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SYNOPSIS

We classify group-theoretically all separable coordinate systems for the eigenvalue equation of the
Laplace-Beltrami operator on the hyperboloid z3+z3—z2—22=1, finding 71 orthogonal and 3
non-orthogonal systems. For a number of cases the explicit spectral resolutions are worked out. We
show that our results have application to the problem of separation of variables for the wave equation
and to harmonic analysis on the hyperboloid and the group manifold SL(2, R). In particular, most past
studies of SL(2, R) have employed only 6 of the 74 coordinate systems in which the Casimir
eigenvalue equation separates.

INTRODUCTION

This paper is one in a series devoted to the relation between the separation of
variables problem for the wave equation (JW =0 in four-dimensional space time
and the O(4, 2) symmetry of this equation, [1-3]. Here we consider a special case
ot the wave equation in which one sets x, =rsin ¢, x,=r cos ¢ and separates out
the angular variable ¢. The reduced equation so obtained is equivalent to the
eigenvalue equation for the Laplace-Beltrami operator on the hyperboloid z2+
z5—2z3—z5=1 and admits the symmetry group O(2, 2). Furthermore it is equival-
ent to the eigenvalue equation for the Casimir operator on the group SL(2, R).

In [2] we solved the separation of variables problem for the complexification of
our reduced equation. Here, we modify those results to show that the reduced
equation separates in 74 coordinate systems, of which 71 are orthogonal. Each
separable system is characterized by a pair of second-order commuting operators
in the enveloping algebra of O(2,2). We work out the spectral resolution for
many of these operators and show explicitly the relation between our results and
harmonic analysis on the hyperboloid.

Section 1. Models of O(2, 2) representations
The group O(2,2) consists of the real linear transformations which leave the
real form z - z= z{+ z5—z3—z invariant. The corresponding Lie algebra o(2, 2)
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1s six-dimensional with basis
Mr=210,— 2,0, =—M,,, Mj3;=230,—240,=—My,
M,3= 2,05+ 230, = M3, My = 210,240, = My, (1.1)
M3 = 2,03+ 230, = M, M, = 2,04+ 2,0,=M,,

where 8; =9/0z;. The isomorphism o0(2, 2)=s1(2)@ s1(2) becomes apparent when
one chooses the alternate basis

A =M, +M,;,, A,=M,;+M,,, A;=—M,;+M,,
B, =M, —M,;, B,=M,;—M,,, B;=—M;;—M,,

with commutation relations
[C,, C,]=2C;, [G,, C]=-2C,, [C;, C]=2C,, C=A,B, [A, B;]=0.

(1.2)

(1.3)
In this paper we are concerned with the eigenvalue equation
A¥(z) =o(c+2)¥(z), c€R, (1.4)
where
A= M7+ Mi+ Moz + M3, — Mi, — M3, (1.5)

=—Ai+A3+A5=-Bi+B3+Bj3

1s the Laplace-Beltrami operator on the hyperboloid z - z= 1. We shall classify the
possible coordinate systems on this hyperboloid in which (1.4) admits solutions
via separation of variables and study the corresponding separated solutions. To
find these coordinates we make use of [2] which lists the complex separable
coordinate systems for the Laplace-Beltrami operator on the complex sphere
wi+ws+wi+wi=1 and classify the distinct real forms of these coordinates
which parametrize the real hyperboloid z-z=1. We will show explicitly that to
each separable coordinate system {a, 8, vy} there corresponds a commuting pair
L,, L, of second-order symmetry operators in the enveloping algebra of o(2, 2)
such that the corresponding separable solutions V¥, , (z) = A, , (a@)B, ..(B)C,.,(¥)
of (1.4) are characterized by the eigenvalue equations

LY, =\,%,, LY, =17, (1.6)

Here A,, A, are the separation constants. Utilizing techniques from [2, section 1]
one can give a general derivation of the operators L, However, we shall
accomplish the same end by listing these operators for each separable system.
More precisely, we shall divide the separable systems into equivalence classes of
coordinates and list a representative from each equivalence class. We consider two
coordinate systems as equivalent if one can be obtained from the other by an
action of O(2, 2). Furthermore, we do not distinguish between systems {a, B, v}
and {a', B', ¥'} such that a =a(a’), B=pB(B'), vy=vy(¥). An equivalence class of
separable coordinates corresponds to an orbit of two-dimensional commuting
subspaces of second order symmetries under the adjoint action of O(2, 2) [2].
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The separation of variables problem for (1.4) is intimately related to several
problems in harmonic analysis and mathematical physics. We examine four of
these problems in detail.

1. SEpArRABLE SoLuTiONs ofF [, ®(x)=0
Let
DE = &mxl T axzxz_ axsx_v._ axaxa (1.7)

where the coordinates {x;} are real. In the region x - x>0 we can introduce new
coordinates p>0, z with z-z=1 such that x= pz. In terms of these coordinates
we find

3 1
—; d, +? A (1.8)
where A is given by (1.5). Thus the function ®(x)=p“W¥(z) is a solution of
O,®=0 provided ¥(z) is a solution of (1.4). Solution of the separation of
variables problem for (1.4) is an essential step in the solution of the corresponding

problem for [1,®=0.

Dg—_'_

aw

2. SEPARABLE SOLUTIONS OF THE WAVE EQUATION

L= ax,x, _ax;xa_axﬁxa_ax.;n {19)

be the wave operator and consider solutions ®(x) of the wave equation (J® =0
which have the form ®=r""'e¢™*W¥(x,, x,, r), m an integer, where

Xs=rcose, xs=rsing, r=0, 0=¢<2m
Then ¥ satisfies the reduced equation
(311_322_6""' Fﬂr+(m2—1}fr2)"';’=ﬂ. {1.10}

If ¥ is independent of x, then (1.10) reduces to the Euler-Poisson-Darboux
(EPD) equation [4]. The symmetry algebra of (1.10) is isomorphic to o(2, 2).
A basis of symmetry operators is

M, =H{(1+x7+x3+r%)0, +2x;x,0,+2x,rd,}

M., =—3{(1+x7+x3—r*)9,+2x,x,9, +2x,rd,}

M ;=1 —-x3—x5+r*)d,—2x,x;0; —2x,r0,} (1.11)
M,,=—(x10, +x,05+r9,), M,;=2x,0,+x,0,

M, =H(1—x>—x2—1r")d, —2x,%,0, —2x,79,}

with the same commutation relations as the corresponding basis (1.1). Equation
(1.10) can be rewritten as

(ma i h’ﬁaﬁ' m3+ﬁﬁ4+ﬂﬁ4_m;_ﬂﬁ4)1y = {m Tl 1)(”1 + 1)1!'* (1-12}
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Moreover, equations (1.4 and 1.12) with ¢ =m —1 can be identified through the
correspondence

z z 1
Xy =——— X, =——2— = (1.13)
2+ 2, Zit 2y Zy T Za

and the operators (1.1 and 1.11) can be shown to coincide. Note that this
parametrization of the hyperboloid H={z:z-z=1} covers only the surface
H'cH where H'={ze H: z,+2,>0}. Thus the problems of determining the
separable coordinate systems for equations (1.4 and 1.10) are virtually equivalent:
Every separable system for (1.10) yields via (1.13) a separable system for (1.4)
defined on a neighbourhood in the surface H' while every separable system for (1.4)
defined on a neighbourhood in H' yields a separable system for (1.10). (Separable
systems need only be defined locally and may not cover all of H.) We see from
this that solution of the separation of variables problem for (1.4) is an essential
step in solution of the corresponding problem for the wave equation.

As shown in [3], the solution space of (1.10) admits a natural Hilbert space
structure inherited from the Hilbert space of positive energy solutions of the wave
equation. Furthermore, the induced action of the group SL(2, R)xSL(2, R),
locally isomorphic to O(2, 2), is unitary and irreducible.

