
C. P. Boyer, E. G. Kalnins, and W. Miller, Jr.
Nagoya Math. J.
Vol. 60 (1976), 35-80

SYMMETRY AND SEPARATION OF VARIABLES FOR THE

HELMHOLTZ AND LAPLACE EQUATIONS

C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

Introduction.

This paper is one of a series relating the symmetry groups of the
principal linear partial differential equations of mathematical physics and
the coordinate systems in which variables separate for these equations.
In particular, we mention [1] and paper [2] which is a survey of and
introduction to the series. Here we apply group-theoretic methods to
study the separable coordinate systems for the Helmholtz equation.

(4* + ω2)Ψ(x) = 0 , x = (xlf x29 x3) ,

4* = 3ii + d22 + d33 , ω > 0 ,

and the Laplace equation

(0.2) ΔzW{x) = 0 .

It is well-known that (0.1) separates in eleven coordinate systems,
see [3], Chapter 5, and references contained therein. Moreover, in [4]
it is shown that these systems correspond to commuting pairs of second
order symmetric operators in the enveloping algebra of <?(3), the sym-
metry algebra of (0.1). However, we show here for the first time how
one can systematically make use of the representation theory of the
Euclidean symmetry group £7(3) of the Helmholtz equation to derive
identities relating the different separable solutions. As we will point
out, some of these identities are new.

It is also known that there are 17 types of cyclidic coordinate systems
which permit i?-separation of variables in the Laplace equation and these
appear to be the only such separable systems for (0.2), [5]. (An in-
separable coordinate system {u,v,w} for (0.2) is a coordinate system
which permits a family of solutions
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(0.3) ΨΛtμ(x) = R(u, v9

where λ, μ are the separation constants and R is a fixed factor such that
either R = 1 (pure separation) or R φ 1 and R cannot be written in the
form R = Rx(u)R2(y)Rz(w).) In Sections 1 and 6 we will list all of these
systems together with the inseparable solutions and show for the first
time that each system corresponds to a commuting pair of second-order
symmetric operators in the enveloping algebra of the conf ormal symmetry
algebra so(4,1) of (0.2). Furthermore, we will demonstrate how to use
the local representation theory of the conformal group to derive identi-
ties relating the various separable solutions of the Laplace equation.

In order to make this paper more useful for the reader interested
in applications of the representation-theoretic characterization of sepa-
ration of variables to other problems we have listed the separation
equations and separated solutions in some detail.

Finally, we point out that this work is very much in the spirit of
the books of Harry Bateman, [6], [7], who earlier showed the great im-
portance of separation of variables for the derivation of physically
significant special function identities.

Section 1. The symmetry groups of the Helmholtz and Laplace equations.

A symmetry operator for (0.1) is a linear differential operator

(1.1) L = Σ aj(x)dj + 6(x)
1. 7 = 1

where aj9 b are analytic functions of xl9 x2> xz in some domain 3d in R3

such that Lψ is a solution of the Helmholtz equation in 2 for any an-
alytic solution ψ of (0.1) in 2, [2]. It is easy to show that the set of
all such symmetry operators is a Lie algebra under the operations of
scalar multiplication and commutator bracket [L19 L2] = LXL2 — L2Lλ. In
particular, apart from the trivial symmetry £7 = 1, the symmetry algebra
of (0.1) is six-dimensional with basis

( 1 2 )

 P3 = dj > = 1,2,3 ,

and commutation relations

l*f e> JraJ — Z_i εemnJn > We* •» mJ — Z J ^tmnPn

(1.3)
[P,,PJ = 0, e,m,n = \,2,Z ,



SYMMETRY AND SEPARATION OF VARIABLES 37

where εmn is the completely skew-symmetric tensor such that ε123 = + 1 .

We take the real Lie algebra £(Z) with basis (1.2) as the symmetry

algebra of (0.1). In terms of the P-operators the Helmholtz equation

reads

(1.4) (PI + PI + PDΨ = - ω 2 ψ ,

and each element of ^(3) commutes with Σ5-i-Py

As is well-known, $(3) is isomorphic to the Lie algebra of the

Euclidean group in three-space E(3) and the subalgebra so(3) with basis

{J19J29J3} ί s isomorphic to the Lie algebra of the proper rotation group

SO(3), [8]. Indeed, consider the well-known realization of SO(3) as the

group of real 3 x 3 matrices A such that A1 A = Ez and detA = + 1 .

(Here, E3 is the 3 x 3 identity matrix.) The Lie algebra of SO(3) in

this realization is the space of 3 x 3 skew symmetric matrices jrf,

(sf* = —j/). A basis for this Lie algebra is provided by the matrices

(1.5)

with commutation relations L/ί,</iJ = Σ« Ztmnfn in agreement with (1.3).

A convenient parametrization of SO(3) is that in terms of Euler angles

A(φ, θ, ψ) = exp (φ/ί) exp (θ/ΐ) exp

0 < p < 2 τ r , 0 < ^ < τ r , 0 < ψ < 2 ^ ,

see [8] for details.

The Euclidean group in three-space E(3) can be realized as a group

of 4 x 4 real matrices

! 0 Ί
A \0 A β SO(3)

(1.7) g(A,a)= - ,
i.υ.. a = (αlf α2, α3) 6 if5 ,

α!α2α311

with group product given by matrix multiplication:

(1.8) g(A, a)g(A', α') = g(AA', aA' + α') .

Now E(3) acts as a transformation group in three-space R3. The group

element g(A,ά) maps the point xeR3 to the point
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(1.9) xg = xA + a e Rz .

It follows easily from this definition that x(gg') — {xg)gf for all x e R\

g, gf e E(S) and that xg(E3, O) = x. Geometrically, g corresponds to a

rotation A about the origin O e R3 followed by a translation α.

A basis for the Lie algebra of the matrix group E(S) is given by

the matrices

(1.10)

10
/ί |θ

jo
o o oϊo

= 1,2,3

0

1 0 0

i o
io
jo
io 0

0

1 0

jO

o
0

io

op —
0

i 0 0 1

jO"

o
0

io

with commutation relations identical to (1.3). This shows that the Lie

algebra «?(3) with basis (1.2) is isomorphic to the Lie algebra of E(S).

The explicit relation between the Lie algebra generators (1.10) and the

group elements (1.7) is

g(φ, θ, ψ, a) = g{A{φ, θ, ψ), a)

= A(φ, θ, ψ) exp
(1.11)

where A is given by (1.6).

Using standard Lie theory methods we can extend the action of

^(3) by Lie derivatives (1.2) on the space 2F of analytic functions defined

on some open connected set & c R\ to a local representation T of £7(3)

on J*', [9]. We find

T(g)Φ(x) = {exp (φjz) exp (βJd exp (ψ J3)

X exp (aιPι + a2P2 +
(1.12)

where xg is defined by (1.9). Here,

exp(αL) = f]anLn/n\

and Φ e 8P. By construction

(1.13) TiggO = T{g)T{g') , g,g'e E(S) ,

= Φ(xg)
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and the operators T(g) map solutions of the Helmholtz equation to

solutions.

In a manner analogous to the construction of the first-order symmetry

operators L, (1.1), we can also determine the possible second-order

differential operators S which map solutions of (0.1) into solutions. Let

Sf be the vector space of all such operators. Among the elements of Sf

are the trivial symmetries ΦQ, Φe«f, Q = Σu=ip) + ω* (Clearly ΦQ is

a symmetry operator since it maps every solution of (0.1) to the zero

solution.) Factoring out the subspace SL of trivial symmetries, one can

show by a tedious computation that SfjΆ is forty-one dimensional with

a basis consisting of the identity operator E, the six first-order operators

J£,Pe and thirty-four purely second-order symmetrized operators. The

space ίf(3)2 of second-order symmetrized operators is spanned by the

elements {Jt,Jm}, {J,,Pm}, {Pi9Pm} where

{A,B} = AB + BA ,

and these elements are subject only to the relations

(1.14) 7
n n 'V~1 D2 -.2

k = l

the latter relation holding only on the solution space of (0.1), [4].

Since (0.1) is an equation in three variables, two separation con-

stants are associated with each separable coordinate system. Based on

the general program relating symmetry to separation of variables, [2],

we expect the separated solutions for orthogonal coordinate systems to

be characterized as common eigenf unctions of a pair of commuting sym-

metry operators in *f(3)2. This was shown to be the case already

in [4]. (In addition one can find a number of rather trivial non-

orthogonal separable coordinate systems which correspond to the diago-

nalization of first-order operators.) The authors of this work showed

that each of the eleven orthogonal separable systems corresponds to a

pair of independent commuting operators S19S2 in £(3)2 such that the

associated separable solutions ψ = U(u)V(v)W(w) are characterized by the

eigenvalue equations

(1.15) (J 3 + ω2)ψ = 0 , Siψ = ωlψ, S2ψ =



40 C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

where ω\,ω\ are the separation constants. (It can be shown that there

are no non-trivial β-separable solutions.)

Put another way, a separable system is associated with a two-

dimensional subspace of commuting operators in <ί(3)2 and S19S2 is a

basis (non-unique) for the subspace. The group £7(3) acts on the set of

all two-dimensional subspaces of commuting operators in «f(3)2 via the

adjoint representation (S —> T(g)ST(g~1)9 g e E(3)), and decomposes this set

into orbits of equivalent subspaces. One regards separable coordinates

associated with equivalent subspaces as equivalent, since one can obtain

any such system from any other by a Euclidean coordinates transforma-

tion. As proved in [4] there are eleven types of distinct orbits and they

match exactly the eleven types of orthogonal separable coordinates. Re-

presentative operators from each orbit and the associated coordinate

systems are listed in Table 1.

