29(w)
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with w = w 4+ K, we see that the differential equation for g(w) has the form

2 20y, 9 9y 9 ° oy, L L,
o, k(€+2)(£+2)SH(w’k)+4(1+k)+sn2(w,k)(4 p°)+
kIZ 1 ) k/? 1 ) )
CDQ(w,k)(Z_q)+dn2(w,k)(Z_T ) — k°Al g(w) = 0.

This is the same as the equation for the separable products derived earlier.
We can derive a product formula which looks quite symmetric:

(sn(p, k)en(u, k)dn(u, k)sn(v, k)en(v, k)dn(v, k)72 A(u) A(v)eetiastind
— m// (%dn(u, k)dn(v, k)dn(w, k) cos(@ — ¢)
—(%)%n(u, k)en(v, k)en(w, k) cos(A — )

—iksn(p, k)sn(v, k)sn(w, k) cos(B — 0)(sn(w, k)en(w, k)dn(w, &))"/
x A(w)ePQTuAtirBa, dA dB dQ

= ﬁ'/\P(a,ﬁ,’y)(sn(w,k)cn(w,k)dn(w,k))l/QA(w)dw, (41)
where
1 k
o= ﬁdn(,u, k)dn(v,k)dn(w, k), B = ﬁcn(u, k)en(v, k)en(w, k),

v = iksn(u, k)sn(v, k)sn(w, k)), €9 = tan g

The domainis 0 < A<2m, 0< B<2m, 0<C <21, - K<w<K.
To calculate the kernel function for this product formula we use the for-
mula

U(a, B,7) = ///cchc(a cos A + Bcos B + 7y cos C)be!PATaB+C) g A 4B dC

1 1 1 1.,
= o T(t+1)apy /C Iy 1 (GA) g1 (GAB) Ly (A7) A

where A runs over the unit circle and I,(z) is a second kind Bessel function.
This integral is evaluated for ¢ an integer and has an obvious analytical
continuation for complex 4.

We now give an example analogous to that of Section 4. We choose
coordinates in five dimensional space

X:R\/%sinHCosgo, Y:R,/ﬂsiHHSingo, (42)
a a
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Z=R\/%T)cos9, T:R\/(u_l)(v_l)’ U:R\l (u—a)(v—a)

l—a ala —1)

and we look for solutions of the Laplace equation
(0% + 05 + 0% + 02 + 07)¥ = 0.

In these coordinates this equation looks like

- P(u v/ P(v
{8§+£8R+i( 1 ( ( )8u(u P(u)d,) — ( )81,(1)\/P(v)81,)

R R2 'y —w U v
Jrﬁ(a2 + cot 00y + L62))}\11 =0
uv 0 97 sin2p"® ’

For solutions of the form U = R*PM(cos §) ¢M“U(u)V (v) then U (u) satisfies
the ordinary differential equation

(4,/ P i“) B, (u\/P(u)dy) — %J(J +1) = 06+ 3)u+ /\) Uu) =0

and V (v) satisfies a similar equation. If we write U(u) = U(u)u~'/? then the
differential equation for U(u) satisfies

(,/p(u)au(,/P(u)au) ~ LI 1) = () Dut At a 1) U (u) = 0.

With u = sn?(u, k) where a = 1/k? this equation has the form

2_J(J+1)_ 2402 2 2 —
(a“ 200 k) L+ 1)L+ 2)k*sn”(u, k) + k°A+ k +1>U(u) 0.

The operator that characterizes A is
A = a(Mxp+Myr+Mzp)+Miy+Myy+Mzy+(a+1) (Mzy + My z+Mx ),

and the separation constant —J(J + 1) is characterized by L = (M%y +
M2, + M%,). Solutions of the Laplace equation can be obtained by writing

/(U +4T cos A+iZsin Acos ' +iY sin Asin § sin ¢ +7.X sin Asin @' cos ¢')*

¥ f(A, 0, 5)dA df dp =,
where 0 < A<7, 0<0 <7, 0< ¢ <27.
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We adopt our usual procedure and look for eigenfunctions of A and L
when acting on the model functions f(A, ¢, ¢'). Solutions take the form

f(A,0,¢") = en(w, k)dn(w, k) ~1Q(w) sin 8 PM (cos ') e M¥'
where cos A = sn(w, k), a = 1/k* and w = w+ K. The function Q(w) satisfies
the differential equation

J(J+1)

(05— ol k) e 2)k%sn*(w, k) + A+ k* + 1)Q(w) = 0.

We can easily obtain a product formula for this particular case:
. 1
L(s, k)L (v, k)P (cos )2 = i [ [ [1()2dn(u, K)dn(w, K)dn(w, k)
k
~(& Ven(, K)en(v, Kyen(, k)
—iksn(u, k)sn(v, k)sn(w, k)(cosf cos @' + sin @ sin @' cos(p — )] (43)
xsn(w, k) L(w, k) sin ' PM (cos 0')e™ ¢ dw db' dy'.