Indeed, consider the Hilbert space #,, consisting of functions f(I, k), (1=0,
—e< k<), Lebesgue square integrable with respect to the measure dp(l, k)=
I(I*+ k?)~"* dl dk. The inner product is

Gofd=| | ARt fufe,.

The algebra o(2, 2) acts on #,, via

My = (k2 + 1)y + 173~ m?1 4 3~ 1)

k
M34 =EE (&H T 3_131 — FHEI_E B a;._k + 1} . ﬂﬁ;k i iﬂk

ij =3 %{ (au + I_ja[ - mzlﬁz—ﬂkk il 1) = ifﬂm T Iak (1; 14)

Mld = ]. T Iﬂl G kﬂk, MEB — {ki—l' Il)lfﬂak

M., =;;#- (K24 12)Y2(3, + 1718, — m?1 2 + 9, + 1),

As shown in [3] these operators determine the unitary irreducible representation
D mi-1y2 @ D gy -1920f SL(2, R) X SL(2, R) on #,,. Here D} is a unitary irreduci-
ble representation of SL(2, R) belonging to the negative discrete series. The
eigenvalues of A, and B, on #,, are i(|m|+2a+1), i(jm|+28+1), respectively,
where a, 8=0,1,2,....

Given any fe #,, there is a corresponding (weak) solution ¥ of (1.10) given by
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the integral transform

W(xy, X, 1) =I(f) :é Jj exp [i(x,vVk2+ P —x,k)]J.. (Ir)

Xf(lL k) dp(l, k). (1.15)
Here, J_(x) is a Bessel function [5]. If ¥_=I(f,), a =1, 2, then

(¥, V) =(fi.f>)
= ifﬂ’ r dx,¥.9,V, (1.16)

r
il b e L -
= —EL hr— I dx,(0,¥,)¥,

where the integrals are independent of the variable x, = t. Integrating by parts in
(1.15) one can check that the operators (1.11) acting on the solution space of
(1.10) correspond under the unitary transformation I to the operators (1.14).

There 1s another Hilbert space structure we can impose on these results. Let
W(z) =W(x,, x,, )=I(f), feX,, where z, and (x,, x,, r) are related by (1.13).
Then ¥ is a solution of (1.4) for ¢ = m—1 and zec H'. Moreover, the right-hand
side of (1.15) is defined for r<0 and we find ¥(x,, x,, —r) = (—1)"""¥(x,, x5, 1).
Thus we can extend ¥ to all of H, (with the exception of the lower-dimensional
manifold z,+ z,=0) by imposing the symmetry relation ¥(—z) =(—1)""'"¥(z). As
is well-known there is an essentially unique O(2, 2) invariant measure dw on H.
In the region where z,>0 this measure is given by dw(z) =dz, dz; dz,/z,. More
generally, in terms of coordinates (a, 8, ¢) on H,

z,=coshacose, z,=coshasing, a=0, (1.17)
zz=sinhasmn®, z,=sinhacosh O0=¢ 6<2n, '

we have du(z) =cosh a sinh @ dg da d6. Now suppose ¥, =I(f;), j=1, 2, where
f;€ #,,. A straightforward computation using (1.15) and the inversion theorems
for the Fourier and Hankel transforms yields the

THEOREM. Ifm=+1,%2, ... then

1 A IR cdr " - =
EL 1]-']1]?2 d.U« = L E Ji dxl j. dxlllplq;lz lml_l{fl: fz) {118)

Thus we can induce a Hilbert space structure on the functions ¥ on H by
means of the definition

(”*i"l,’*nlfz)=|m;’2tj. 1irf'lrf"rz dp = (fy, f>). (1.19)

The unitary irreducible action of O(2, 2) on the Hilbert space #,, so obtained is
induced by the usual action of O(2, 2) on H.

4
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3. HArMoONIC ANALYSIS ON H

Let L*(H) be the Hilbert space of functions on H, Lebesgue square integrable
with respect to the measure du. The inner product is

(F.G)= | Fa)G@) duto) (1.20)

H

The usual action of O(2, 2) on H induces a unitary representation of O(2, 2) on
L*(H) and the decomposition of this representation into a direct integral of
irreducible representations is well-known [6, 7]. We recall the results using the
notation of [7]. Since the spaces of even and odd functions on H are separately
invariant under O(2,2), we start by performing the decomposition L*(H)=
L2(H)®L2(H) where

Li(H)={FeL*H): F(-z)= £ F(z)}.
then

i) Li(H)= (i EB%’EI‘*I)@LWME(F) § k)

i) LAH)= (Ig $3’f’g,-) $Jw3¥' rob(p) dp

0

(50) 3% Lo o)

(The spaces !, were defined in subsection 2 above.) More specifically, let
L?*(S'xS") be the Hilbert space of functions on the torus S'xS'=
{(§,7):0=¢ 7<2m, mod 27}, Lebesgue square integrable with respect to the
measure dédr. The inner product is

[‘Pl: “;,2] = J;i : (PI(E: T}‘F’z(fa T} d'f dT*

As is well-known, [7], there is a unitary representation T° of O(2,2) on
L*(S'x S8") for which the action of the identity component of O(2, 2) is induced
by the Lie algebra generators

M,,=a,

M,;=—(1+ip) cos T cos £—cos 7 sin €3, —sin T cos £ 4,

; 1.22
M,,=—(1+ip)sin 7 cos £—sin 7 sin £ 9, +cos 7 cos £ 9, : )

M3 =—(1+ip) cos 7 sin £+cos 7 cos £ 8, —sin 7 sin £ 4,
M,,=—(1+ip) sin 7 sin £+sin 7 cos £ 3, +cos 7sin £ 4,

Let LI(S'xS') be the subspaces of L*S'xS') consisting of even and odd
functions with respect to the reflection (£ 7)— (é+ 7, 7+ 7):

Li(S'%XSY)={peL3}(S*'XSY): @(é+m, v+ )= x¢(£ 1)}
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Then L*(8'XS")=L3(S'xXS")PBL2(S'xS") and it is easy to show that L? are
invariant under T : T?P=T5@ T?. Moreover, it can be shown that T% are
irreducible representations of O(2, 2), [7].

Given @ € L3(S' X S") we define a function

F.(z,p)=I%(¢) where I%(¢)=a(p)le, Ki*],

_ ~ i (1.23)

Ke* (& 1) =]z, cos €+ 2z, 8in € — z5 cos 7— 2z, sin 7|17,
(Since K2 L3(S'x S") for some values of z the integral must be interpreted as a
regularization [8, page 46].) It is easy to see that F.(z, p) = F,(—z, p) is a (weak)
solution of the wave equation in the variables z which is homogeneous of degree
o =—1—ip. Thus, for ze H it follows that F, is a solution of (1.4) with this value
of o. It can also be shown that for z=(cos a,sin &, cos 7,sin 7), F.(z, p)=
F.(a, 7, p) belongs to L2(S' % §') and I, becomes a unitary transformation on this
space [7]. Finally, the operators (1.22) acting on ¢ induce the operators (1.1)
acting on F,. (Also, the action of reflections of the form z;— —z, on F,
correspond via (1.23) to group operators on ¢.)

Restricting z to H one can show that F. (z, p) is not identically zero on H if
¢# 0 in L3. Thus we can define a Hilbert space structure on X, = I (L3(S' X S"))
such that I : L1(S' X S") — X/, is unitary.