TABLE 1. Operators and separable coordinates
for the Helmholtz equation.

Commuting

operators Sl9S2 Coordinates

1. P2,, PI Cartesian x,y,z

2. J\, P\ Cylindrical

x = r cos <p, y = r sin φ, z = z

3. {J3,P2},P2

3 Parabolic cylindrical

x = W - v2), y = ξη, z = z

4. J\ + d2P\,Pl,d>0 Elliptic cylindrical

x = d cos a cos β, y =z d sinh a sin β, z = z

5. J-J,J\ Spherical
x = p sin θ cos φ> y = psinθ sin φ, z = p cos θ

6. /•/ - a\P\ + Pΰ, Prolate spheroidal

J\, a > 0 x = a sinh η sin a cos φ, y = a sinh η sin a sin φ,

z — a cos η cos a

7. JJ + a\P\ + Pϊ), Oblate spheroidal

«7|, α > 0 x = a cosh η sin α cos φ, y = α cosh 5 sin α: sin 9?,
2 = α sinh 9 cos a

8. {Λ, ^2} - {J2> Pι}> Jl Parabolic
X = ξη COS <p9 y = ξη Sin φ, Z = J(ί2 — ̂ 2)

9. J^ - c2Pi + c({/2, Pi} Paraboloidal
+ {J19 P2}), x = 2c cosh a cos j8 sinh γ,
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10.

11.

+ JJ,
J\ + a{J{ + PI),

J J,J\ + bJ\,
1 > b >0

i/ = 2c sinh a: sin /} cosh γ,

z = c (cosh 2α + cos 2/3 — cosh

Ellipsoidal

x = [((μ - α)(* - α)(^ - α))/(α(α -
y = [((μ - i)(p - i)(p _ α))/(l - α)]1'2

z — [μvp/a]1/2

Conical

x = r[((bμ - l)(bv -

D

κ2

κz

= X2 + (

= £3 + 0

xl — xl

xl-xl

xl - xl

x2d2 + a

— #i$)9i •

- xί)d2 -

- %ϊ)dz -

f 2x1x3d3 -

f 2x2x3d3 -

f 2^3^^! -

f- 2xλx2d2

h 2^2^^!

Before embarking on a detailed study of these systems we present

the analogous results for the Laplace equation (0.2). It is straight-

forward to check that, apart from the trivial symmetry E, the symmetry

algebra of this equation is ten-dimensional. In addition to the six

symmetries (1.2) which generate the subalgebra #(3) we have the generators

(1.16)

Here D is the generator of dilatations and the Kά are generators of

special conformal transformations to be discussed below. Only the ele-

ments of the ^(3) subalgebra actually commute with the Laplace operator

J3. The remaining elements of the Lie algebra merely leave the solution

space of (0.2) invariant.

The real symmetry algebra generated by these elements is isomorphic

to so(4,1), the Lie algebra of all real 5 x 5 matrices si such that

+ G 4 ' 1 ^ = 0 where

0

0 - 1

Here <?€i is the 5 X 5 matrix with the entry 1 in row i, column j , and

0 everywhere else.
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ί

Mi =

A basis for so(4,1) is provided by the ten elements

(1 17) Γab ^ iab ~ iba = ~Γba ' 1 ~ °" b ~ 4

where

(1.18) l Γ α 5 ,

U αδ>

— δbcΓad + ^ad^bc +

= dacΓdδ — δadΓcδ

+ δdbΓca

One can verify that the correct commutation relations for the operators
(1.2),(1.16) result if the following identifications are made:

(1.19)

T — Γ T — Γ T — Γ Ώ — Γ

1
 =
 M 2 + ^ 25) *2

 = =
 -̂  13 "I" 1 3δ> ±Z — J-U~^-J- 4δ

^•1 — -* 12 •* 2δ> ^ 2
 = =

 * 13 * 3δ> ** 3
 = =

 * 14 * 4δ

The symmetry group of (0.2), the conformed group, is thus locally
isomorphic to SO(4,1), the group of all real 5 x 5 matrices A such that

(1.20) AG^A1 = G4'1 .

The identity component of this group consists of those matrices satisfy-
ing (1.20), det A = 1 and A55 > 1. The Lie algebra of SΌ(4,1) is so(4,1).

Exponentiating the operators (1.2), (1.16) we can obtain the local
action of SO(4,1) as a transformation group of symmetry operators. In
particular, the momentum and angular momentum operators generate the
subgroup of symmetries (1.12) isomorphic to E(3), the dilatation operator
generates

(1.21)

and the

(1.22)

exp (λD)Ψ(x) = e-λ/Ψ(e-λx) , λ e R ,

generate the special conformal transformations

exp (a K)Ψ(x) = [1 - 2xa + (a ά)x x]'1/2

x — ajx-x) \ ̂
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In addition, we shall consider the inversion and space reflection sym-
metries of the Laplace equation:

( L 2 3 )

These are well-known symmetries of (0.2) which are not generated by
the infinitesimal operators (1.2), (1.16), [7], page 31. It follows from the
definitions of these operators that

(1.24) IPjI-1 = -Kj, IDI-1 = -D, IJJ'1 = Jk .

The second-order symmetry operators of (0.2) can also be computed
in a straightforward but tedious manner. One finds that modulo the
trivial symmetries ΦJZ, Φ e &, the space of truely second-order sym-
metries is fifteen-dimensional. It is obvious that any operator of the
form {L19 L2}, Lj e so(4,1), is a second-order symmetry and the space of
such symmetric second-order elements in the enveloping algebra of so(4,1)
is thirty-five dimensional. However, there are twenty linearly independ-
ent relations between these operators which hold on the solution
space of (0.2). Thus, only fifteen of these operators can be regarded as
independent on the solution space. For example we have the relations

iii) ΓJβ + ΓL - 71 = J + ΓL
4Z)2

most of which are valid only when applied to solutions of (0.2), not in
general.

We will see that all known ίϋ-separable orthogonal coordinate systems
for (0.2) are characterized by a pair of commuting second-order sym-
metry operators in the enveloping algebra of so(4,1). Here two coordi-
nate systems will be regarded as equivalent if one can be obtained from
the other by a transformation from the connected component of the
identity of the conformal group, augmented by the discrete symmetries
(1.23).

ii)

iϋ)

iv)

JJ=\
Γl + Γ.
f D ZΓ 1

- Z ) 2

ί - rι = i
+ {P2,X2}- = 2



44 C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

Section 2. Separation of variables for the Helmholtz equation.

We briefly study each of the eleven coordinate systems listed in

Table 1 to determine the form of the separated solutions and the signi-

ficance of the eigenvalues of the commuting symmetry operators. It is

obvious that each of these systems also leads to variable separation in

the Laplace equation (set ω = 0), so we can simultaneously present the

results for this equation.

We begin by considering solutions Ψ of the Helmholtz equation

which are eigenfunctions of the operator P 3 :

PZΨ = iλΨ , W(x) = eu*Φ(x, y) .

In this case we can separate the variable z in (0.1) and reduce this

equation to

(2.1) (J2 + ω2-λ2)Φ(x,y) = 0,

the Helmholtz equation in two variables. As is well-known, [3], equa-

tion (2.1) separates in four coordinate systems.

For Cartesian coordinates 1] the separated equations are

X" + k2X = 0, Y" + (ω2 -λ2- ¥)Y = 0

Φ(x, y) = X(x)Y(y) = exp (ikx) exp (±iVω2 - λ2 - k2 y) .

The corresponding separated solutions of (0.1) are characterized by the

equations

(2.3) PZΨ = iλΨ , PXW = ikψ .

The associated Laplace equation solutions are obtained by setting ω — 0

in (2.1), (2.2).

For cylindrical coordinates 2] the separated equations are, (Φ = ΘR):

(2.4) Θ" + m2Θ = 0 , r2R" + rRf + [r\ω2 - X) - m2]R = 0

with solutions

Θ(θ) = eimθ , R(r) = J±mW^~^Ύ2 r)

where Jv{z) is a Bessel function. Here, the separated solutions Ψ are

characterized by the equations

(2.5) PZΨ = iλΨ , iJJF = mΨ .
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For the Laplace equation (ω2 = 0) the results are the same.

For parabolic cylindrical coordinates 3] the separated equations are

C» + [-k2 + (ω2-λ2)ξ2]C = 0

(2 6) N" + W + W ~ λ2)η2]N = °
φ == C(ξ)N(v) - Diμ_1/2(±σξ)D_iμ_1/2(±ση)σ = e^vTίω 1 - λψ* , k2 = 2μVω2 - λ2 .

Here D/z) is a parabolic cylinder function. The separated solutions are
characterized by the eigenvalue equations

(2.7) PZΨ = iλΨ , {J3, P2W = kΨ .

The corresponding results for the Laplace equation are obtained by setting
ω = 0 in (2.6).

For elliptic cylinder coordinates the separated equations are

A" + [d\ω2 - λ2) cosh2 a + k]A = 0

β / 7 - [<f(ω2 - ^2) cos2 β + k]B = 0

Φ = A(α)B(β) P
[Sen(a, q)sen(β, q) , w = 1,2, •

The separated equations are forms of Mathieu's equation. For λ real,
ω> \λ\ one obtains single-valued solutions in all of three-space if and
only if k is one of a discrete set of eigenvalues kn. The corresponding
solutions are expressed in terms of Mathieu functions cen(β), sen(β) and
associated Mathieu functions Cen(a), Sen(a), see [10]. For other values
of λ similar comments hold. The eigenvalue equations are

(2.9) P3¥ = iλΨ , (Jl + dΨDΨ = kΨ .

