MATH 2243: LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS SAMPLE MIDTERM TEST III

INSTRUCTOR: SASHA VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper and a pencil or pen may be kept on your desk during the test. You must show all work.

Good luck!
Problem 1. (1) Find the inverse of the following matrix:

$$
A=\left[\begin{array}{ccc}
0 & 2 & 1 \\
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

(2) Use the inverse of A to solve the system (another way of solving it will not be counted)

$$
\begin{aligned}
2 y+z & =1 \\
x+z & =0 \\
x-y & =-1 .
\end{aligned}
$$

Problem 2. Use Cramer's rule to determine the unique solution to the system $A \mathbf{x}=\mathbf{b}$ for the following matrix and vector:

$$
A=\left[\begin{array}{ccc}
4 & 1 & 3 \\
2 & -1 & 5 \\
2 & 3 & 1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
5 \\
7 \\
2
\end{array}\right]
$$

Problem 3. (1) Determine whether or not the set

$$
S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}
$$

is a subspace of \mathbb{R}^{2}. Justify your answer.
(2) What is the span of this subset? Justify your answer.

Problem 4. Decide whether the set $S=\left\{x^{2}, 1-x^{2}\right\}$ is a linearly independent subset of the vector space P_{3} of polynomials of degree less than three. Justify your answer.