The specific decomposition (1.211) is given as follows: Let{F,, . : k=0,1,2,...}
be an orthonormal (ON) basis for #’,. For Fe LZ(H) we define the transform
functions

Ak ZI F(I)ka(z} df.L(I), 'q:"{ga T, F‘) = J. F(I)K§+(§, T) dP'-(Z}-, 0< p << 00,

(1.24)
Then we have the inversion formula
o =] 1 e
F@=Y § anFus@+3- | alple, K21do (125
m k=0
odd

Similarly, given ¢ € L2(S§' X S§') we define a function F_(z, p) = I?(¢) where

I (¢)=b(p)[ e, K& 7]

1.26
Kf~ (& 7)=sgn(z, cos é+z,sin é—2z5cos 7—z,sin 1)K (§ 1) ( )

Here F_(z, p)=—F_(—z, p) is a solution of the wave equation which is homogene-
ous of degree o =—1—1ip in z, so F_ is a solution of (1.4). The operators (1.22)
acting on ¢ induce the operators (1.1) on F_. Restricting z to H we can define a
Hilbert space structure on X’ =I°(L2(S'xS")) such that I° is unitary. For
Fe L?>(H) we define the transforms

A= L F@)E,, @du@), (& p)= L F@)K; (& 7)dp(z), 0<p<ox,
(L:27)
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and obtain the inversion formula

Fz)=). i A m,k(z)+ﬁ Lmb(p)[qo, K% 1dp.

m k=0
odd

4. HarMmoNIc ANaLysis oN SL(2, R)

Let £, = L,(SL(2, R)) be the Hilbert space of functions f on SL(2, R), Lebes-
gue square integrable with respect to the Haar measure [9, 10]. The operators
(%, €),

T(B, C)f(A)=f(B'A€C), fecL,, oA B, €cSL(2,R), (1.29)

define a unitary representation of SL(2, R)XSL(2, R) on %,. The kernel of the
homomorphism (%, €) — T(%, €) consists of the two elements I={(+.%, +%)}
where $ is the identity matrix, so it follows that (1.29) defines a unitary
representation of O,(2,2)=SL(2, R)XSL(2, R)/I on ¥, where O,(2,2) is the
identity component of O(2, 2).

As a basis for the Lie algebra s1(2) of SL(2, R) we choose the matrices

{0 -1 _(1 0) _(0 1)
CI_(I 0)‘ = 0o -1 = o (L:30)

with commutation relations (1.3) Now each element

of = (“ B), ad—By=1 (1.31)
Y O
of SL(2, R) can be parametrized by the pair of complex numbers a, b
2a=(8+a)+i(y—B), 2b=(8—a)+i(y+B) (1.32)

subject to the constraint z-z=1 where
a=zytiz,, b=2z;+iz,, 2z real (1.33)

Thus topologically SL(2, R) can be identified with the hyperboloid H. Further-
more, with this identification one can easily extend the representation (1.29) to
obtain a representation of O(2,2) on %..

A basis for the s1(2) X s1(2) algebra of infinitesimal operators induced by T is
{C, Cf, j=1,2,3} where

CHf(s8) == T(exp 7 G, H)f(A)l.-o»

(1.34)

CEf(el) = T(3, exp 1 G)f (D), 0.

A direct computation shows that the local action of O(2, 2) on SL(2, R)-functions
agrees with the action of O(2, 2) on H-functions provided we make the identifica-
tions

C%=BIF C§=-H3: Cll’:=BE

1.35
Cft:_Ah C2R=A3= élIAE { )
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where A, and B, are given by (1.1 and 1.2). It follows that the Casimir operator
(CYP—(CH*—(CY)? on SL(2, R) can be identified with the Laplace operator
(1.5) on H. Thus the results of this paper will determine the possible coordinate
systems in which the eigenvalue equation for the Laplace operator will permit
solutions via separation of variables.

In the following sections we shall list the possible separable systems along with
the associated operators L,, L,. We shall also work out the separated solutions
for representative cases and compute the spectral resolutions of the self-adjoint
operators L, corresponding to the above constructed unitary irreducible represen-
tations of O(2, 2). It is well known that these spectral resolutions are vital for the
derivation of special function identities and for harmonic analysis related to the
separated solutions [11, 12].

Section 2. Split systems

We first list the split orthogonal coordinate systems for (1.4). These are
orthogonal systems for which the corresponding symmetry operators can be
chosen as L,=A? L,=B? [A,B]=0, A, Beo(2,2). Such systems are the
simplest to study since one can characterize thc scparated solutions as eigenfunc-
tions of the first-order operators A and B.

The possible split systems {u,, U, us} are:

I1) z=(cosh u, cos u,, cosh u; sin u,, sinh u, cos u,, sinh u, sin u,)
L,=M3,, L,=Mj3,, u, Z0.

12) z=(cosh u, cosh u,, sinh u, sinh u,, sinh u, cosh u;, cosh u, sinh u,)
z=(cos u, cosh u,, sin u; cosh u,, sin u, sinh u,, cos u, sinh u,)
Ll = M-GIEM LE = nﬁ?ﬂ

I3) z=({[e ™+ (1+ uZ—uld)e™], u.e™, use™,
A—e 1+ (1+us—u3)e"))
L= (MIE + Mzil}l: L,= (MIS +M43)2-

Note that there are two parametrizations I2) corresponding to the same
operators. The first set of coordinates covers the region z, >+v1+2z3 in H while
the second set covers the region 0<z;—z;<1. The parametrization I3) covers
the region z,+z,>0.

Although there are only three split orthogonal systems the total number of split
systems is actually six, as can be seen by utilizing the basis (1.2). The coordinates
listed above can be characterized by the commuting pairs (A, B;), (A,, B,), and
(A,—A,, B, + B,). (This last commuting pair is equivalent to (A, + A,, B, +B,).)

Using elementary Lie theory one can obtain three additional split systems
corresponding to the pairs (A,, B, +B,), (A,, B;+B,), and (A, B,) and show
that all remaining split systems are conjugate to one of these six under the adjoint
action of O(2,2). For example, corresponding to the pair (A,, B, +B,) we have
the coordinates

14) z=(u,;e " sin u,+cosh u; cos u,, u,e™*s cos u, —cosh u, sin u,,

u;e ' sin u,+sinh u; cos u,, U e "2 cos u, —sinh u, sin u,).
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However,
ds*=dz+dz=—2e %" du, du,+ du?— du? (2.1)

so these coordinates are non-orthogonal. Similarly, the other two new systems are
non-orthogonal:

I5) z=(—u,e " sinh u, +cosh u, cosh u,, u,e™*s cosh u,—sinh u, sinh u,,
—u,e s sinh u, +sinh u, cosh u,, u,e*s cosh u, —cosh u; sinh u,)
ds’=dz+dz=2e % du,du, — du?—du?

Azzauz, Bl -l_BEZ _aul.

16) z= (cosh u; cos u, cosh u,—sinh u, sin u, sinh u,, —cosh u, sin u, cosh u,
—sinh u; cos u, sinh u,, —cosh u, sin u, sinh u;—sinh u, cos u, cosh us,
—cosh u, cos u, sinh u; +sinh u, sin u, cosh u,)
ds*=dz + dz=—du?+ dus—du3—2 sinh 2u, du,du;

A,;=4d,, B,=4,.
We now describe how to obtain separated solutions of (1.4) corresponding to
the coordinates I1) and I12), in particular how to obtain ON bases of such solutions
for the Hilbert spaces #,, X7, and X7,

We start with the model (1.14) of the discrete series (m=0 an integer) and
look for an ON basis {f,,} for #,, such that

Al [TRY = ilu'f;.l.y Bl [TAT = ivfur' {22)

Introducing coordinates & m where
k= (52— nz}fzs I= gﬂ? ﬂ‘::,& n

we find
== Z{I!ﬁ! : —{(£*+n?2 my (m)f g2 7 (m)yf, 2
funl 1) = | o B e nyr @)L
p=m+2+1, v=m+2a+l, o, £=0172,..., (2.3)

[see 3]. Here LU™(x) is a generalized Laguerre polynomial. Applying the integral
transform I, (1.15), to obtain the associated ON basis {¥_,} in %", we find, [3],

(m+B)! (m+a)!
mal B!