Again the results for the Laplace equation follow essentially from (2.8)
by setting ω = 0.

Next we consider solutions Ψ of (0.1) which are eigenfunctions of J3:

iJz = mΨ , ψ(χ, y, z) = eίmφΦ(r, z) .

Here τ,ψ,z are cylindrical coordinates 2] and J3 = —dφ. We now split
off the variable φ so that (0.1) reduces to



46 C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

(2.10) (drr + l g r - ™L. + dzz + ω2)φ = 0 .
\ r r2 )

This reduced equation separates in five coordinate systems corresponding

to systems 2], 5], 6], 7], 8] on Table 1.

For spherical coordinates 5] the separated equations in p, θ are

a) P" + —I" + (ω2 - Λl±Jλ)p = 0
p \ p2 I

( 2 Λ 1 ) b) θ " + cottfθ' + U(Jt + 1) - m ' )θ = 0
\ sin2 θ /

Φ = P(p)θ(θ) = p-wj±ii+w(ωp)Ptm(fiQZθ)

Here Jv(z) is a Bessel function and Pf(cos0) is an associated Legendre

function, [11]. The eigenvalue equations characterizing the spherical

system are

(2.12) ίJ3Ψ = mΨ , JJΨ =-£{£ + 1)Ψ .

The separated equations for the Laplace equation are obtained from

(2.11) by setting ω = 0. The θ solution is unchanged but a basis for a)

becomes P(p) = p\ p'4'1.

For prolate spheroidal coordinates 6] the separated equations in η,

a are

H" + coth ηH
f + (-λ + αW sinh2 η - — — — ) H = 0

V sinh2 η I

(2.13) = 0
sin2

J3?r = mψ m

Equations (2.13) are two forms of the spheroidal wave equation, [10].

The corresponding solutions of (1.1) which are bounded and single valued

in R% are of the form

ψ = H(η)A(ά)eim<ί> = S? ( 1 )(cosh^αω)PsJΓ l(cosα,αV)e< B l ί >

n = 0,1,2, , m = n, n — 1, , — n ,

where S%{1),Ps%(z, γ) are spheroidal wave functions. The discrete eigenvalues

λ\ΓKa2ω2) are analytic functions of α V and ^ m | (0) = n(n + 1). The coordi-

nates vary in the range 0 < a < 2π, 0 < η, 0 < <p < 2π. For the Laplace

equation the separated equations are (2.13) with ω = 0 and the separated
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solutions take the form

(2.15) Ψ = P±m(cosh ^)P±m(cos ά)eimψ .

For oblate spheroidal coordinates 7] the separated equations in η,a

are

K" + tanh ηHf + (-1 + α V cosh2

 7 + — ^ — ) H = 0
\ COSh2 η I

(2.16) A / / + c o t α A / + Λ __ α2ω2 s i n 2 α _ m 2 ) A = 0
\ sin2

(/•/ + α2(P? + PD)^ = -λΨ , ^73^r = m^ .

Again these equations are forms of the spheroidal wave equation. The

corresponding solutions Ψ which are bounded and single-valued in R3

take the form

(2.17) S™{1\-i sinh η, iaω)Psι

n

ml(cos a, -a2ω2)eίmφ

with eigenvalues λι

n

ml(—a2ω2). For the Laplace equation the eigenf unctions

are of the form

(2.18) P^ m (-isinh:

For parabolic coordinates 8] the separated equations in ξ,η are

B" + i-5' + (ωψ -™L-+ήB = 0

(2.19) H,f 1_H, / 2 2 _ w}_ _ ΛH = Q

η \ rf )

({Jif P2} - {J2, PiW = W , MJF = ^ ^ ,

and the separated solutions Ψ = Ξ(ξ)H(η)eίmφ take the form

—i^ m + 1

JJ(f) = f^e*^"^!^! 4ω 2

(2.20)
/ iλ m + 1
I - I —

\ m + 1

In the case ω = 0 (Laplace equation) the separated solutions are

(2.21) ^±(V/Xf)/±m(ίV Λ ^)βίmί° .

The above eight systems are the only ones for the Helmholtz equa-
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tion whose separated solutions are eigenfunctions of a second-order

operator which is the square of a first-order symmetry operator. The

remaining three systems are somewhat less tractible.

For paraboloidal coordinates 9] the separated equations in a, β, γ are

/ ω2c2 \

A" + I —q — λc cosh 2a + cosh 4ajA = 0

(2.22) B" + (q + λc cos 2β - - ^ - cos 4β\β =

Γ" + ί-q + λc cosh 2λ + -^- cosh 4γ\r = 0 ,

where

(Jl - cΨ\ + c{Λ,Pi} + c{J19P2}W = -μΨ ,

Each of the equations (2.22) can be transformed to the Whittaker-Hill

equation

(2.23) ^ - + (μ + — + ωp cos 2Θ - — cos 4^^ = 0
dθ2 \ 8 8 /

whose even and odd solutions which are periodic with period 2π in θ are

denoted gcn(θ, ω, p), gsn(θ, ω, p), respectively. The subscript n (the number

of zeros in the interval [0,2π\) labels the discrete eigenvalues μ = μn.

See [12] for a complete discussion. Single-valued separable solutions Ψ

of (0.1) take the form

Ψ == ABΓ = gcn(ia,2cω, λl2ω)gcn(β,2cω, λβω)

X gcn(ίγ + π/2,2cω, λ/2ω) , n = 0,1,2,

or the same form with gcn replaced by gsn. Corresponding to the

Laplace equation (ω = 0) the separated solutions are Mathieu functions

of the form

Cen(a> -λc/®cen(β> -tc/2)Cen(r + iπ/2, -λc/2) ,

Sen(a, -λe/2)sen(β, -λc/2)Sen(r + iπ/2, -

For ellipsoidal coordinates 10] where 0<ρ<l<v<a<μ<<χ> for

single-valued coordinates, the separation equations all take the form

(2.26) (4VW)^W)^r + *£ + Wξ2)E(ξ) = 0
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h(ξ) = (ξ - a)(ξ - l)ξ , ξ = μ,v,p,

where

(/./ +PI + aP\ + (a + 1)PΪ)Ψ = λίW ,

(Jl + aJl + aPlW = λ2Ψ .

For computational purposes it is more convenient to introduce equivalent
separable coordinates a, β, γ defined by

(2.27) p = sn\a, k) , v = sn 2^, fc) , ^ = s^2(r, fc) , k = α~1/2

where sn(z,k) is a Jacobi elliptic function, [10]. The relationship be-
tween (X, β, 7" and ίc, y, z is

x = — Γdnadnβdnγ , y — ——-cnacnβcnγ ,

3 = ksnasnβsnγ

where cna, dna are elliptic functions and kf = Vl — &2. To obtain real
values for a?, 2/, 2 we choose a real, β complex such that Re β — K and
γ complex such that Im γ = K! where K(k) is the modulus of elliptic
functions and K' = K(k'). To cover all real values of x,y9z once it is
sufficient to allow ae[-K,K], βe[K — iK',K + %K% parallel to the
imaginary axis, and γ e[—K + ίK',K + iK'], parallel to the real axis.
In the new variables the separation equations become the ellipsoidal
wave equation

(2.29) { - J L + k% + k%sn2ξ + k2ω2snAήE(ξ) = 0 , ξ = a,β,r,

see [10].
From the periodicity properties of elliptic functions it follows that

if ξ is replaced by ξ + £Kn + UK'm in (2.28) where m and n are integers
and ξ is any one of a,β9γ9 then aM/,3 remain unchanged. Thus only
those solutions E(ξ) of (2.29) which are double-periodic and single-valued
in ξ with real period 4K" and imaginary period UKf are single-valued
functions of x,y,z. These solutions are called ellipsoidal wave functions
and are denoted by the generic symbol el(ξ) in Arscott's notation, [10],
Chapter X. There are eight types of such functions, each expressable
in the form

, r, s, t = 0,1



50 C. P. BOYER, E. G. KALNINS, AND W. MILLER, JR.

where F is a convergent power series in its argument. The eigenvalues

λlyλ2 are countable and discrete.

Corresponding to the Laplace equation (ω = 0), (2.29) reduces to the

Lame equation and the single-valued solutions in j?3 are products of

three Lame polynomials, see [10], page 228.

For conical coordinates r,μ,v, 11] it is convenient to set μ = sn2(a, k),

v = sn2(β, k), where k = b~1/2 > 0. Then

(2.30) x = -^j-dnadnβ , y = "* cnacnβ , z = rksnasnβ

and the variables have the range 0 < r, ae [—2K, 2K], βe[K,K + 2iK'],

see [10], page 24. The separation equations are

= 0
r \ r

(2.31) A" + Q- £(£ + lWsn2a)A = 0

B" + (λ - £(6 + ΐ)k2sn2β)B = 0

The first equation has solutions of the form R(r) = r~1/2J±(£+1/2)(ωr). The

next two equations are examples of the Lame equation. lί a or β is

increased by integral multiples of 4K or AiKf it follows from (2.30) that

xy y and z are unchanged. Thus only those solutions A(ά),B(β) of (2.31)

which are doubly-periodic and single-valued in a,β lead to single-valued

functions of x,y,z. It is known that double-periodic solutions of Lame's

equation exist only in the cases I = 0,1,2, , [10]. Furthermore, for

such ί there exist exactly 2^ + 1 solutions corresponding to 2^ + 1

distinct eigenvalues λ. The solutions, one for each pair of eigenvalues

λ, £ can be expressed as finite series called Lame polynomials. There

are eight types of these polynomials, each expressible in the form

snaacnbadncaFP(sn2ά) , α, 6, c = 0,1 ,
(2.32)

a + b + c + 2P = β

where FP(z) is a polynomial of order P in z.