The domain of integration is 0 < #' <7, 0 < ¢’ <27, —2K < w < 0. This
is apparently a new formula. Here L(z, k) satisfies the differential equation

J(J+1
% - % — (L+1)(C+2)k*sn*(z, k) + KA+ K + 1| L(z, k) = 0.

7 The general case of Heun type product for-
mulas

To obtain the most general product formulas we choose coordinates in p; +
p2 + p3 + 3 dimensional Euclidean space of the form

X = rUlspl, Y = TUQSPZ, Z = ’I'U?,Sp3

where r is a radial coordinate, s, are coordinates on a p dimensional sphere
and

U2 (u—e)(v—e)
b (e —ej)(e —ex)
for 7,7,k = 1,2,3 and 14, j, k pairwise distinct. The U; are the most gen-

eral form of 3D conical coordinates. We now look for separable solutions of
Laplace’s equation (0x - 0x + Oy - Oy + 0z - 0z)¥ = 0 of the form

U= TtU(U)V(U)’ﬂ'?legi (Spi)’ Aspi P&' (Spi) = _Ei(gi +Di — 1)P&' (Spi)
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where Ay~ is the Laplace operator on the p;-sphere. With ®(r,u,v) =
r'U(u)V (v) this equation becomes

(pl b2 b3 ) 97- (
(’U, — ’U)

r 72

L pr+1 p2+1 ps+1 (e1 —ez)(e1 —e3)

—P(0) (0 +3 By
W) ”+2(U — e +v — €2+U — 63) + (u—-e1)(v—er)
(e2 —e1)(eq —e3) (e3 —ez)(es —e1)
(u—e9)(v — e2) (u—e3)(v—e3)
where P(A) = (A — e1)(A — e2)(A — e3). The separation equations for the

functions U(u) and V' (v) are

1

“""2'u—e; u—e u-—es

(44)
LG +p—1)+

02+

by (lo+pe—1)+ 3(3+p3—1))®(r,u,v) =0

1 p+1 +1 +1
LD +}92 +p3

. 2
( 4P(/\)(a)\+2(/\—61 )\—62 )\—63

)Ox) +L({+p1+p2+ps—1)+ (45)

(ea —e1)(e2 — e3)
(/\ — 62)

b3l +p3 — 1) — w)AA) =0

(61 - 62)(61 - 63)
(A—e)
(e3 —e2)(es — e1)
(A —e3)
where A = U,V and A = u,v. If we look for solutions of the form A(\) =
[ngl()\—eq)]eq L(\) we see that L(\) satisfies the general Heun equation. We

can in fact find polynomial solutions to (44) as is indicated in [17]. Indeed if
we require

Ol +pr—1)+ Ly(ly +po — 1)

U? U2 U?
U(u)V (v) = T L+ 2 4+ 3
( ) ( ) ]—1(0]__61 9]'—62 Hj_€3

) (I, U)

then the solutions are in product form because of the identity

v, B (-
0—61 0—62 0—63_(0—61)(0—62)(0—63)'

The 6; satisfy the Niven equations

i(%ifpiﬂ)JrZ 4

=0.
o i i 0 — 0,
The separation constant has the value
= Z [—(ez- —ej— ek)ﬁz(& +p; — 1) -+ 261@'519 + (4q + 1)€i(€j + ek)-l-

1,j,k pairwise #
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q
+2qpi(ej+ek)]+4q2(el +62—|—€3) — [8(]—2—4(61 +£2 +€3)—2(p1 +p2+p3)] Z 01

i=1
Reverting to e; = 0,e3 = 1,e3 = 1/k? we have the product formula
(sn(p, k)sn(v, k) (en(u, k)en(v, k) (dn(p, k)dn(v, k)%
X L) L(v) Py, (81) Pr, (82) Pe (3)
= | / 2 / 3 [%dn(u, k)dn(, k)dn(w, £)ss - §'s (46)

14

k
+(E)20n(u, k)en(v, k)en(w, k)sg - s's — iksn(p, k)sn(v, k)sn(w, k)s; - s

sn(w, k) en(w, k)2dn(w, k) L(w) Py, (s'1) Pe, (s'2) Py, (83 ) ds'1ds' o ds' sdw.

Here ds; is the area measure taken over the sphere s; -s; = 1 and —K <
w < K. This is the most general formula possible. It is symbolic in the
sense that P, (s';) stands for a spherical function that has to be determined
in each special case, and L(u) is a Heun function.

8 Heun function identities from higher di-
mensional Niven operators

Now we apply the results of Section 3 to obtain examples of Niven operator
identities for Heun functions in more than three dimensions. Consider again
the example of rotational ellipsoidal coordinates (14),

X +4Y = %a’d’, Z=\/(“_1)(z:3(w_1), (47)

| w=a)(v—a)(w—a)
T_\l a(a — 1) .