V()= Q2a)y s~ (=1) [ ] : exp [i(a—B)us

(cosh u,) ™™ =™ Y(sinh u,)***
m!
X Fi(—a, —B; m+1; —sinh 2u,) (2.4)

—im+a+B+1)u,]

where ,F; 1s a hypergeometric function. The coordinates are given by (1.13) and
I1).
Next we find an ON basis {¢,,} for L*(S' X S') such that

Alq:!.ur "7 i“{Pj.l.lﬂ‘ Bl ‘P[.t.-l.-" N - ingj.l.ﬂ" (2'5)
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From (1.2 and 1.22) it follows easily that
Cu(§ 7)= Q)" exp [i(af+ B1)]
pn=—PB—a, v=B-a ap=0=+1,%2,....

The functions for which a+ 8 is even form a basis for LZ(S'x S') while those
functions with @ + 8 odd form a basis for L2(S*' X S'). Applying the transform I
to obtain the corresponding ON basis in J/, we find

_TIBB+aetip+tDIG(B-—a+ip+1)] |

X (sinh ;)" (cosh u,)* exp [i(u,a + us8)]
XL, Fi((B+a+ip+1)/2,(B+a—ip+1)/2; 1+ B; —sinh? u,) (2.7)

where ¢ 1s a complex number of modulus one given by

(2.6)

2w 2w
c(a, B, p)=alp) L L |cos £—cos 7| ' exp (iaé+iBT) dé dr. (2.8)

Similarly, an ON basis {F},} in %", is defined by (2.7) except that the complex
number ¢, |c|=1, is now given by

c®(a, B, p)=b(p) J; ﬂj; w|c:ﬂs &E—cos 7|7 sgn (cos £ —cos 7) (2.9)

Xexp (iaé+ipT) dédr.

(Expressions (2.8, 2.9) are consequences of the remarks following (1.23).)

One can check that the above basis functions are proportional to the matrix
elements of irreducible unitary representations of SL(2, R) from the discrete and
principal series with respect to a basis of eigenvectors of the operator C;, (1.30),
10, 13].

Before continuing with the computation of separable solutions of (1.4) it is
worthwhile pointing out the relative ease in computing integrals of the form
F, =I.(f,) where f, € L*(S' X S") satisfies the eigenvalue equations

L1f.a, = f{ﬂ&p sz.xf = AJAE (2.10)

and the L, are second order commuting operators in the enveloping algebra of
(1.22) which correspond to a separable coordinate system {u;}. Indeed, F, (z) is
necessarily a solution of (1.4) which is separable in the coordinates {u;}. Then,
explicitly separating variables in (1.4) we can solve the three second-order
ordinary differential equations which emerge and determine the general solutions
of these equations. Thus we can express F, as a linear combination of at most six
basic separated solutions. The expansion constants can be determined by explicit
evaluation at certain special values of the parameters u; for which the integral is
most tractable. (In the above examples we used u; =0 and the asymptotic value as
u,— +.) Thus our methods provide a powerful tool for the evaluation of
integrals. We know in advance that a particular integral can be expressed simply
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in an appropriate coordinate system {u; and we need only compute the expansion
constants. Similar remarks hold for generalized eigenfunctions in L2(S$' %X S"') and
for basis functions in #¢7,.

Another useful property of the transforms I7 which can be used for the
evaluation of integrals is the fact that I is unitary on L2(S'x S') and intertwines
the representations T4 and T.°. Thus if M(p) is one of the operators (1.22) we
have M(—p)I2(f)(@) = I2.(M(p)f)(z) valid for all fe C*(S'xS") and ze §*x S*. If
{fx(p)} is a (generalized) normalized eigenbasis for LZ(S' X S") satisfying equations
(2.10) where the second-order operators L;(p) are constructed from operators M(p)
then L (fi(p)) = c*(A;, p)fx (—p) where |c*|=1, as follows from the unitarity of the
transform.

Note that in each case we treat, the operators L,, L, are initially defined only
formally on L*(S'x S"). In each example we define the L; precisely on C(S* X
S') in the obvious way so that they become commuting symmetric operators.
Then we determine the possible self-adjoint extensions of the symmetric
operators and compute the spectral resolutions. In most cases there is a single
possible self-adjoint pair which extend the original operators. Only when there is
a multiplicity of self-adjoint extensions will we comment on the extension process.

Next we compute basis solutions of (1.4) which separate in the second of
coordinates I2). We start by constructing a generalized eigenbasis {fz} for #,,
such that

M,.f.p = icfop, M‘EEfaE T fﬁfaﬂ- (2.11)
Introducing coordinates & n where

k=¢&tanhmn, l=&coshyn, (0<§-—w<n<w
we find
fap(& M) =(27) " (&cosh )",
(faps farg) = 8(a —a')6(B — B'), (2.12)
_m{:a‘l‘ ﬂr! ﬁ? ﬁ"{:ﬂﬂ_

Applying the integral transform I to find the associated eigenbasis in ¥’ we
obtain
e

Feo (W) =—52m1
X (sin u,) =™ Ycos u, ) F((le+ip+m+1)/2, (la—iB+m+1)/2; (2.13)

Zin:im+1 —aarf 2 , )
e *zgtts

%
5

(The ,F, is evaluated by taking the limit as sin~* u, approaches the cut on the real
axis from below.)

Now we find an eigenbasis {f,s} for L*(S' X S") such that (2.11) holds. Let the
functions g'*(w), e = +1, be defined in the interval —7/2<w <37/2 by

1+m;sin 2 u,), 0<u, <

(1 +s1in m)‘”z (cos m]—{lvl-i.ll}fE! _1_1'{ {1_1'
b P COS @ 2 @ 2
g, (@) =1 : (2.14)
. 0 T w =%
: 2 2

go N (w)= gl (m—w).
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Then {f;5><’} is an eigenbasis for L2(S' X S') where

' 27 , m 3
Eee(u, v) = gfﬂﬁia(u)gﬁa{v},—ii u, ==

FE(u+2m, v) = £f*(t, v)
u=&+r, v=&—r7

Uﬁig*:i;}’ fgﬂizﬂij] = aﬂlﬂzﬁilﬁzafifiﬁ(al = ﬂg)ﬁ(ﬁl ¥ Bi)
o;=%x, €€e€==x1, —x<a B<w,

(2.15)

Thus each point (e, 8) in the continuous spectrum has multiplicity four. Applying
the transforms I% to f75<’ we can obtain eigenbases for ¥, and %’,. However,
the expressions for these bases are rather complicated due to the multiplicity of
the spectra and the fact that the functional form of the basis elements differs in
each u; quadrant. These functions are linear combinations of matrix elements of
irreducible unitary representations of SL(2, R) from the principal series with
respect to a basis of eigenvectors of the operator C,, (1.30), [10, 13].

Similarly, basis functions corresponding to the three non-orthogonal split
systems are proportional to matrix elements and mixed basis matrix elements of
irreducible SL(2, R) representations [14]. System I3) will be treated in the
following section. (In a future paper we will establish that the three non-

orthogonal split systems are the only possible non-orthogonal separable systems
for (1.4).)