Corresponding to the Laplace equation (ω = 0) the above discussion

is unchanged except that a basis of solutions for the first equation (2.31)

becomes re

9r~e~ι. In this case the solutions Ψ are called ellipsoidal

harmonics.
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Section 3. A Hubert space model.

In analogy with the methods discussed in [2] we can introduce a

Hubert space structure on the solution space of (0.1) in such a way that

the separated solutions can be interpreted as eigenf unctions of self-ad joint

operators in the enveloping algebra of if (3). We proceed by expanding

solutions of the Helmholtz equation in plane waves. One can easily show

that Ψ(x) is a solution of (0.1) if it can be represented in the form

(3.1) W(χ) = f exp (ίωx k)h(k)dΩ(k) = I(h) , k = (k19 k2y k3) .

Here A is a unit vector (kk = 1) which runs over the unit sphere

S2: kl + k2

2 + kl = 1, dΩ is the usual solid angle measure on the sphere

and h is a complex-valued measurable function on S2 (with respect to dΩ)

such that

L \h\2dΩ < oo .

The set L2(S2) of such functions h is a Hubert space with inner product

where in terms of spherical coordinates on S2

k = (sin θ cos φ, sin ^ sin φ, cos ^)
(3.3)

0 < ^ < ^ r , - 7 r < ^ < τ r , dβ(Λ) = sin 0d0dp .

The elements βr(A, a) of £?(3) act on solutions of (0.1) via the operators

Γ(flO, (1.9), (1.12). Using (3.1) we find

(3.4) Ψ =

where the operators T(g) on L2(S2) are defined by

T(g)h(k) = exp [ίωa - (kA)]h(kA)

g = (A,a), AeSO(3), ae

Thus the Γ(#) acting on ^ induce operators (which we also call T(g))

acting on h. Moreover, it is well-known that the T(g) on L2(S2) define

a unitary irreducible representation of £7(3), [8].

The Lie algebra representation of i(S) on L2(S2) induced by the

generators (1.2) on the solution space is determined by
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Px = %(ύkx = iω sin θ cos ̂  , P2 = iωfc2 = ία> sin 0 sin p

P 3 = ώyfc3 = άy cos θ , J 3 = ̂ i - &Λ = —9f

Jx = fc3d2 — fc293 = sin p9, + cos φ cot 09f

J2 = kxdz — λ ^ = —COS φdφ + sin p cot θdφ .

These Lie algebra operators are related to the operators T(g)y (3.5), by

(1.12). Furthermore, the operators (3.6) are skew-Hermitian on the dense

subspace 3f of L2(S2) consisting of C°° functions on S2 The correspond-

ing elements of £(Z)2 are easily seen to be symmetric on S and we shall

show explicitly that their domains can be extended to define self-ad joint

operators on dense subspaces of L2(S2). Corresponding to each pair of

commuting operators listed in Table 1 we shall find a pair of commut-

ing self-ad joint operators S, S' on L2(S2) and determine the spectral resolu-

tion of this pair. These results can then be used to obtain information

about the space Jf = I(L2(S2)). Here ^ is a Hubert space with inner

product

(3.7) {Ψl9 Ψ2) = (K h2y , Ψj = I{hj) .

(It is not hard to show that no nonzero heL2(S2) can be mapped by /

to the zero solution of (0.1).) It follows that / is a unitary transfor-

mation from L2(S2) to 3tf and the operators T(g), (1.9), (1.12), on Jf are

unitary.

We can also interpret each Ψ e £F as an inner product

H(x> k) = exp [—ίωjc ft] e L2(S2) ,

see [13].

The existence of the unitary mapping / allows us to transform

problems involving 2tf to problems involving L2(S2). In particular, if S,

S' are a pair of commuting operators from Table 1 we can interpret

them as a pair of commuting self-ad joint operators on L2(S2) and com-

pute a basis for L2(S2) consisting of (generalised) eigenfunctions

(3.9) Sfλμ = λfλμ9 S'fλμ = μfXμ, (fλμjyμϊ = d{λ-λ')δ{μ-μ').

Then the functions Ψλμ{x) = Kfλμ) will form a corresponding basis in Jf

for the operators S,Sf constructed from the generators (1.2):

(3.10) SΨλμ = λ¥λμ , S'Ψλμ = μΨλμ .
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These last expressions enable us to evaluate the integral I(fiμ), for they

guarantee that Wλμ is solution of (0.1) which is separable in the coordi-

nates associated with S, S'. Furthermore, if Ψ = I(h) for some h e L2(S2)

we have the expansion

(3.11) T(g)Ψ(x) = Σ <J{g)hJλμyψλμ{x)

which converges both pointwise and in the Hubert space sense.

Since the spherical coordinate system 5] is treated in detail in many

textbooks, e.g., [8], [9], we shall here list only the most important facts

concerning this system, omitting all proofs.

The unitary irreducible representations of SO(3) are denoted D£, &

= 0,1,2, . . where dimD£ = 2 ^ + 1 . If {Ju J29JS} are the operators on

the representation space V\ of D£ which correspond to the Lie algebra

generators (1.5) then there is an orthonormal basis {/^}:m = £,£—l9

•--,—£} for V£ such that

W m / i , J*f<p = [(£±m

The matrix elements of the group operators Γ(A), A e SO(3), with respect

to this basis are the Wigner D-functions, [8], [9]. It follows from (3.12)

that on Vt9 JJ= -£(£ + 1).

Now consider the representation T of E(S) on L2(S2) defined by (3.5).

The restriction of T to the subgroup SO(3) breaks up into the direct sum

TISO(3) = Σ®D*> L2(S2) s Σ V,
0 Q

Σ
£=0

where dim F^ = 2^ + 1 and the action of the operators T(A) on the in-

variant subspace Ve is equivalent to D£. The elements h of V£ are cha-

racterized as the solutions of JJh = —£(£ + ΐ)h or

(3.13) (dθθ + cot^3, + —l—d\h(β,φ) = -£(£ + ΐ)h(θ,φ)
\ sm u /

in terms of coordinates (3.3). Here, /•/ is known as the Laplace operator

on the sphere S2, It follows from these facts that the self-ad joint ex-

tension of this operator (which we also call /•/) has discrete spectrum

— £{£ + 1), i = 0,1,2, , each eigenvalue occuring with multiplicity

2£ + 1.
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There exists a basis for Ve consisting of eigenfunctions /£?(#> 0 of
the symmetry operator J°, which satisfy relations (3.12) where

(3.14) J± = e±*'(±3# + i cot Θdψ) , J° = -idφ .

Indeed from the recurrence relations (3.12) and the differential equation
(3.13) one finds

(3.15) /<?(*, φ) = Yτ(θ, ψ) , <Γf, Y?> = ^^ m m ,

where

(3.16) Yf(θ, ψ) =
+ m)!

is a spherical harmonic.
Furthermore, it is straightforward to show that the action of the

operators Pj on the basis is

= __J
L

-m + ΐ) V/2

_ - 1 )

C3 IT")
3)(2/

r
L

m-l)-ιv2

- l ) J

p- f (« = - m - m

1

where

(3.18) P° = iP3 = -o) cos θ , P* = +P 2 + iP : = -ωe±ίίe sin θ ,

e.g., [14].

Applying the integral transformation / to our basis {/̂ '} we obtain
an orthonormal basis {Ψ^ = Kfm)} for ^f which satisfies the eigenvalue
equations

(3.12)' J W% = -£{i

These eigenfunctions separate in the spherical coordinate system 5] and
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are explicitly given by

(3.19) ¥%Kp, Θ, φ) = - ^ - i£JM/2(ωp) Y7(θ, ψ) .
\ ωp /

These (standing) spherical waves necessarily satisfy the recurrence rela-
tions (3.12), (3.17) where now the operators Jj,Pj are given by (1.2).
Furthermore, the well-known matrix elements of the operators T(g) in
the {/£?} basis can be used to expand the function T(g)W(M) in terms of
the spherical wave basis, [14]. It is easy to show that the recurrence
relations (3.12), (3.17) are also satisfied by the non-Hilbert space solutions

ωp

so the same matrix elements can be used to expand T(g)Ψ'^L) in terms of
the functions Ψ'^\

Next we compute the spectral resolutions of the operators corres-
ponding to systems l]-4] on Table 1, via our L2(S2) model. These systems
are characterized by the fact that P3 is diagonal. From (3.6) it follows
that the self-ad joint operator iP3 = — ωcos# has continuous spectrum
covering the interval [—ω,ώ\ with multiplicity one. The complete results
are:

1] Cartesian system.

The eigenvalue equations

(3.20) iPzfZ = -ω cos γf™r , iP2f^r = - ω sin γ sin af%γ

lead to eigenfunctions

W g ) , _ ^ < ^ < ^ , o < r < π
(3.21) Vsin r

The corresponding solutions of the Helmholtz equation are the plane
waves

(3.22) f ' W ^ r w .
= v sm γ exp \%ω\Xι sm γ cos a + x2 sm γ sm a + x2 cos 77J .

2] Cylindrical system.

The eigenvalue equations are
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(3.23) iPJZ = -ω cos γf% , iJzf% = w/«

and the basis of eigenfunctions is

f*r(β,φ) = ^ f e ^ > * = 0, ± 1 , • . , 0 £ r £ * .
(3.24) V2τr sm γ

Furthermore,

(3.25) JP'ίftC*) = inV2πsmγJn(ω sin jr) exp [i(n<p + ωz cos 7)] .

