## Math 2243, Final exam solutions

(1) Problem 1.

Find the general solution $y(t)$ to the following ODE: $y^{\prime}+3 t y=t$.
There are several ways to do this problem since the equation is seperable and linear. Here is one solution:

The integrating factor is $\mu=e^{\int 3 t}=C_{1} e^{3 t^{2} / 2}$ and we can choose $C_{1}=1$ as usual. So the homogeneous solution is $C e^{-3 t^{2} / 2}$. The particular solution can be calculated by $\left(\int \mu * t d t\right) / \mu=\left(e^{3 t^{2} / 2}\right) / 3 \mu=1 / 3$. So the final answer is $C e^{-3 t^{2} / 2}+1 / 3$.
(2) Problem 2.

Show that the functions $\left\{e^{t}, t e^{t}, t^{2} e^{t}\right\}$ are linearly independent by using the Wronskian.

The Wronskian is

$$
\operatorname{Det}\left[\begin{array}{ccc}
e^{t} & t e^{t} & t^{2} e^{t} \\
e^{t} & e^{t}(t+1) & e^{t}\left(2 t+t^{2}\right) \\
e^{t} & e^{t}(t+2) & e^{t}\left(2+4 t+t^{2}\right)
\end{array}\right]
$$

The determinant can be simplified by subtracting row 1 from rows 2 and 3 . This gives us:

$$
\operatorname{Det}\left[\begin{array}{ccc}
e^{t} & t e^{t} & t^{2} e^{t} \\
0 & e^{t} & e^{t}(2 t) \\
0 & 2 e^{t} & e^{t}(2+4 t)
\end{array}\right]
$$

which is equal to $e^{t}\left(e^{t} * e^{t}(2+4 t)-2 t e^{t} * 2 e^{t}\right)=2 e^{3 t}$. Since $2 e^{3 t}$ is not identically zero, the functions are linearly independent.

## (3) Problem 3.

Find the solution to the initial value problem $y^{\prime \prime}-y=4 e^{t}, y(0)=-1$, $y^{\prime}(0)=1$.

First we find the homogeneous solution by considering the characteristic equation $r^{2}-1=0$. This has roots $\pm 1$, so $y_{h}=C_{1} e^{t}+C_{2} e^{-t}$. To find a particular solution we can use undetermined coefficients. Since the inhomogeneous term $4 e^{t}$ is in the span of the homogeneous solutions, we should consider functions of the form $y_{p}=A t e^{t}$. Then $y_{p}^{\prime}=A e^{t}+A t e^{t}$ and $y_{p}^{\prime \prime}=2 A e^{t}+A t e^{t}$. Plugging that into the ODE we find that

$$
2 A e^{t}+A t e^{t}-A t e^{t}=2 A e^{t}=4 e^{t}
$$

so $A=2$ and $y_{p}=2 t e^{t}$. Now we know the general form of the solution is $y_{h}+y_{p}=C_{1} e^{t}+C_{2} e^{-t}+2 t e^{t}$.

The initial conditions give us two linear equations for $C_{1}$ and $C_{2}$. To compute the second initial condition equation we need $y^{\prime}(t)=C_{1} e^{t}-C_{2} e^{t}+2 e^{t}+2 t e^{t}$.

$$
y(0)=-1=C_{1}+C_{2}+0
$$

and

$$
y^{\prime}(0)=1=C_{1}-C_{2}+2+0 .
$$

These equations could be solved by row-reducing an augmented matrix for the system. Or we can simply add the two equations to see that $-2=2 C_{1}$ and so $C_{1}=-1$. Substituting that into the first equation we find $C_{2}=0$.

So the final answer to this IVP is $y(t)=2 t e^{t}-e^{t}$.

## (4) Problem 4.

Find the general form of the solution for the following linear system

$$
x^{\prime}=y ; y^{\prime}=x
$$

There are several ways to solve this problem. Considered as a matrix system, we can compute the characteristic polynomial $\lambda^{2}-1=0$ and we find that $\lambda= \pm 1$. The eigenvectors are solutions to the systems

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

and

$$
\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The respective matrices row reduce to

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right] .
$$

This implies that $v=\left(v_{1}, v_{2}\right)=(a,-a)$ and $w=\left(w_{1}, w_{2}\right)=(a, a)$. We can choose $a=1$ in both cases. Now we know that solutions to the system are $C_{1} e^{t} v+C_{2} e^{-t} w$. Written out in ( $x, y$ ) components, $x(t)=C_{1} e^{t}+C_{2} e^{-t}$ and $y(t)=C_{1} e^{t}-C_{2} e^{-t}$.