Section 3. E(1, 1) subgroup coordinates

Next we list the orthogonal coordinates corresponding to the reduction
0(2,2)>%(1,1) where &(1, 1) is the pseudo-Euclidean subalgebra of o(2, 2) with
basis

Pi=M,+M,,, P,=—M,s+M,;,, M=M,, (3.1)
and commutation relations
[JM; PI]IPE! [M Pz].= P;, [P1=P2]=0~ (3-2)

The simplest such system is I3) corresponding to the operators P?, PZ. (Note
that P, =ad,,, P,=—4d,, and M = u,d,, +u30, ). We look for an eigenbasis {f,,} for
#t,, such that

Pif.p =i cosh Bfys, Pofos = ia sinh Bf,,. (3.3)

From the expressions (1.14) we find P, = i(k*+1?), P, =ik, M = (k?>+[?)?9,. Thus
in terms of new coordinates (& m) where [ =& k= £sinh n we have

fapl& M) =8(§—a)8(n—B), 0=a, —x<B<> (3.4)
(fup> forp) = @b(@—a')8(B — B').
Furthermore,
W, (2) = I(f,) =§ e~ J, (ce™) exp [ia(u, cosh B—ussinh B)].  (3.5)

Note that
P,=ifcoshn, P,=ifsinhn, M=3, (3.6)
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on #, and for fixed {=a these operators determine an irreducible unitary
representation T of the pseudo-Euclidean group E(1, 1) on the Hilbert space
L*(R) [15, 16]. Indeed, P;— P%=—£>=—a? on the space. Thus the irreducible
representation of O(2, 2) on 3, decomposes to the direct integral [5B T da on
restriction to E(1,1). We can use the commuting operators L,=P?— P2 and
L,=P3 to label the basis functions f,s.

In addition to I3) there are ten other systems related to the subgroup reduction
O(2,2)> E(1, 1). These systems correspond to the operator L, =P?— P2 and to
the operators L,= M?, {M, P,}, {M, P,}, {M, P,— P,}+(P,+P,)*>, M>—P,P,, M?+
(P, +P,)*, M?+ P3, respectively [17]. (Here, {A, B}= AB+ BA). For five of these
systems the spectral resolutions and separated solutions can be found in [16]. In
each case the eigenfunctions can be written in the form

Tm,.(z)=%e—m(ae*"ww(uz, 1) (3.7)

where (P{—P3)G,, =—a*G,, the Klein-Gordon equation, and G,, is an eigen-
function of one of the operators L, listed above. Returning to the system I3) we
look for an eigenbasis of L*(S' X S') such that equations (3.3) hold. We introduce
new variables s, f such that

cos T=x2tX = sin r=+(1+s2— )X
cos E=+(1—-52+1)X 5 sin &= +2sX =
X=(1+s>—13)%+4¢

s=(sinT+cos &) 'sin & t=(sin 7+cos &) cos 7

(3.8)

where the plus sign is adopted in the region R,: sin 7+cos £>(, and the minus
sign 1n the region R,: sin r+cos £<0. For the computation of eigenfunctions
fae(& T) We can restrict our attention to R, since f,(é+m, 7+ 7)) = +f.pe(& 7) for
fas € LZ(S'XSY). It is straightforward to verify that each fe L%(R,) can be
expressed uniquely in the form

F (&) =XH (s, 1), r r |g|* ds dt <o

—O0 e — 0

and the action of the operators P, P,, M on the functions g is
Pl = as: PE - _'&n M= Ias +Sa!' (3'9)

(Here, dé dr=4X"" dsdt) It follows that this action is equivalent to the regular
representation of E(1,1) as a transformation group on the pseudo-Euclidean
plane. As is well known, [15, ch. 5] the regular representation can be decomposed
into a direct integral of irreducible representations {a) where a>0, each (a)
occurring with multiplicity four. The spectra of P,, P, are +ia cosh 8, i« sinh 3
and ia sinh B, +ia cosh B, respectively where —o< <o, In the region R, the
eigenbasis corresponding to (3.3) is

2.a(s, 1)=m""22exp [ia(s cosh B —t sinh B)],
a>0,—0o<B<m, (3.10)
[faﬂ: fu’ﬂ'] = a 5(‘1 _QF)S(B b BJ)
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Applying the transforms If to f; we obtain the eigenbasis

2} jﬁ{z} o Iﬂ:l: uﬂ}
= BN (ip)(af2) e [T, (ae™)
+J_, (ae™)] exp [ia(u, cosh B —u, sinh B)].

The other three choices for spectra of P,, P, give similar results. For the bases
corresponding to the nine other operators L, the basis functions in R, take the
form g,(s,t) where g, is a solution of the Klein—-Gordon equation in the
variables s, t and can be found in [16 and 18]. The corresponding basis functions
in X', and J},, are

(@) = I2(g5p)
=8mw(E o (ip)(af2) P gza(Us, Us) (3.12)
X [T, (ae )£ J_, (@e )],

Section 4. O(2, 1) subgroup coordinates

There are two types of orthogonal coordinates which correspond to a reduction
0(2,2)20(2,1):

I111) z=(&; cosh x,, & cosh x,, &, cosh x,, sinh x,)
Li=Mij;+M5—Mj,, &—-&E—&=—1.

Here, (£, &, &) correspond to one of the nine classes of coordinates on the single
sheet hyperboloid as listed in Appendix B. The operator L, can be read off from
Appendix B where N;=M,;, N,=M,; and M,=M,,. Thus there are nine
coordinate systems of this type.

I1Tii) z = (cosh x,, & sinh x,, & sinh x,, & sinh x,)
Ly=My3+My,—M3, &-&-&=-1

We have the same comments as for i) but with N;=M,;, N,=M,, and M, = M,,.
Note that these nine coordinates are valid only for z,>1. For |z,/|<1 we have

z=(cos x,, & sin x,, & sin x,, & sin x,)

where now (&,, &, &) corresponds to one of the nine coordinates on the double-
sheet hyperboloid &3 — £ — & =1. The operator characterization of these coordi-
nates is identical with that given above.

We confine our attention to coordinates IIli) since the results for cases IITii)
are so similar. This system corresponds to the reduction of o(2,2) to the
subalgebra o(2, 1) with basis

N3;=M,;, N,=M,;, M,=M,, (4.1)

and commutation relations (A.3). The model (1.14) for discrete series representa-
tions is not very convenient. However, from (1.2) and the well-known Clebsch-
Gordan expansion

&2

D 155B D12 oz = Z DD, (4.2)

s=0
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we see that on restriction to so(2, 1) our irreducible representation of so(2, 2) on
4, splits into a direct sum of irreducible representations D, ... Corresponding to
the representation D,  the Casimir operator L, = N3+ N3— M3 has the eigen-
value (m+s+1)(m+s) and M, has eigenvalues i(m+s+n+1), n=0,1,2,....
From these facts the basis functions and spectral resolutions can easily be
obtained. Indeed, one needs to know the spectral resolution of the operator L,
acting on the eigenspace £, .. of eigenfunctions of the Laplace operator L, on
the hyperboloid & — & — & =—1 with eigenvalue (m+s+1)(m+s), a realization
of D, .,. These results can be read off from [4] on the EPD equation and
Appendix A. If G, () 1s an eigenbasis for £, .

LG =(m+s+1)(m+s5)G,,, L,G,.=aG,, (4.3)

then ¥, , is the corresponding eigenbasis for #,, where

m(s!) :|% rem+1) . - ,
'q; — m=—1 mi—1 m+g
s.0(2) [F{2m+s+ 0] Tm+1) 2 (cosh x,) C""2(tanh x,)
}{Gﬁ,n(g]: S=03 11 2:- --rm}ﬂ* {4-4}

As an example, in the case where L,= M3 we have &= (sinh n, cosh 7 sin 6,
cosh ncos 0) and M,G,, =i(m+s+a+1)G,,, «a=0,1,2, ..., where

Z—m-s—l

o {g}—[ (m+s+i)a! ]%r(2m+2s+2)
=S| aT2m+2s+a+2)] Tim+s+3)
x exp [—i(m+s—3)w/2](cosh n) "+ C7+*+1(tanh n)

Xexp[—i(m+s+a+1)6]. (4.5)

In this case {V¥, .} is an ON basis for 7,
For the principal series representations our results are more complicated. We

introduce new variables Y=(Y,, Y,, Y3) in S' X S! such that
Y,=cotr, Y,=sinécosect, Yy=cosécosecr,Y5+Y5;—Y:=1, (4.6)
and
sin r=+(Y?+1)2,cos 7= Y, (Yi+1)2
cos £=Y;3(Y7+1);, siné=Y,(Y?+1)75
Here the plus sign is adopted in the region Ri: 0<7s<m, 0=£¢<2, and the
minus sign in the region Rj: w<7<2w, 0=§¢<2w. For the computation of
eigenfunctions f,(& 7) we restrict our attention to R} since f,(¢é+m 7+m)=