These are cylindrical wave solutions of the Helmholtz equation.

3] Parabolic cylindrical system.
The eigenvalue equations are

(3.26) iPJflr = -ω cos γfflr , {J3, P2}/ίS,r = 2 ^ sin γfflr

and the basis of eigenfunctions is

(1 + cos0-^/2-1/4(l - coaωywsriθ - r) ,
V2τrsinr

(3-27) i 0 , -ff < φ < 0

«,r(tf, 0 = ΓXr(β, -φ), - c o < ^ < o o , 0 ^ r <

The corresponding solutions of (0.1) are

Ψflyr(x) = Λ/ S l ϊ 1 ^ sec (iμπ) exp (άy# cos ^)

(3.28) X [Diμ_1/2(σξ)D_iμ_1/2(στj) + Diμ_1/2{-σξ)D_ίμ_1/2(-ση)]

a = ei"/iV2ω sin γ .

4] Elliptic cylindrical system.
The eigenvalue equations are

(3.29) iPJi%r = -ω cos r /S , r , (JJ + ίPPD/ff,,. = J«/ί?,r, t = β, c ,

and the basis of eigenfunctions is

niriθ, ψ) = , \ cen(φ, q)δ(θ -γ), n = 0,1,2, .
\/π Sin φ
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( 3 ' 3 0 ) f&\r(0,φ) = , 1 sen(φ, q)δ(β - γ) , n = 1,2, - •
\lπ sm φ

q = d2ω2 sin2 γ/4t , 0 < γ < π .

The eigenvalues λnt are discrete, of multiplicity one, and related to the

eigenvalues a of Mathieu's equations, [10], by a = —Λ — | d V sin2^. The

eigenvectors form a basis for L2(S2) satisfying

(3.31) < / £ „ /$,,,/> = 3 n n ^ ( r - f) , t,t' = s,c,

and the corresponding solutions of (0.1) are

ΦnlM) = CnVsin γ Cen(a, q)cen(β, q) exp (iwz cos γ)

w = 0,1,2, . . . ,
(3.32)

Ψ&\r(x) = SwVsin 7- Sew(α, q)sen(β, q) exp (ΐω^ cos j )
n = 1,2,

where Sen, Cen are associated Mathieu functions and Sn, Cn are constants

to be determined from the integral equation W$tT =

6] Prolate spheroidal system.

The eigenvalue equations are

(3.33) (/•/ - aΨ\ - a

and the basis of eigenfunctions is

(3.34) / i >m(β, 0 = Γ (
L \m\)!

(The first eigenvalue equation (3.33) takes the place of the second equation

(2.13).) Here n = 0,1,2, , m = n, n — 1, , — n and the discrete eigen-

values are denoted ϊ ( α W ) . We have </£ n , /£Pm,> = 3nn,ίwm.. The

spheroidal wave functions are frequently defined by their expansions in

terms of associated Legendre functions:

(3.35) PslrKx,aW) = Σ ί-V^M2ω2)P^k{x) ,

see [10], page 169. Indeed, substituting (3.25) into the spheroidal wave

equation one can derive a recurrence formula for the coefficients al$k.

The corresponding basis of solutions for (0.1) is

(3.36) Ψ^JLx) = C(αV)S^ ( 1 ) (cosh η, aω)Ps]

n

m](c>os a, a2ω2)eίmφ
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where c%(a2ω2) is a constant to be determined from the integral equation.

This result is easily obtained from the fact that Ψ™m must be separable

in prolate spheroidal coordinates.

7] Oblate spheroidal system.

The eigenvalue equations are

(3.37) (/•/ £ &

and the orthonormal basis of eigenfunctions is

(3.38)

n = 0,1,2, , m = w, n — 1, , —n .

The discrete eigenvalues are ΛJT'C—αV). The corresponding solutions of

the Helmholtz equation are

(3.39) SP^JJC) = c?(αV)S? ( 1 )(-i sinh 97, iαω)PsimI(cos or, -αW)e< m p

where c%(a2ω2) is a constant to be determined from the integral equation.

8] Parabolic system.

The eigenvalue equations are

(3.40) ({Λ, P2} - {J2, Pβfξl = 2A»/U>, , i J 3 / α - w/iS, ,

see [13]. Here {Jί,P2} — {J2,P1} = 2iω(cosθ + smθdθ) is first-order and

has a unique self-ad joint extension. The eigenfunctions are

J ^ > m = = 0 ± 1 > . . . > _ 0 0 < K o o 1

2sin

The corresponding solutions of (0.1) are

(3.42)

where

^ β i Z ) ~ Γ(X + μ) l l\ 1 + μ r
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9] Paraboloidal system.

The eigenvalue equations are

(3 43) (Jl ~ CΨl + C{Ji9 P l } + C { J l ' P 2 } ) f ^ = ~ μ n t f ^

(cPJ - cPl + {/2, Pλ) - {Jlf P2})fZ\λ = 2ωλfZ\λ

and the basis of eigenfunctions is

fw (β ω\ _ (tang/2)" / icω ff « \ ί^cn(^,2cω, J)
Γ^ A ^ Jnt,λΨ> ψ) — — / ? ς - . T - e x P I —7;— C ° S £7 COS Z^? I X < '

(A44) r V2̂ τ sm^ \ 2 / lgsn(φ,2cω,Z)
t = c,s , n = 0,1,2, , — 00 < Λ < 00 ,where ^rcn and gsn are the even and odd nonpolynomial solutions of the

Whittaker-Hill equation, [12]. We have

The corresponding solutions of (0.1) are

/o A ^(3.45)
ί = s, c ,

where the constants Kι

n are to be determined from the integral equation

ψ<$tλ = I(f%lλ). This equation appears to be a new result.

10] Ellipsoidal system.

Here we adopt elliptic coordinates (s, ί) on S2:

(3.46) ^
1 — a

0<t<l<s<a .

Then the eigenvalue equations

(3.47) S f =
J J, S'= Jl + aJj + aPj

become

S — t

(3 48)

d)]f = λf
J

da = [(a - β)(β - l)β]v«3 t , 9, = [(ί - a)(t - l)t]1/2dt .

We can find solutions of these equations in the form f(x, t) = JE71

where
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4 9 )

 ( 4 a - ω

(4dββ + ωΨ - λ't - μ)E2(t) = 0 .

Expressions (3.49) are algebraic forms of the ellipsoidal wave equation

so the Ej are ellipsoidal functions. Furthermore, if we set s = sn\η, k),

t = sn2(ψ, k) where k = α~1/2 then the separated equations take the

Jacobian form

(3.50) (9,, - k2μ - Wλ'm*ξ + k2ω2sn*ξ)Ej(ξ) = 0 , f = η, ψ , j = 1,2

of the ellipsoidal wave equation (2.29). The new coordinates η,ψ also

have the property that they allow us to parametrize the entire sphere

S2 rather than just the first octant. Indeed,

(3.51) kx = k'~ιdnηdnψ , k2 = ikkf~ιcnηcnty , k3 = ksnηsnψ

and these coordinates cover S2 exactly once if ηe [—2K,2K], ψ e[K,K +

Since ku k2, kz remain unchanged when integral multiples of AK and

UK! are added to ^ or ψ, we are interested only in those single-valued

solutions Ej of (3.50) which are also fixed under these substitutions:

Ej(ξ + AKn + 4άK'm) — Ej(ξ), n, m integers. As we noted in Section 2, these

doubly-periodic functions are the ellipsoidal wave functions. They have

been studied in detail by Arscott, [10]. The spectrum of S and S' is

discrete, each pair of eigenvalues denoted λnm,μnm. The corresponding

ellipsoidal wave functions are e£%(ξ), ξ = η, ψ and the eigenfunctions of

S and S/ are denoted

(3.52) /$»(,, ψ) = e£pz(η, ψ) - e

where n = 0,1,2, and the integer m runs over 2n + 1 values. We

assume that the basis {eΰp%} is normalized so that

Note that

dΩ(k) — ik\sn2η — sn2ψ)dηdψ .

In general these functions are rather intractible and very little is known

about their explicit construction.

The corresponding solutions of the Helmholtz equation W£%(x) —

I(fSS) are
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(3.53) WSS(χ) = ESϊ(a, β, γ) = R*{ω,

where the constant Rζ(ω9 k) is to be evaluated from the integral equation.
Moreover, the equation reads

E£%(a, β, γ) = ik2 exp ω( — dnadnβdnrdnηdnψ
JSi L \ fcfc'2

Γ3 54) A:2 \ 1
v ' ' + —^cnacnβcnγcnηcnψ + ίk2snasnβsnγsnψ \

X e^pfy, ψ)(sn2η —

which appears to be a new result. We were able to evaluate the integral
(3.54) to within a constant multiple because we knew in advance that it
was separable in a,β,γ.

11] Conical system.
Only for the conical and spherical systems does the eigenvalue

problem become finite-dimensional. For / e L2(S2) the eigenvalue problem
associated with system 11] is

From (3.13) the eigenvalue problem reduces to computing the eigenvalues
of J\ + bJ\ on the (2£ + l)-dimensional space Vt, (3.12). This problem
is solved in [15] and [16] where the relationship between the spherical and
conical bases is derived. However, equation (5.16) in [16] is in error
and will be corrected in [17].

Section 4. Expansion formulas for solutions of the Helmholtz equation.

