LIE ALGEBRAS AND GENERALIZATIONS OF HYPERGEOMETRIC FUNCTIONS

ST OF THE COMMITTEE

for the A studies there there recovers to determine the expansion coefficients, the

in supprincipal party to mallounding a supprincipal as a discretion of party operation in

notifying anisomess and $0 = V_{n,n}$ by the notificent anything approximation of 0

By a sample transportantion and change at variable we obtain A set...

WILLARD MILLER, JR.

We show how Lie algebras can be employed to study $_2F_1$ and its generalizations. We use the differential recurrence relations obeyed by a family of hypergeometric functions to generate a Lie algebra whose action determines basic properties of the corresponding functions.

For the $_pF_q$ we introduce functions and operators

$$f_{\alpha_{j}\beta_{k}}(t_{j}, u_{k}, x) = {}_{p}F_{q}\begin{pmatrix} \alpha_{j} & | & x \end{pmatrix} t_{1}^{\alpha_{1}} \cdots t_{p}^{\alpha_{p}} u_{1}^{\beta_{1}} \cdots u_{q}^{\beta_{q}},$$

$$E_{\alpha_{l}} = t_{l}(x\partial_{x} + t_{l}\partial_{t_{l}}), \qquad E_{-\beta_{s}} = u_{s}^{-1}(x\partial_{x} + u_{s}\partial_{u_{s}} - 1), \qquad 1 \leq l \leq p,$$

$$E_{\alpha_{1}\cdots\beta_{q}} = t_{1}\cdots u_{q}\partial_{x}, \qquad T_{l} = t_{l}\partial_{t_{l}}, \qquad U_{s} = u_{s}\partial_{u_{s}}, \qquad 1 \leq s \leq q,$$

obtained from the recurrence formulas for $_pF_q$. The operators generate a Lie algebra $\mathscr{G}_{p,q}$ of dimension 2(p+q)+1 and the $f_{\alpha_j\beta_k}$ form bases for $\mathscr{G}_{p,q}$ -representations. Let

$$L_{p,q} = E_{\alpha_1} \cdots E_{\alpha_p} - E_{\alpha_1 \cdots \beta_q} E_{-\beta_1} \cdots E_{-\beta_q}.$$

THEOREM. If (1) $L_{p,q}f=0$, (2) $T_lf=\alpha_lf$, $1 \le l \le p$, (3) $U_sf=\beta_sf$, $1 \le s \le q$, and (4) f analytic at x=0, then $f=cf_{\alpha_j\beta_k}$, c constant.

THEOREM. The null space of $L_{p,q}$ is invariant under $\mathscr{G}_{p,q}$.

WEISNER'S PRINCIPLE. If (1) $L_{p,q}f=0$, (2) $f=\sum_{\alpha_j\beta_k}h_{\alpha_j\beta_k}(x)\,t_1^{\alpha_1}\cdots u_q^{\beta_q}$, (3) f analytic at x=0, and (4) $L_{p,q}$ can be applied term-by-term to the sum, then $h_{\alpha_j\beta_k}(x)=c_{\alpha_j\beta_k}f_{\alpha_j\beta_k}$, c a constant.

We can consider any analytic solution f of $L_{p,q}f=0$ as a generating function for the $_pF_q$ and use these theorems to determine the expansion coefficients. In practice f is characterized as a simultaneous eigenfunction of p+q operators in the enveloping algebra of $\mathscr{G}_{p,q}[1]$.

By a simple transformation and change of variable we obtain $E_{\alpha_j} = \partial_{z_j}$, $E_{\beta_k} = \partial_{w_k}$, $E_{\alpha_1 \cdots \beta_d} = \partial_{w_{d+1}}$,

(*)
$$L_{p,q} f = (\partial_{z_1} \cdots \partial_{z_p} - \partial_{w_1} \cdots \partial_{w_{q+1}}) f = 0.$$

In addition to the $\mathcal{G}_{p,q}$ symmetries, permutation symmetries of equation (*) are now apparent.

THEOREM. If
$$L_{p,q}f = 0$$
, $L_{p',q'}f' = 0$ then $L_{p+p',q+q'}(ff') = 0$.

In special cases the symmetry algebra is larger:

	function	Lf = 0	algebra	dimension	reference
1.	$_2F_1$	$\Delta_4 f = 0$	$sl(4) \cong o(6)$	15	[2], [3]
2.	$_1F_1$	$\Delta_2 f = \partial_t f$		9	[2]
3.	D_{ν}	$\Delta_1 f = \partial_t f$		6	[4]
4.	$_{2}F_{1}\left(_{1-\alpha-\beta}^{-\alpha,\beta} x\right)$	$\Delta_3 f = 0$	0(5)	10	[3].

Analogous results for Lauricella functions are ([2], [5]):

	function	$L_k f = 0, 1 \le k \le n$	algebra	dimension
5.	F_A	$(\partial u \partial u_k - \partial v_k \partial w_k) f = 0$	ol escentia	6n+2
6.	$F_{\mathcal{B}}$	$(\partial u_k \partial v_k - \partial w_k \partial w) f = 0$	ion 2to La	6n+2
7.	$F_{\mathcal{C}}$	$(\partial u \partial v - \partial u_k \partial w_k) f = 0$		3n+4
8.	F_D	$(\partial u \partial u_k - \partial v_k \partial v) f = 0$	sl(n+3)	$(n+3)^2-1$

REFERENCES

- W. Miller, Jr., Lie theory and generalized hypergeometric functions, SIAM J. Math. Anal. 3 (1972), 31-44.
- Lie theory and generalizations of the hypergeometric functions, SIAM J. Appl. Math. (to appear).
- Symmetries of differential equations: The Euler-Darboux and hypergeometric equations, SIAM J. Math. Anal. 4 (1972), 314–328.
- 4. L. Weisner, Generating functions for hermite functions, Canad. J. Math. 11 (1959), 141-147. MR 22 #786.
 - 5. W. Miller, Jr., Lie theory and the Lauricella functions FD, J. Math. Phys. 13 (1972), 1393-1399.

THE VALUE OF THE PERSON OF THE

University of Minnesota