+f.s(& 1) for f,oeLi(S'xS"). Now for fixed p>0 each fe LAR/) can be
expressed uniquely in the form

fl& )=(1+Y)""2(Y), geL*H).
Here, L*(H’) is the Hilbert space of measurable functions g such that

(4.7)

dY,dY,
| Y|

[[18F v <o, avw=

Hl
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where the integration surface H' is the single-sheet hyperboloid Y2+ Y2 — Y?=1.
Furthermore, the action of o(2, 1) on g induced by (1.22 and 4.1) is

N3 — Ylayz—}" Yza?ﬂ Nz Yla&r + Yjﬂy 3 M'l Y Y3a?2_ Ygﬂﬁ. {4.8)

Thus, the induced action of o(2, 1) on L,(RY) is unitary equivalent to the regular
representation of 0(2, 1) on H'. The decomposition of this regular representation
into a direct integral of irreducible representations is well known [7, 15]. We find
that

LA H)=L:(H)DL(H)
L:(H)={geL*H"): g(-Y)=+g(Y)}

where Li(H') are invariant under the natural action of O(2,1). Let {g,.; : k=
0,1,2,...} be an ON basis for the space %, defined in Appendix A. For
ge L%(H'") we define the transform functions

b= | 8002 (0) v,

YL € p)= J‘ g(Y)| Y, cos £+ Y5 sin {+ Y, e[ 2 dy(Y) (4.9)

O<pu<oo, e==1.
Then,

8V =2 L bniBni(V)+ _ZIL 0% ) i

m k=0

I (¢)= L‘(#}L wl Y, cos {+ Y, sin £+ Yie[FY(L €, 1) dE (4.10)

Similarly, for ge L=(H’") we define transforms

i

bm,k Fa g(Y)gm.km dl"m?
<"

p(lew)=| g(Y)sgn(Y,cosl+ Ysysin{+ Y,e)|YscosZ+Y,siné

JEI!
+ €Y, [T dv(Y). (4.11)
Then

g(Y)= Z i b 18 (Y) +_ Z J* () dp,

m k=0 e==+1

2m . AL (4.12)
JE (P)=c(p) j; |Y,cos £+ Yssin £+ Y,e| 7% sgn (Y, cos £+ Y,

Xsin {+ Y,€e)Y({, € p) di.
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The action (4.8) of 0(2, 1) induces via (4.10 and 4.12) an action on the functions
¢({) given by

N, =—c—:(sin {d%ﬂr(%ﬂp) cOos ;_I,’), N,= E(C{}S ‘f%—@*‘f#} sin ;’),
q (4.13)
M, = —-&E.

The basis eigenfunctions ¥ _,(¢) on S' corresponding to each of the nine
separable systems can be obtained directly from [19], together with the spectral
decomposition. The corresponding solutions I%(J% (y)) take the form

(2&a'(w)I(ip)(cosh wp £ 1)2°e T ¢+ in—ip)TG—ip—ip)

. (1—tanh? x,)®*[P*? . (tanh x,) + P* . (—tanh x,)] (4.14)

i oy o
2ar '
| L |&; cos {+&sin {+ &€l P(L € 1) do

where P%(x) is an associated Legendre function. Similarly the solutions I%(J% (¢))
take the same form except that the quantity in brackets is now [P, (tanh x,) ¥
P2 . (—tanh x,)] and the integral reads

2ar
J €, cos £ +&;sin {+£,€[ ™ sgn (&, cos {+&;sin {+£€) - P(L, € p) AL (4.15)
0

The integrals (4.14, 4.15) considered as functions of & are eigenfunctions of the
Laplace operator on the single sheet hyperboloid and can be evaluated by exactly
the same methods as for the double sheet hyperboloid carried out in [19].
However, it seems that these rather straightforward computations have not yet
appeared in the literature.

The solutions of (1.4) corresponding to the discrete series in (4.10
and 4.12) take the form G, _:.(§) times a linear combination
of (coshx,)™*C™*z, (isinhx,) and (cosh xl)”p“ICrﬂﬂﬁ%{tanh x;) where
G,.-1(E) is an eigenbasis for &, 4 with L,G,,1,=aG, 1, and Ci(z) is a
Gegenbauer function.

Section 5. Semi-split systems

Semi-split coordinate systems are those for which the corresponding symmetry
operators can be chosen as L,=A% L,, [A L,]=0, Ae€o(2,2). We have
discussed several semi-split systems above, but these systems were also either split
or associated with the reduction of o(2,2) to a three parameter subalgebra. We
now examine the remaining semi-split systems. As we shall see, these systems are
all related to coordinates on the single and double sheet hyperboloids but are not
obtained by a reduction from o(2,2) to o(2, 1), the symmetry algebra of the

hyperboloid. The coordinate types on the hyperboloids are those listed in Appen-
dix B.
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Class IV. Rotational systems associated with coordinates of type 1 on the single
and double sheeted hyperboloids.

IV1) z=(&" cos x,, &V sin x5, £, £P), &V gV =1,
leM?zz Lz_m +M%3+H(Mﬁ+ﬂ'@4)
IV2) z=(&" sinh x5, &Y, &, &P cosh x,), EV-EV=1,
L,=M3,, L,=Mj3,—M3i,+aM3,
IV3} z=(&" sinh x;, &Y, &Y, £V cosh x,), £V -gV=1,
1= M3, =M§1+ﬂ(ﬂﬁ4_ 11}
w4) 7= (é{ , 1}, {”EDS X3, é’(l] sin I3) g(l}l.g{l}:_l:
L,=M3,, :M?3+M%4+Q(M%3+M§4}
IVS} z=(&" cosh x5, £, £, £V sinh x;), £V -EV=
=M24, =M?3_MZ4+EM%3
IV6) z=(£&" cosh x5, &Y, &, £V sinh x;), &V« gV =—1,
Li=Mj,, L,=M5+a(Mi;—M3,).

Class V. Rotational systems associated with coordinates of type 2 on the single
and double sheeted hyperboloids.

V1) z=(£ cos x3, £ sinx;, £, €7), E2-E2=1,
=M{1zza LQ=M3+JH%3_“M§4

vZ) Z= {gf?l) Siﬂh X3, 12}: 32}: 5 EDEh IE) g{E} 3 E:E} = 1:
:ﬂ"fz L2=M§4_M%2_ﬂ{M§4_M%3}

v3} 7= { é{l} 32}’ 5(12} COS X, 12} sin I_—._.,), ‘5{2} a g{2}= _1,
=M§4: Lzzma"*‘mq."ﬂf"‘ﬁz

V4)  z=(&7 cosh x5, €7, €7, € sinh x;), &2 -E@P=—1,

L1=ﬂ‘ﬁ4: Lfﬁﬁg—ﬂﬁﬁﬂ(ﬁﬁrﬁﬁz)-

Class VI. Rotational systems associated with coordinates of type 3 on the
hyperboloids.

VI1) z=(&sinh x;, £, &, £ cosh x;), &P -3 =1,
z=(£5 cosh x,, &, €D, £ sinh x;), &2+ P =-1,

=Mi,, L,= ﬂ{Mgd — M3, — M3, +M7,)+ B(M.,a, My} —{Ms,, M,,}).

Here, {A, B}= AB+ BA. Note that there are two parametrizations VI1) corres-
ponding to the same operators. These two coordinate systems cover disjoint
regions in H.