We seek separated solutions of the Laplace equation
(0% + 0% + 0%+ 02)¥ =0
in these coordinates. A typical solution has the form

U = (sn(a, k)sn(B, k)sn(y, k) /2 My, () My, (B) My, (v)e™
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where M/, (0) satisfies the differential equation

i~ 1 3 1
(83 + Séip — k(0 + 5)(€+ §)sn2(0,k) + 1(1 + k) + k2A> M. (0) =0
(48)
and u = sn?(«, k), v = sn?(B, k) and w = sn?(v, k). Functions of the form

H(X,Y,Z,T) = /7r /7r (X sin @ cos p+Y sin @ sin o+ Z cos 0+iT)* £ (6, ¢)dOdy
0 J-m

are homogeneous solutions of the Laplace equation. Here, the Niven operator
is as given in Section 3 with D? = 0% + ad? . The relationship between
H(X,Y,Z,T) and Go(X,Y, Z,T) is

(_1)rD27“
= H,X,Y,Z,T
GZ(X,Y,Z7T) ;4TT'(€+2—7)(6+3—7‘)(£+1) é( s Ly £y )

To make sense of this expression for general ¢/ we need to employ our model.
If 7 is an integer then this expression could be written as

Gixvzm =y S ey Eraeey s,

ﬂ
i M”'“
(]

If we take H, in the form given above then, with x = (—cos?f + a) and
U = Xsinfcosp+ Ysinfsinp + Zcosf + i1, the formula gives

auxv,zm=["[" c;%)h(e, o)dods

where (6, o) = ™2 f(0, ¢) and C} (2) is a Gegenbauer polynomial. (Here the
function G is the ellipsoidal harmonic that is derived from the corresponding
harmonic H, via the analog of the Niven operator. This is the same notation
as used in the last chapter of [2].) Setting cos@ = —cn(4,k)/dn(d, k) and
noting that G,(X,Y,Z,T) can be taken to be a separated solution of the
rotational Heun differential equation

,/Piz)az(,/zp(z)az) + “77”2 —2(l+2)+ X Z(2)=0

where z = u, v, w, then

Go(X,Y, Z,T) = (sn(a, k)sn(B, k)sn(y, k)2 M}, () My, (8) My, (7)™
— K [ ” 1 2:; Cl(v)(sn(6, k)~ /2 M (6)e™ dsdy

27



where
v = k?sna snf3 sny snd cos(p—p)— (k% /k"*)ena en B eny end—(1/k")dna dn3 dny dné.

In terms of the coordinates

; -1 -1 —1) .
X4iy = |2z 40T = \/(“ )(Ti Jw—=1) iy
a —a

| (u=a)(v—a)(w—a)
U= J a(a —1) ’ (50)

separated solutions of the 5D Laplace equation
(0% + 05 + 05+ 074+ 0;)¥ =0
_ 7t ¢ ¢ i ¢ : :
take the form W = Lf (o) LY (B) L (7)e'®*T7) Here L. (2) is solution of

1

{40,[2(z — 1)(z — a)d,] + gpQ + %(f — 20 +4) — A}L(z) =0

where z = u, v, w. Homogeneous solutions of the Laplace equation take the
form

Hi(X,Y,Z,T,U) = /(Xs1 + Yo+ Zsy + Ty +iU)f (51, 52, 83, 54)ds

where ds is the standard area measure on the four-sphere and we set
sy =sinfcosp, sy =sinfsing, s3=cosfcos?)’, s, = cosfsin .

This solution is homogeneous of degree £ . We now relate this to G¢(X,Y, Z,T,U)
functions in the form

1
3t (_1)7*D2r

Ge=2 ssz—nisT2—r .. @s3z X410

where D? = 0% + 02 + ad%. This formula can also be expressed as

m(-1)*"' D

Gu(X,Y,Z,T,U) = ()13 (D)HU(X,Y, Z,T, ).

The explicit form is
2K ™ ™ 3
G X,Y, Z,T,U) = & / . / / C2 (n)h(6, 0, 4')ds dg iy,
—2 —mJ—7
8

2



n = k*sna snf sny sné cos(¢p — ) — (k*/k?)ena enf eny end cos(yp — )
—(1/k"®)dna dnj dnvy dné.

In fact we can derive the multiplication formula for Gy:

. m s 2K 3 . , ,
LL (@) LE (B) Ly (7)€@ ) = /_ ] /_ ] /_ | CR (L (0)E0# ) ds dp duy.

These results generalize in an obvious manner.
Now consider the general coordinate system

_ fuvw  Ju=1)(v—-1)(w-1) | (w=a)(v—a)(w—a)
X= TSP’Y_\/ 1—a Sq’Z_\l a(a—1)

The product formula takes the general form

Gn(X,Y, Z,T) = L(a)L(B)L(7) Pe(s1) Pm(s52) Pa(s3)

—n [ ] )Pt P a5 sy
where the intelgrazls c;sz- are over the sphere s; - s; =1,
p = k*sna snf sny sné s; - sy — (*/k™) cna enf3 eny cnd s, - sh
—(1/k"*) dna dng dnvy dnd s; - sh
and e = (p+q+71)/2.
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