1	2	3	4

Last Name: \qquad
First Name: \qquad
ID: \qquad Section: \qquad
Math 2243, April 28, 2004

There are 4 partial credit questions. NO GRAPHIC CALCULATORS are permitted. GOOD LUCK !

1. Answer all the following questions :
a) Is there any injective linear transformation $T: R^{3} \rightarrow R^{2}$. If yes, give an example.[5 pts.]
b) Give an example of a matrix satisfying the equation $A^{2}+2 A+I_{2}=0$. (Hint: remember that every matrix satisfyes its own characteristic equation).[5 pts.]
c) Let $T: R^{2} \rightarrow R^{2}$ be the reflection about the line of equation $x=y$. Find the eigenspaces of T.[15 pts.]
2.

a) Using the conservation of energy principle(kinetic+potential=constant) write down the equation of motion for a simple pendulum(interpreting the angle made the pendulum with the vertical equilibrium postion as of function of time).DO NOT ATTEMPT TO SOLVE THE EQUATION YOU GET![10 pts.]
b) Is the equation you obtain in part a) a linear differential equation? [$\mathbf{1 0} \mathbf{p t s}$.]
3. Solve the Initial-Value-Problem

$$
y^{\prime \prime}+y^{\prime}=e^{-t} ; y(0)=0 ; y^{\prime}(0)=0
$$

(Hint: try a particular solution $y_{p}(t)=t e^{-t}$) [35 pts.]
4. Let $v_{0}=<1,0,-1>\in R^{3}$ and $T: R^{3} \rightarrow R^{3}$ be the linear transformation defined as

$$
T(v)=v \times v_{0} .
$$

What is the kernell and the range of this linear transformation?[15 pts.] What is the matrix of the linear transformation? [$\mathbf{1 0} \mathbf{~ p t s .]}$