The eleven systems listed above are distinct real forms of the complex system
13) listed in [2].
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To explain the relationship between these coordinates and the hyperboloids
& - £= x1 we consider the system IV1) in some detail. A straightforward computa-
tion shows that when applied to a function f(£)e’*= the identities

M%#"’M%-rl = N%"‘fza.g;_ f-‘*zf%fﬁ
Mis+ M3, = N3+ &0, — u’ &3/ (5.1)
M, =M,

hold where N;, N,, M, are defined by (B1). Thus the differential equation (1.4)
becomes

(N%JrN%—M?*FEzﬂ.g;l'éﬂg;"nz!ﬁ)ﬂ&ﬁ ﬂ"(ﬂ"" Z)f(g) (5-2)

Now the second order terms in (5.2) agree with the second order terms in the
Laplace-Beltrami operator N3+ N5— M7 on the hyperboloid &+ £=1. In order
that variables separate in the reduced equation (5.2) it is necessary that they
separate in the second order terms alone, hence that they separate in the
eigenvalue equation for N3+ N5;—M7. Among the nine coordinate systems in
which this last equation separates only two still yield separation when the
perturbing terms in (5.2) are added. These are coordinates IV1) and V1). In the
case IV1) we see from Appendix B that coordinates of type 1 are characterized by
the operator N3+aN3, a>0. From (5.1) it follows that L, agrees with this
operator in the second order terms. Similar remarks hold for all of the other
systems listed in this section.

The eleven coordinate systems IV-VI are real forms of the complex system (13)
listed in [2], as are the two elliptic cylindrical coordinate systems on $°, [20] and
the five systems 17)-21) on the hyperboloids z3—z3—2z3—2z3==+1 [1]. In each
case the separated solutions of (4.1) can be expressed as an exponential function
times a product of associated Lamé functions. We omit the tedious derivations of
the spectral resolutions since they are so similar to those worked out in detail in [1
and 20]. Due to their relative intractability the associated Lamé functions have
not yet proved to be of great practical importance.

Class VII. Rotational systems associated with coordinates of type 4 on the
hyperboloids £ - £=+1.

VII1) z=(£&"sinh x5, &, &, &Y cosh x;), EY -V =1,
Li=Mj,, L,=M3+ (M, +M;)*—(My+M,,)*
VII2) z=(&" coshx;, &, 1Y, &5 sinh x5), £9-EY=-1,
Li=Mj,, L,=M;+(M,,+M,;)*—(M,,+M;,).
Class VII'. Rotational systems associated with coordinates of type 5 on the
hyperboloids £- £=+1.
VII1) z=(&” cosh x5, £5, €7, €57 sinh x;), &9 -E¥=-1,
Li=M3,, L,=M:3+(M,;+M;,)*—(M,,+M,,)*
VII2) z=(& sinh x;, —&, £, —& cosh x,;), &9 - E9=1,
Ly=Mi,, L,=Mj;+(My,+M)°— (M + M)
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There are only two distinct systems here since VII1) and VII1)', respectively
VII2) and VII2), correspond to the same operators L,, L, and cover disjoint
regions of z - z= 1. These systems are real forms of the complex system (14) in [2]
as are 25) and 26) in [1]. We compute the spectral resolution only for VII1) since
the other case is similar.

The generalized eigenbasis {f,.} for #,, such that

Ml#fuu = l‘”fpr..n!' LZf;.w = _Hz [T (5'3)
where L, is given by VII1), takes the form

r(m+1+sx+m)r(m+1+m—m)

2 2

A ipp—1
fiu 6, 1) = mIT(1— ix) 6

X(tanh x)™(cosh x)! """ F ((m+1+ik+iw)/2, (m+1+ik—in)/2;
m+1;tanh?x), 0<k<o, —oo<p<x,
(Furs Fure? = 0 (e — p')8(k — K').

Here, [=2¢ tanh x/cosh x, k= {(1—sinh? x)/cosh? x with x, {=0. The corres-
ponding eigenbasis for #,, can be expressed as

e"“(cosh u,) ™ (sinh u,)™, F,((ix +ip +m+1)/2,
(ik +ip—m~+1)/2;ip+1; —sinh? u,)

(5.4)

times a linear combination of the functions
(cosh u,)*(sinh u,)*, F,((ix +ip+m+1)/ 2, (ik + ip —m+1)/2; in + 1; —sinh? u,)
(cosh u,)™(sinh u,) ", F,((—ik +ip+m+1)/2, (—ik + ip—m+1)/2;
(—ix+1; —sinh” u,)

Here, &P+ =sinhu, cosh u,, &Y —&Y=cosh u,/sinh u,—sinh u,/cosh u,+
sinh u, cosh u,, £&” = cosh u, sinh u,.

The corresponding basis for L,(S' X S?) is much more complicated. Appropriate
coordinates for S'x S' are of the form

sin £=R™', cos £=2tan 3 cosh a/R cos B
sinT=2tan B sinh a/R cos B, cos7=(2 —cos” B)/R cos® B

4 tan B

cos” B

dédr= dadB, R =(1+4 tan? B cosh? a/cos® B):,

—o<a<w, 0=<7/2

with seven similar coordinate patches needed to cover S' X S'. In any one of these
regions, eigenfunctions satisfying equations (5.3) take the form

fuc(a, B)=R"™Pe™g(B), —o<p <o, (5.5)
where g is a linear combination of the functions
(tan B)**(cos B) L F ((ix +ip +ip+1)/2,
(ik—ip+ip£1)/2; 1+ip; —tan® B). (5.6)
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However, the deficiency indices of L, are (2,2) in this case so there is a
two-parameter family of possible self-adjoint extensions, for each of which the
spectrum is discrete. The corresponding solutions of (1.4) are obtained in the
usual fashion.

Class VIII. Euclidean systems associated with coordinates of type 4 on the
hyperboloids & - £= +1.
VIIIl) z= (E{f” "%xg(ﬁ‘” T f.(?#})a (5(14} T ggﬂ}xm 2
EOHAECHER), £9-E0=1
L,=(M,,+ M42}2:
L,=—-2M5,+M3,+Mij;—Mi,—{M5, Mo} —{M,5, M,,}.
VIIN2) z=(&"+3x3(677+ &), &7, (617 +&57)xs,
AP, 0=
L;=(M,; +M13)2:
L,=-2M7;+Mi,+Mi— Mi,—{Ms, M3} +{My,, M5}
Class IX. Euclidean systems associated with coordinates of type 5 on the
hyperboloids & - £E= +1.
IX1) As in case VIII1) with £ §5 =1,
L,=(M;+ M¢2)2:
LE = _ZM%E + M%S T M%-ﬂl +; M4 +{M211 M24} _{MIB-: Mlid}:!
IX2) As in case VIII2) with £+ 9 =—1.
L,=(M4;+ MB}?’
L,= _2M§4 + M?u T M%a e M%z +{M34, M;,}—1M,,, M11}-
The four systems VIII-IX are real forms of the complex system (15) in [2], as
are the two systems 23), 24) studied in [1]. In each case the separated solutions of
(4.1) can be expressed as an exponential function times a product of spheroidal

wave functions. We omit derivations of the spectral resolutions which are similar
to those carried out in [1 and 20].

Class X. Euclidean systems associated with coordinates of type 6 on the hyper-
boloids £-£=+1.

X1) z=(§7 2560+ €), x: (0 + &),
© £6) L 1,2(£6) 4 £6)))  £6), £6) 1
Ly=(Mp+My,):, Ly={M,;, My, + M} +{M,4, My5+M,,},
X2) z=(&£"+3x3(§0+£0), &, x:(67 + &),
£ -B3EP+EP), £9-E9=-1
L,=(Msy+M,5)°, L,={M,;, Mys+M;}+{M,,, M42+M1_2}-

These systems are real forms of the complex system (16) in [2] as is 27) in [1].
We examine the spectral resolution for X2) alone since X1) is similar. The
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generalized eigenbasis {f,,} for %, such that

(M43+M13)fm = _i#fﬂa szm. =“2I-‘f-:'tfu1 (3.7)
where L, is given by X2), takes the form
k|2 (i —m)e™s ,
for(k, 1) = kf 3p — ) , n=k, sinh&=—k/I

N2 (5.8)
—o<pu, A <®, (f,, fun)=8(m—pn)8(A—A".