From (3.11) it is evident that if we wish to expand a solution
T(g)Ψ[j) of (0.1) in terms of eigenfunctions {Ψf} we can do so by com-
puting the expansion coefficients (T(g)f[j\fμ

ί)s) in the L2(S2) model:

μ

Here we list some of the more tractible expansion coefficients in the
case where T(g) is the identity operator.

The overlap functions <fiJ),f™r> relating any system {f(

λ

J)(k)} with
the Cartesian system (3.21) are trivial:

(4.2) ifϊj\ fair} == Vsin γflJ)(am γ cos a, sin γ sin a, cos γ) .
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Moreover, the overlaps relating the eigenfunctions for systems l]-4] on
Table 1 can easily be obtained from the corresponding overlaps for
solutions of the Helmholtz equation (J2 + (*>2)Ψ = 0 listed in [2]. Indeed
the results take the form

where (f(

λ

jy,f(

μ

iyy is the corresponding overlap in [2] with the L2[—π,π]
model.

The overlaps between the spherical and parabolic bases were com-
puted in [13]:

(4-4)
X

\m\ -£,\

( - 1 ) " " + " ^ Γ (2£+ !)(£ + [m|) \
' (|m|!)2 L 4π{β-\m\)\ J

Γ(iλ + \m\ + 1 \ Γ / -%X + \m\ + 1

Λ\m\
\m\

m = 0, ± 1, , ± £ .

The overlaps between the spherical and prolate spheroidal bases are

Ix r-ngm+«-.o/»Γ (n - m)H£ + m)\ 2

(4.5)

1 J
X cC,

(n + m)! 2n + 1
(n - m)! 2^ + 1

I! 2£
β2ω2) , m' > 0

m / < 0

where the coefficients αj$fc are defined by (3.35).
The overlaps between the cylindrical and prolate spheroidal bases are

s i n(4.6)

and the overlaps between the parabolic cylindrical and prolate spheroidal
bases are

(4.7)
/ f (β) f (3) \ _

|m|)! (2)

where the overlap </2)>/±i> i n L2[—π,π\ is computed in [2] and [18].
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The overlaps between the elliptic cylindrical and prolate spheroidal bases
are

(4.8) </<%/$ ,r> = ΓĈ  ~ lml);(2m + 1) sin
L(n + \m\)!

where the Fourier coefficient A™ is defined in terms of the Mathieu
functions pen(φ, q), p = s,c, by

(4.9) pen(φ,q)= Σ A?e < w ' .
m=-oo

The corresponding overlaps for oblate spheroidal coordinates can be
obtained from the prolate overlaps (4.5)-(4.8) by making the replacement
a2ω2 —> —aW in the speroidal wave function.

The overlaps between the spherical and conical bases are computed
in [15], [16] and those between the ellipsoidal and conical bases are dis-
cussed in [10], page 247.

The remaining overlaps are more complicated than those we have
listed.

It is easy to construct a bilinear generating function for all basis
sets of solutions of (0.1) listed here. Let {fλμ(k)} be one of the eleven
bases for L2(S2) constructed above and let {Ψ2μ(x)} be the corresponding
basis for the solution space of (0.1). Then

where H(x, •) eL2(S2), (3.8), for each xeR3. An explicit computation
yields

(4.10) <#(*, .), H(x>, .)> = 4π*in(ζR) , R2 = (x - x') (x - xf) .

ωK

On the other hand

<H(x, •),#(*', •)> = Σ<H(x, -),fiμXfiμ,H(x', •)>
(4 11) λ'μ _

Σand comparison of (4.10), (4.11) shows that 4π sin (ωR)/ωR is a bilinear
generating function for each of our bases.

Finally, as shown in [8] and [13], each of our eleven bases {Wλμ}
considered as functions of ω, 0 < ω < oo, can be used to expand arbitrary
functions feL2(Rz).
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Section 5. Non-Hilbert space models.

Obviously, many separable solutions of (0.1) are not representable
in the form I(h), (2.1), for heL2(S2). We shall investigate a few group-
theoretic methods for obtaining such solutions and relating different
types of separable non-Hilbert space solutions. These methods are less
elegant but more flexible than the techniques discussed earlier.

We begin by considering transforms (2.1) where the domain of in-

tegration is a complex two-dimensional Riemann surface rather than the

real sphere S2. In particular we set

— —(ί — t'OVl + β2, —(t — t'Ovl + β\iβ 1

2 2 /

where t and β range over complex values, and write

ψ(x) = I dβ—h(β, t) exp
(5.2)

^ L \ = J(Λ) .

We assume that the integration surface S and the analytic function h
are such that I(h) converges absolutely and arbitrary differentiation
with respect to x,y9z is permitted under the integral sign. Since k k
= 1 even for arbitrary complex β, t (t Φ 0), it follows that Ψ{x) is a
solution of (0.1).

Integrating by parts, we find that the operators PjfJj (1.2), acting
on the solution space of (0.1) correspond to the operators

(5.3) J i t ^

acting on the analytic functions h(β,t), provided S and h are chosen
such that the boundary terms vanish:

J*Ψ = 7(J*λ) , P*?Γ = /(P*Λ) ,

etc. Here J± = + J2 + iJ1? J° = iJ3, P'1 = +P 2 + £PX, P° = iPz.
For our first example we set h = (2τr3)~1/2 and integrate over the

contours Cλ and C2 in the β and £ planes, respectively.
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In this case h satisfies the equations JJh = 0, J°h = 0 and it is straight-

forward to verify that Ψ(x) = I(h) satisfies the same equations for ^>0.

Thus, Ψ is independent of the spherical coordinates θ,φ and is a linear

combination of the Bessel functions (2.11) for & = 0. To determine the

correct linear combination we evaluate (5.2) in the special case x = y =

0. The integral is elementary and we find

z>0 ,
π o)Z

so

(5.4) Ψ(x) = - ( ω p %

whose H™(z) is a Hankel function of the first kind, [11]. Solution (5.4)

is a (traveling) spherical wave.

More generally we set

(5.5) m)! J

^ = 0 , 1 , •••, m = £,£ — 1 , • > - , — £ .

It is straightforward to verify that these functions and the operators

(5.3) satisfy the recurrence formulas (3.12), (3.17). Thus, the solutions

Φm(x) = Kfm) also satisfy these relations. We have already computed

^ 0 )(JC), and using these recurrence relation, we can obtain

(5.6) W%Kp, θ, φ) = -(l)e(ωPr^H^1/2(ωp)YT(θ9 φ) .

Next we consider the cylindrical system corresponding to the operators

(5.3):

(5.7) P»fZ = iωγfZ , J°fZ = m/» r , /»τ(j8, t) = ίQ8 - γ)t™ .

Using the contours ClfC2 we find

(5.8) V%.r(r, θ, z) = im+1(-Dw(2τr)e7m(ωrVl + fie*"9-"
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for γeCi. Here we are using cylindrical coordinates 2], From (5.5),
(5.7) and the corresponding integral representations Ψ = /(/) there
follows easily the expansion

(5.9) Γίf(*) = (-1)»[ m^)+~)?
)lY\Ci

More generally, if ¥$ is subjected to a translation T(g) = exp(α P) we
obtain

L 4π(£ + m)\
(5.10)

Σ f (-Dn+m(ίβ-< )

2 + α3 > 0,»! + ίa2 = αeία, α > 0 .

Similar techniques can be used to expand traveling spherical waves in
other bases. In each case one derives the expansion for the complex
sphere model and then attempts to map the results to the solution space
of the Helmholtz equation via the transformation (5.2). Some important
cases are worked out (by another method) in [19], Section 16.

Other more complicated examples following this approach are worked
out in [18] and [13] where bases corresponding to the parabolic cylindrical
and the parabolic coordinates are constructed. The basis functions are
expressable as products of Hermite polynomials and associated Laguerre
polynomials, respectively, and our method allows the simple derivation
of addition theorems for these solutions under the action of E(3).

Next we consider identities for solutions of (0.1) which are derivable
by Weisner's method, [20], [14]. The natural setting for this method is
the complex Helmholtz equation obtained by allowing all variables in
(0.1) to assume complex values. To treat this equation systematically
we should determine all complex analytic coordinate systems in which
variables separate in (0.1). However, here we consider only a few systems
of particular importance.

Of greatest practical importance is the spherical system (3.12)/. We
now study solutions of the complex equation (0.1) which satisfy (3.12/
for general β,rneC. In terms of the complex sphere model (5.3) and
new complex coordinates r, p

(5.11) τ = tVT+ψ , p= -iβ >

the operators assume the form

J+ = -τd,, J- = τ - ^ l - P

2)dp - 2pτdt), J° = τdτ

P+ = ωτ, P- = ω(l - p2)τ~\ P° = ωp .
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Let

f£(p, τ) = (S-m)l Γ(m + i)C?_+TO(2r)w

m = £, £ - 1, £ - 2, . . .

where C\{z) is a Gegenbauer polynomial and £ e C such that £ + | is

not an integer. From the known recurrence relations obeyed by the

Cv

n(z), [11], and (5.12) it is easy to verify

Jm

P± fw _ ±ω f«+i) π; ω(^ + m)(£ + m — 1) -w_1 }
/ m " 2^ + l / m ± 1 2^ + 1 / m ± 1 '

These relations determine the action of ^(3) on the basis {/£?} where

£ = £09£0 ± 1, £0 ± 2, , m = £, £ — 1, £ — 2, and 2^0 is not an integer.