## (5) Problem 5.

Let $K \subset \mathbb{R}^{3}$ be the subspace $K=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y\right\}$ and let $L \subset \mathbb{R}^{3}$ be the subspace $L=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=-y\right.$ and $\left.z=0\right\}$. I.e., $K$ consists of vectors of the form $(x, x, z)$ and $L$ consists of vectors of the form $(x,-x, 0)$.

Find a linear transformation from $\mathbb{R}^{3}$ to $\mathbb{R}^{3}$ which has $K$ as its kernel and $L$ as its range.

Perhaps it is worth noting that very few people got this question right.
The kernel $K$ is two dimensional and is spanned by vectors of the form $(c, c, 0)$ and $(0,0, c)$ (other choices are possible but this is among the simplest). In particular let us choose a basis $v_{1}=(1,1,0)$ and $v_{2}=(0,0,1)$ for $K$. Let us write a matrix for our linear transformation as

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] .
$$

Now the condition that $K$ is the kernel is equivalent to $A v_{1}=\overrightarrow{0}$ and $A v_{2}=\overrightarrow{0}$. Expanding these equations gives us the conditions $a_{12}=-a_{11}, a_{22}=-a_{21}$, $a_{32}=-a_{31}$, and $a_{13}=0, a_{23}=0, a_{33}=0$. So our matrix A must be of the form

$$
A=\left[\begin{array}{lll}
a_{11} & -a_{11} & 0 \\
a_{21} & -a_{21} & 0 \\
a_{31} & -a_{31} & 0
\end{array}\right]
$$

The fact that $L$ must be the range space means that $A v$ must be of the form $(b,-b, 0)^{T}$ for any vector $v$. Let us write $v=(X, Y, Z)$ so we must have

$$
\left[\begin{array}{lll}
a_{11} & -a_{11} & 0 \\
a_{21} & -a_{21} & 0 \\
a_{31} & -a_{31} & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
b \\
-b \\
0
\end{array}\right] .
$$

Expanding this out and factoring gives us three equations: $a_{11}(X-Y)=b$, $a_{21}(X-Y)=-b$, and $a_{31}(X-Y)=0$, which must hold for all $X$ and $Y$. In particular they must hold for $X \neq Y$, so the last equation forces $a_{31}=0$. Adding together the first two equations gives us $\left(a_{11}+a_{21}\right)(X-Y)=0$ so $a_{21}=-a_{11}$.

Thus any matrix of the form

$$
A=\left[\begin{array}{ccc}
a_{11} & -a_{11} & 0 \\
-a_{11} & a_{11} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

has the desired properties.

## (6) Problem 6.

Find a $2 \times 2$ matrix $A$ with non-zero entries which satisfies the equation

$$
A^{2}+A=0
$$

There are several ways to do this problem. Perhaps the best is to use the Cayley-Hamilton theorem as follows:

First let us write our unknown matrix $A$ as

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

The Cayley-Hamilton theorem says that a matrix will satisfy its own characteristic polynomial. So lets suppose that the characteristic polynomial of $A$ is $\lambda^{2}+\lambda=0$. This would mean that the eigenvalues of $A$ were 0 and -1 . Recall that the trace of a matrix equals the sum of its eigenvalues and the determinant equals the product of the eigenvalues. This means that

$$
\operatorname{tr}(A)=a+d=-1
$$

and

$$
\operatorname{det}(A)=a d-b c=0 .
$$

So we can set $d=-1-a$ and substitute that into the second equation to obtain $b c=-a(1+a)$. Using $a$ and $b$ to parameterize our solution, the matrix $A$ must be of the form

$$
A=\left[\begin{array}{cc}
a & b \\
\frac{-a(a+1)}{b} & -(a+1)
\end{array}\right] .
$$

As long as $a \neq-1, a \neq 0$, and $b \neq 0$, any $A$ of the above form will have all non-zero entries and satisfy the required equation.

