Math 2243, Final exam solutions

(1)

Problem 1.
Find the general solution y(t) to the following ODE: ¢/ + 3ty = t.

There are several ways to do this problem since the equation is seperable and
linear. Here is one solution:

The integrating factor is u = e/3 = Cje and we can choose C7 = 1
as usual. So the homogeneous solution is Ce™3/2. The particular solution
can be calculated by ([ tdt)/u = (¢**/?)/3u = 1/3. So the final answer is

Ce /2 1 1/3.

3t2/2

Problem 2.

Show that the functions {e’,te’,t%e'} are linearly independent by using the
Wronskian.

The Wronskian is

et te! t2et
Det | €' e'(t+1)  €'(2t+t?)
et el(t+2) ef(2+4t+t?)
The determinant can be simplified by subtracting row 1 from rows 2 and 3.
This gives us:

e tel t2et
Det | 0 e €'(2t)
0 2" e'(2+ 4t)
which is equal to ef (e xef (2+4t) —2tet x2e!) = 2¢3. Since 2¢3! is not identically
zero, the functions are linearly independent.

Problem 3.

Find the solution to the initial value problem y” —y = 4ef, y(0) = —1,
y'(0) = 1.

First we find the homogeneous solution by considering the characteristic equa-
tion 72 — 1 = 0. This has roots %1, so vy, = Cie! + Chet. To find a particular
solution we can use undetermined coefficients. Since the inhomogeneous term
4e! is in the span of the homogeneous solutions, we should consider functions of
the form y, = Ate’. Then y, = Ae' 4 Ate' and y; = 2Ae’ + Ate'. Plugging that
into the ODE we find that

246! + Ate' — Ate! = 2A4e! = 4!
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so A = 2 and y, = 2te’. Now we know the general form of the solution is
Un + yp = Cret + Coe™" + 2tet.

The initial conditions give us two linear equations for C; and Cs5. To compute
the second initial condition equation we need y'(t) = Cie' — Coe® + 2¢* + 2tet.

y(O) =-1 :Ol+C2+O
and
y(0)=1=C; —Cy +2+0.

These equations could be solved by row-reducing an augmented matrix for
the system. Or we can simply add the two equations to see that —2 = 2C; and
so 1 = —1. Substituting that into the first equation we find Cy = 0.

So the final answer to this IVP is y(t) = 2te’ — €.

(4) Problem 4.

Find the general form of the solution for the following linear system
=y =a
There are several ways to solve this problem. Considered as a matrix system,

we can compute the characteristic polynomial A> — 1 = 0 and we find that
A = *1. The eigenvectors are solutions to the systems

HIBRg
ERIBEE!

The respective matrices row reduce to
11
0 0
1 -1
0 0 |~

This implies that v = (vy,v2) = (a,—a) and w = (w1, ws) = (a,a). We can
choose a = 1 in both cases. Now we know that solutions to the system are
Crefv + Coe fw. Written out in (z,y) components, x(t) = Cie! + Coe™" and
y(t) = Cret — Cye™.
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(5) Problem 5.

Let K C R? be the subspace K = {(z,y,2) € R*|x = y} and let L C R? be
the subspace L = {(z,y, 2) € R}z = —y and z = 0}. Le., K consists of vectors
of the form (z,z, z) and L consists of vectors of the form (z, —z,0).

Find a linear transformation from R?® to R? which has K as its kernel and L
as its range.

Perhaps it is worth noting that very few people got this question right.

The kernel K is two dimensional and is spanned by vectors of the form (¢, ¢, 0)
and (0,0,c¢) (other choices are possible but this is among the simplest). In
particular let us choose a basis v; = (1,1,0) and vs = (0,0, 1) for K. Let us
write a matrix for our linear transformation as

11 Q12 413
A= Q21 Q22 0423
31 Aazz ass

Now the condition that K is the kernel is equivalent to Av; = 0 and Avg = 0.
Expanding these equations gives us the conditions ao = —aji, as = —asy,
azs = —ag1, and a;3 = 0, asz = 0, azz3 = 0. So our matrix A must be of the form

a;n —app 0
A= as —az 0
a1 —az 0

The fact that L must be the range space means that Av must be of the form
(b, —b,0)T for any vector v. Let us write v = (X, Y, Z) so we must have

ai;pr —aq 0 X b
21 —a921 0 Y = —b
31 —asy 0 Z 0

Expanding this out and factoring gives us three equations: a1, (X —Y) = b,
ag (X —Y) = —b, and a3, (X —Y) = 0, which must hold for all X and Y. In
particular they must hold for X # Y, so the last equation forces az; = 0. Adding
together the first two equations gives us (a1 + a91)(X —Y) = 0 50 ag = —aq;.

Thus any matrix of the form

al —ay; 0
A= | —an an 0
0 0 0

has the desired properties.

(6) Problem 6.



Find a 2x2 matrix A with non-zero entries which satisfies the equation

A2+ A=0.

There are several ways to do this problem. Perhaps the best is to use the
Cayley-Hamilton theorem as follows:
First let us write our unknown matrix A as

a b
A= { o } |
The Cayley-Hamilton theorem says that a matrix will satisfy its own charac-
teristic polynomial. So lets suppose that the characteristic polynomial of A is
A% + X = 0. This would mean that the eigenvalues of A were 0 and —1. Recall

that the trace of a matrix equals the sum of its eigenvalues and the determinant
equals the product of the eigenvalues. This means that

tr(A) =a+d= -1

and
det(A) = ad — be = 0.
So we can set d = —1 — a and substitute that into the second equation to
obtain bc = —a(1 + a). Using a and b to parameterize our solution, the matrix

A must be of the form

a b
et (g 41) |

Aslong as a # —1, a # 0, and b # 0, any A of the above form will have all
non-zero entries and satisfy the required equation.

A=