It is well-known that any entire function of x can be expanded uniquely

in a series of Gegenbauer polynomials Cv

n(x), n = 0,1,2, , (2v Φ integer),

uniformly convergent in compact subsets of C, [23], page 238. Thus,

one can exponentiate the P and J operators and compute the matrix

elements of these operators in a {/£?} basis. The rather complicated

results are presented in [24]. One simple example is

.a) \ 2/^0 n\ +«+^v —

where Iv(z) is a modified Bessel function, [11].

Now we consider the relationship between these results and solutions

of the complex equation (0.1) in the spherical basis. Instead of the

complex spherical coordinates r,θ,φ, 5], it is more convenient to use the

equivalent separable coordinates

(5.16) p = — c o s θ9 τ = — eίψ s i n θ,s = ir .

In terms of these coordinates the symmetry operators for the Helmholtz
equation are

J+ = -τdp , J- = r- !((l - pOS, ~ 2pτ3τ) , J° = τdr

(5.17) p_ = (1 - p2) g _ f(l - Q̂2) g (̂ o2 + 1) g
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α - ή g PL3= ds

S

We search for a set of solutions {Ψ£(x)} of (0.1) which satisfy relations

(5.14) when acted upon by symmetry operators (5.17). It is easily seen

that

where Sω satisfies the recurrence formulas

(— - —W"(β) = ωS(£+1\s) , (-*- + A±A)s«>(8) = ω&'-Hs) .
\ds 8 / \ds s /

with independent solutions

Choosing the upper solution we obtain the basis

(5.18) Φ<£{8, p, τ) = (S - m) !

It follows that the matrix elements giving the 2?(3) group action which

were computed for the {/if} basis are also valid for the {¥$} basis. For

example, (5.15) leads to the addition theorem of Gegenbauer:

+ 1/2) Σ W + n + l/2)I£+n+U2(s)

s = (i + r2/s2

The complex sphere model can also be used to derive operational

identities relating solutions of (0.1). For example, from (5.12), (5.13)

we obtain the virtually trivial identity

it - m) I C?+vKω-ψ°)f™ = /<? , i - m = 0,1, . . .

However, for the model (5.17), (5.18) this identity assumes the non-trivial

form

(5.20) C?+v*(pdt + ( 1 ~ p ) dp -
V s

Many other operational identities and addition theorems can be found

in [24].

We present one example to show how Weisner's method in its general

form can be used to derive expansions of solutions of the complex equa-
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tion (0.1) in terms of spherical waves. Consider the Laguerre polynomial
solutions corresponding to the parabolic system 8]:

({/i, P2} - {/„ Pi})/ = -2iλωf , ίJj = mf .

Expressing these solutions in the coordinates (5.16) and expanding in
the spherical basis we find

p))tm

(5.21)
£ ^-^I()Cr1/2()tm , fc = 0,1,2,

The coefficients an can be determined by setting p = a/s and letting
s = 0 to obtain

™»r(m + -)e«[Lr>(-α)]2 = 1,
\ 2/ w-

V 1

! (m + n + 1/2)

Use of the transformation formula for the ^ allows one to explicitly
compute the coefficient of an on the left-hand side of this equation, with
the result

= 2m+1/2(m + n + l/2)Γ(m + l/2)Γ(m + k + ΐ)Γ(m + k + n + 1)
(fc !)2Γ(m + l)Γ(m + w + 1)

( ; 7
\m + 1, —m — k — n

For k = 0 this expression reduces to (5.15).
Section 6. /^-Separable solutions of the Laplace equation.

In addition to the eleven coordinate systems which separate for both
the Helmholtz and Laplace equations there are other systems which E-
separate for the Laplace equation (0.2) alone. The existence of these
additional systems is related to the conformal symmetry of (0.2). All
known systems for which (0.2) separates or iϊ-separates have the property
that the coordinate surfaces are orthogonal families of confocal cyclides
or their degenerate limits. These surfaces, together with the correspond-
ing Laplace separated equations, are described in detail in the classic
book of Bδcher, [5]. Our primary aim is to provide a Lie algebraic
characterization of the systems listed by Bδcher.

Each ^-separable coordinate system {μ, v,p) with corresponding
separated solutions
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(6.1) Ψ(x) = WXμ, v, p)A{μ)B{v)C{p)

is associated with a two-dimensional subspace of commuting operators

in so(4,1)2. If S19 S2 is a basis for this subspace, the separated solu-

tions are characterized by the equations

(6.2) ΔZΨ = 0, SJF = λxΨ, S2Ψ = λ2Ψ .

Two systems are considered equivalent if one can be mapped to the

other by a transformation of the conformal group. A list of the six

inseparable systems is given in Table 2.

TABLE 2. E-separable systems for the Laplace equation.

Commuting operators S19S2 Separable coordinates

12] s, = ( α + 1 ) ( P 2 + κ2y x = g

4 (6 — l)(α — ΐ)a

_ 1)6

ab

s2 = ±(p 2 + κ2y + 1 (
4 4

+ .^-(p, + κsy

13] S l = ^ ± i λ

| . ( P J

(Z? - PJ) z -
Li

C ίί f n ϊ / i I P (r>2 2?"2\ Γ> 9Pfl

2 2

+ (α2 + β2)J\ a = b = α + iβ9a9β real,

14] Si = /s x = β " 1 cos 9
4S2 = (P3 + JS;3)

2 — α(P3 — ϋΓ3)
2 y = R'1 sin 9

11/2
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(μ - a)(g - p

R

= Γ

L α(α - 1)

15] Sι = J\ x = R-1 cos φ

4S2 = - 4 α £ 2 - (P3 - K,y y = R-1 sin ^

— 1)

16] Sι = Jl9 x = R-1 cos φ

2S2 = a{P3, Kz} + β(Kl -PI) y = R~ι sin φ

E = 2 Re Γ » - " ^ - tt) V"
L α ( α — &) J

a = b = a + ίβ

17] SΪ = J | , a? = β" 1 sinh ξ cos ^

S2 = i(P 3 + Z3)
2 7/ = R-1 sinh f sin φ

z = β" 1 cos ?Γ

i2 = cosh f + sin Ψ

More specifically, for system 12] the parameters vary over the range

0 < £ > < l < i ; < & < μ < α and each factor in the separated solution

satisfies

(A (^ A A)) = o ,
(6.3) Γ J dξ J dξ \ 16 4 4

= (f - α)(f - 6)(f - Df, ξ =

This is the standard form of an equation with five elementary singu-

larities, but very little is known about the solutions. For system 13]

the parameters vary in the range — o o < ^ < 0 < μ < l < ι ; < o o and the

separated equations are (6.3) with a = b = a + iβ.

For system 14] the parameters vary in the range μ > a > 1, p < 0,

0 < φ < 2π and the solutions of (0.2) have the form Ψ = R-l/2E^)E2(p)eim<p

where

Vp(^ + ( m ) f *)E&) = 0
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(6.4) ] = 1,2 , ξ = μ,p , p(ζ) = (? — α)(? - 1)? ,

iJzψ = m r , S 2 r = λΨ .

If we set μ = sn2(αr, fc), p = sw2(/3, fc) where α = 1/fc2 then we find

# = i?"1 cos ̂ ?, 7/ = β" 1 sin ̂  , « = kR~ιsnasnβ
R = k~ιkf-ιdnadnβ + icnacnβ , F = β1/2^_1/2(αr, k)Λl_1/2(β, k)eimφ

where Λi(z,k) is a solution of the Lame equation

JLA. + (ftj - τι(^ + l)fc2s^2(^, k))Λ = 0 .
cfc2

The parameters or, β range over the intervals a e [iKf, iK' + 2K], β e [2K

For system 15] the parameters vary in the range l < p < α < μ < o o ,
0 < φ < 2π and the separation equations are (6.4). Making the same
elliptic function substitutions as in the previous case, we find

x = R-1 cos φ , y = R'1 sin φ , z = R~xkkfdnadnβ

R=: ksnasnβ + kk^cnasnβ , 3Γ = #1/2Λ£_1/2(tf, k)Λi_1/2(β, k)eimφ

where α e [iK7, iίC' + 2K], βe[K,K + 2iK!\
For system 16] the parameters satisfy μ > 0, p < 0,0 < φ < 2π and

the separation equations are (6.4) with

P(£) = (f - a)(£ - b)ξ , α = 5 = α + iβ .

Setting ^ = sn2(a,t), p = sn2(/3, £) where ί = (5 + isθ(s — isO"1, s2 = (|α|
— Reα)/2|α|, we obtain solutions

α e [-££', iK;] , j8 e [2K - iίC7,2ίC + iKf] .

Finally, for system 17], toroidal coordinates, the eigenfunctions have
the form

Ψ = (coshf + smΨy/2E(ξ)eU£ψ+mφ)

(
( 6 g ) iJzψ = mf , (P

^ + (T
 e

dξ \ 4
The associated Legendre functions Pf-1/2(cosh?),QΓ_V2(cosh?) provide a
basis of solutions for this last equation.
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Systems 12]-16] are relatively intractible and only the toroidal system

17] has been widely used. The toroidal and spherical systems have much

in common. Indeed, for the complex Laplace equation these two systems

become equivalent under the complex conformal group. Bipolar coord-

inates, [7], page 108, are frequently used in connection with separation

of variables for (0.2) but these coordinates are conformally equivalent to

spherical coordinates. They are, however, inequivalent to spherical

coordinates with respect to the more physical scale-Euclidean group,

generated by E(S) and dilatations.

Nine of the seventeen inseparable systems for (0.2) correspond to

diagonalization of the operator J3: 2], 5]-8], 14]-17]. These special systems

have the property that their eigenfunctions take the form Ψ(x) = Φeίmφ,

iJzψ = m¥, where Φ is a function of the remaining two variables* If we

substitute Ψ into (0.2) and factor out eίmψ we obtain a differential equa-

tion for Φ which in cylindrical coordinates is

(6.9) (drr + r-% - r~2m2 + dzz)Φ(r, z) = 0 .

