LIE ALGEBRAS AND GENERALIZATIONS
OF HYPERGEOMETRIC FUNCTIONS

WILLARD MILLER, JR.

We show how Lie algebras can be employed to study,F; and its generalizations.
We use the differential recurrence relations obeyed by a family of hypergeometric
functions to generate a Lie algebra whose action determines basic properties of
the corresponding functions.

For the ,F, we introduce functions and operators
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obtained from the recurrence formulas for ,F,. The operators generate a Lie

algebra ¢, , of dimension 2(p+g)+1 and the f;, , form bases for ¥, -represen-
tations. Let
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TueoreM. If (1) L, .f=0, (2) if=af, 1ZI<p, (3) U f=B.f. 1S5=q, and
(4) fanalytic at x=0, then f=cf, g, ¢ constant.

THEOREM. The null space of L, , is invariant under %, ,.

WESNER'S PRINCIPLE.  If (1) L, of=0, (2) /=) . 5, s (%) £5*---153, (3) [ ana-
Iytic at x=0, and (4) L, , can be applied term-by-term to the sum, then h, ; (x)=
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We can consider any analytic solution f of L, . f=0 as a generating function
for the ,F, and use these theorems to determine the expansion coefficients, In
practice f is characterized as a simultaneous eigenfunction of p+g operators in
the enveloping algebra of %, [1].

By a simple transformation and change of variable we obtain E,=0,,
Ep =00 Ey .5, =0w_. .5

(%) Lot =020 =0 0 =0

In addition to the %, , symmetries, permutation symmetries of equation (*)
are now apparent.

THEOREM. If L, . f=0,L, .f'=0then L, ... (ff")=0.

In special cases the symmetry algebra is larger:

function Lf=0 algebra dimension  reference
1 o A,f=0 sl(4)=0(6) 15 2], [3]
2. Fy A,f=0,f | 9 2
3 D, A, f=d.f 6 [4]
4. F (121, %) 4d3/=0 o(5) 10 3].

Analogous results for Lauricella functions are ([2], [5]):

function L,f=0, 1£kZn algebra  dimension
5. F (Fudu, — v dw,) =0 6n+2
6. Fp (Cuy 0o, — Owdw) =0 6n+2
7 F, (Gudv—du,dw,) f=0 3n+4
8. F, (Cudu, —ov,0v) f=0  sl(n+3) (n+3)*—1
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