Equation (6.9) for fixed m > 0 is the equation of generalized axial-sym-

metric potential theory (GASPT). Its real symmetry algebra is isomorphic

to s£(2,R). Indeed, a basis is provided by the operators KZ,P3,D, (1.2),

(1.16), with commutation relations

(6.10) [D, Ps] = Pz , [D, K3] = -K3 , [K3, P3] - 2Ώ ,

and from (1.25), iii), (6.9) can be written as

(6.11) QPt + m - D*)Φ = (i + τn*)Φ .

It is shown in [25] that the space of symmetric second-order symmetry

operators in the enveloping algebra of s£(2,R), modulo the Casimir

operaor P\ + K\ — 2D2, decomposes into exactly nine orbit-types under

the adjoint action of SL(2, R). It is straightforward to check that the

nine separable systems for (6.9) correspond exactly to these nine orbit-

types.

Section 7. Identities for solutions of the Laplace equation.

Although it is not possible to find a Hubert space model for solu-

tions of (0.2) which leads to a unitary representation of the conformal

group, we can still use Weisner's method and also construct non-Hilbert
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space models in a manner analogous to that in Section 5. Consider the
expression

¥(x) =\ dβ\ ~h(β, t) exp \ Ά
Jci Jo* t L 2

(7.1)
+ lL(t - t~ι) - βz\ =

2 J

where h is analytic on a domain in C X C which contains the integration
contours C1 X C2 and is chosen such that I(h) converges absolutely and
arbitrary differentiation with respect to x, y, z is permitted under the
integral sign. It is easy to verify that for each such h,Ψ = I(h) is a
solution of the Laplace equation (0.2). Moreover, integrating by parts
we find that the operators (1.2), (1.16) acting on the solution space of
(0.2) correspond to the operators

P+ = -βt,P~ = -βt~\P° = -iβ,D = βdβ + i

J+ = itβdβ — ίt2dt9J~ = —βt~ιdβ — idt,J° = tdt

K+ = tβ~\βdβ - tdt)(βdβ - tdt - 1), K- = itβ~ι){βdβ + tdt)(βdβ + tdt - 1)

where J± = +/ 2 + iΛ,/0 = iJ^K* = +K2 + iK19K° = iK3, etc. Here we
are assuming to Cl9 C2 and h are chosen such that the boundary terms
vanish for each integration by parts: P*^ = /(P±fe),J±2Γ = I{J±h)9 etc.

For our first example we choose C19C2 as unit circles in the β and
ί-plane, respectively, with centers at the origin and oriented in the
counter-clockwise direction. Then for

(7.3) h(β91) = β-'-'Kt) , J(t) = J ] f flmtm , I = 0,1,2,

we can evaluate the ^-integral by residues to obtain

(7.4) ^(JC) = I(h) = ^ ^ [ώ cos a + iy sin a — zYj(eίa)da .
o

From (7.3), h is an eigenfunction of D with eigenvalue — ί — | , so by
(1.25), / . / r = -£(£ + ΐ)Ψ. Furthermore, W is a solution of (0.2) which
is a homogeneous polynomial in x, y, z of order ί. In particular for
j(t) = tm, — β < m < £, we have JΨ = m^ so Ψ must be a multiple of
the solid harmonic p£Y™(θ, φ), (spherical coordinates). Evaluating the con-
stant in the special case θ = 0 we find
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(7.5) Ψf = I(β-£-Hm) =
- m)! (t + m)!

Another example is provided by the contour C2 in the ί-plane and
the contour C[ which goes from β = 0 to +00 along the positive real
axis in the β-plane, and the analytic function h(β, t) = βetm, i = 0,1,2, ,
m = A ^ - 1, - -, -i. Here Ψ' = Γ(h) satisfies DW = (£ + $Ψ', J W =
- ^ + l ) r , Jψ' = mW and it is easy to verify that

Ψ't
m = Γ(h) = ^ ~ [cos θ - i sin θ cos (φ - ά)Ye-ιeim-°da

pe+i Jo

where p,θ, φ are spherical coordinates and 0 < θ < π/2.
Now consider the equations

(7.7) ({/>, P2} - {J2, Pβf = V , /°/ = m/

for the parabolic system 8]. In terms of model (7.2) the eigenfunctions
are

(7.8) f&<β,t) = e-Wβ-1t™.

Setting h = fj% in (7.1) and choosing contours C19C2 we find

^ = I(JfiJ = -2τr Γ /0[(-2^{^ - ia? cos α - iy sin

in terms of parabolic coordinates ξ, 27,9. As usual, the fact that variables
separate enables us to compute the double integral. Using the contours
Cί, C2 we similarly obtain

ψψy = Γ(fϊ8))

β
: _ _ _

= 2i KQW2λVz — ϊ& cos a — iy sin α]e i m α r

Jo
mί0 , λ > 0, f > |

where Kv(z) is a Macdonald function, [11]. The second and third equalities
are obtained by performing only one of the integrations. Note that the
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second equality yields the expansion of our solution in terms of cylin-

drical waves. Similarly, performing the ^-integration in (7.6) first, we

find the expansion

(7.6)' Ψ't
m = 2πim+1eim* Γ Jm(βr)e-^βsdβ , z > 0

of a solid spherical harmonic in terms of cylindrical waves.

Applying the transformation / (with contours Cu C2) to both sides

of the identity

one can easily obtain an expansion of the solutions Ψ\%, (7.9), in terms

of solid harmonics Ψf.

Corresponding to the oblate spheroidal system 7], the eigenvalue equa-

tions

(/./ + aΨ\ + aΨDf = -λf , J°f = mf

in model (7.2) yield the eigenfunctions

(7.11) ffijβ, t) = β-v\Jv(aβ)t™ , v2 = λ + i .

Choosing the case where m is a positive integer and v = £ + %,£> —1,

and applying the transformation V (contours C{, C2) we find

= 2πim+1eim* Γ
Jo

(7.12) = 2πim+Ψ(
e P 7

y α cosh 5j

0 <αr < — , 0<η

where a, η, φ are oblate spheroidal coordinates. The second equality gives

the expansion of our solution in terms of cylindrical waves. Again the

integrals are rather easy to evaluate because one knows in advance that

variables separate. In the case where v — & + | , £ = 0,1, , we can

expand (7.11) as a power series in β and apply / term-by-term to obtain

an expansion of (7.12) in solid spherical harmonics.

For the toroidal system 17] the eigenvalue equations
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(jpo + Ko)f = 2£f , jof = m f

in model (7.2) yield the eigenfunctions

(7.13) f°*(β, t) = eWiFiL u φ I iv ~~" Ό ~~~ 111/ ~~

V 2

We choose n, m = 0,1,2, and apply I' (contours C'lt C2) to obtain

( 7 ' 1 4 )

Jo \2m + 1

= τ r ( - - ί ) m ( - l ) w ( 2 m ) ! V2 cosh ξ + 2 sin ψ

2iβ)dβ
/

exp Γΐ(m^ + ψ̂ + 4
L \ 4

An explicit computation yields

(s — m)! \ 2m + 1

so

(7.16) exp - Σ

is the expansion of this toroidal system solution in solid spherical har-

monics. (The term-by-term integration used to derive (7.16) can easily

be justified by the Lebesgue dominated convergence theorem.)

As the above examples indicate, our non-Hilbert space model permits

us to derive integral representations and expansion formulas for the

Laplace separable systems. The analysis for systems related to the Lame

and Whittaker-Hill equations proceeds in analogy with that in [16]. Of

course, the number of examples can be greatly multiplied by choosing

other contours in the β and ί-planes. In addition, the Hubert space

expansions for solutions of the wave equation (dtt — J2)¥ = 0 and the

EPD equation can be re-interpreted as Laplace equation expansions by

replacing t with iz for z > 0, [26], [27].

The most useful functions for application of Weisner's method are

those associated with the spherical system. These functions are char-
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acterized as eigenfunctions of D and J°. It is easy to check that in the

model (7.2) the functions g$ = i*-mβetm, £,meC satisfy the recurrence

relations

J*g}? = ( - 4 ± m)g}?±1 , J*g<£
poπ(£) __ _π(i+D p±π(ί) _

(η -iη\ Mm — Mm 9 Mm

Dg% = (£ + i)g}? , K>g<£ = (£2 -

From these relations one can compute the matrix elements of a con-

formal transformation in the {g$} basis. In the case where £ — m =

0,1,2, one can check that the corresponding basis of solutions for

(0.2) which satisfies (7.17) is

V${w, t,p) = (£-m)l r(m + ̂ )cT-^/2(w)(2tr(p/ir£-1 ,

(7.18) V 2 /

w = cos0 = ί> , t = X l + tX2, p = [a? + x\ + xl\1/2 .
P P

Indeed, the relations (7.17) correspond to the known differential recur-

rence relations obeyed by the Gegenbauer polynomials Cv

n(z). See [28]

for derivations of addition theorems for the eigenfunctions (7.18) based

on relations (7.17).

The general Weisner method for (0.2) leads to expansions of the

form

(7.19) Ψ(w, t,p) = Σ am.tC?+

where Ψ is an analytic solution of (0.2). If JΨ = mΨ then Ψ satisfies

(6.9) and the double sum (7.19) reduces to a single sum on £. A very

detailed discussion of possible Gegenbauer expansions in this special case

is given by Viswanathan [29].
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