The corresponding eigenbasis for #’, is

e i+ m+iA
‘Fg(ﬂ}=ﬂfuﬁ}={8w3“}_%em! F(I WZ1 I)

X (e72 pay) % Fi (1 +m—id)/2; 1+ m; —ipa,) (5.9)

where

Wa, =20, =) 4V2(x,+1), 2iVa,=v2(x;— 1) —v2(x, +1).

(These coordinates cover only the region x;>r of (x,, x,, r) space. There is a
similar expression for x,<-r) Also, ¥_,,(x)= ’if“_,h(x). Here W_.(z) is a
Whittaker function [5].

On L,(S'xS") the appropriate coordinates are (cos £ sin & cos 7,sin7)=
(14+22—1%20,2r, 1 -2+ 0)X Y, X=[(?—-1—-12?+4v’}, —o<n,vr<x,
dédr=2X"?* dndv for cos £+sin 7>0. In this region eigenfunctions g satisfying
(Mys+M,5)g =ipg L,g=Ag take the form g(n, v)=X""n7"2e""h(y)
where h is a linear combination of the functions

=2 Fi((1£p)/2—Aifdp; 1+p; 2ipn).

The spectral resolution of L, is fairly complicated in this case and we shall not

give the details. In particular, L, does not have a unique self-adjoint extension for
0<p<«<l.

Section 6. Non-split systems

Non-split coordinate systems are separable systems which are not semi-split, i.e.
those for which one cannot write either of the defining operators as the square of
a first order symmetry. We have already discussed some semi-split systems in
sections 3 and 4 that were related to subgroup reductions. The remaining
non-split systems that we now list are not so related. Moreover, the ordinary
differential equations for the separated solutions always lead to two-parameter
eigenvalue problems, about which relatively little is known. Therefore, we merely
list the separable systems and their operator characterizations without attempting
spectral resolutions.

Class XI. These are real forms of the complex coordinates (17) in [2].
XIl) 22=—xxxslab, 22=(x—1)(x,—1)(xs—f(@a—1)(b—1)

z53=(x;—b)(x,—b)(xs—b)/(a—b)(b—1)b
z2=—(x,—a)(x,—a)(xs—a)/(a—b)a—1)a



250 E. G. Kalnins and W. Miller, Jur.

for a>x,>b>1>x,>0> x;. The operators are
L, = abMi,—aMi;—bM7,,
L,=(a+b)Mi,—(a+1)Mp;—(b+1)M7,—aM3, — bM3, + M.

The following four systems and their operator characterizations are obtained
from XI1) via the indicated mappings.

X12) (24, 235 Za; 24)1 — (123, 124, 124, i2,)
x;>a>x,>b>1>x,>0.

XI13) (z), = (z,, iz4, 23, i25)
Xx=2a>b>x,>1>0>x;.

XI14) (z);— (izs, 25, izy, 24)
Xis X, =>a>b>x3>1 or a>x,x,>b>x3;>1 or
D% %0 X 2> 1.

XI5) (@) = (24, iz3, 125, 24)
X1, %>a>b>1>0>x; or a>x,x>b>1>0>x,
or b>x,x>1>0>x,. |

XI6) zi=—xx:x3/ab, z5=(x;—1)(x,—1)(x3—1)/(a—1)(b—1)
(z3+iz4)* =2(x, — b)(x,— b)(x3—b)/(a —b)(b—1)b,
L>1>6>0>x,, a=b=a+iB.

The operators are
L, =(a*+B*)Mi, + a(M3,— M3;)— B{M,3, M, }
L,=2aM7i,+(a+1)(Mi,—M35)+a(M3,— M35)
—BiMi3, My} — B{M,3, My} + M.

XI7) (2)s— (izs, iz4, i24, i2,),
X1, %>1>x,>0 or 1>xq, x,, x,>0.

XI8) (z;+iz,)*=2(x; —c)(xy3—c)(x5—¢)/(c—b)c—a)c—d)
(z3+1iz,)* = —2(x; — b)(x, — b)(x3—b)/(b—a)(b—c)(b—d)

a=b=a+iB, c=d=y+id, x,x, %, real
L, =(a’+B*)M7, + (> +8%) M3, + ay(M3, + M2, — M3, — M2,)
+ ﬂs({Mzas M.} —{M,3, M,,}) + ad({M; 5, M3} +H{ My, M,,})
+yB(AMi3, My} +{M,,, M,,})
L,=2aM3;+2yM3,+(a +v)(M3;+ M3, — M3, — M2,)

I 5{{M13! M23} +{M42:r M‘l-f-l}] 1 ﬁ({MIEh M14}+{M42! MEE})*
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Class XII. Real forms of the complex coordinates (18) in [2]

XII1) (zy+2z3)°=x1%:%30a, zi—zi=[(a+ D)x;xx;— a(x, x,+ x,x:+ x,%35) ]/ a?
z5=(x;—a)(x,—a)(x;—a)la*(a—1)
z7=(x; = D= D(xs—D/(a=1), x4, X5, x3>a>1,
L,=(M,,+My,)*+a(M,, + M,,)*+aM7,,
L,=—(a+1)Mi;— M3, + M, + a(M7,— M3,) + (M, + M;,)°
+ (M, +M,,)2
XI12) (z); = (iza, iz4, 24, iZ5)
X, %>a>1>0>x; or a>xy, x,>1>0>x,.
XII3) (@), — (izs, 25, 121, Z4)
X, >a>1>x>0>x,.
XI14) (z), = (zy, iz, 23, i2,)
X, X>a>1>x3>0 or a>x,x,>1>x;>0.
XIIS) (zy+z5)* =x,xx5/ab, (zx+iz,)*=2(x;—b)(x,—b)(x5—b)/(b—a)b?

(a+b) 1
a’h? X1X2X4 ‘_E (X125 + X1 X3+ X5X3)

a=b=a+ip, x;,x, x;real, sign(x;x,x3)=+,

L,=(a’*+ B )M+ a(M,, + M,,)° — a(M,, + M)
+B{M,, + M,;, M,, + M,,},

L,=—2aMi;+a(M3, + Mi;— M3 — M33) + B{Ma;, My}
—B{M3, M3} + (Mo + Mys)* — (M + M,,)°.

gr—zf=

X116) (z)s— (izs, izy, iZ4, i2,), sign (xX;Xx,X3) =—.

Class XIII. Real forms of the complex coordinates (19).

XII1) (z,+z.)>=(x;— D —1(x3—1), (2242 =x;%,%5
22— zi=2%, X% — (X X3+ XX+ X,x,)+ 1

where x> 1>, 2,20 or x>1>0>%,25 0OF 1 X;3,%,, %=1,
L, =4(M;,— My,)* +2{M,,— M,,, M,; + M} — M3,+ M3,
L,=M3,+ Mji,.

XI2) (2); = (izs, 24, 121, 24)s X%, > 1> %,>0> x,.

XHI3) (z)l - (zll izih Z3, iz?)
12220205 X3 OF 13X X0, 23,0,
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XII4) (z,+z,+iza+iz)*=4(x;—a)(x,—a)(xs—a)/(a—b)>
(zy+iz3)* — (24 +iz)* =2[(x; —a)(x,— a) + (x; —a)(x;—a) + (x,—a)
X (x3—a)l/(a—b)’
4(x,—a)(x,—a)(x;—a)/(a—Db)?,
a=b=a+if, x,,x,,x,real,

L, =—3(Mys+ M+ M, — Mi5)* — aB{M;3— My, My + M,,}
+%{‘12+Ei)[(Mlz"‘MM)z_(Mm—Mu}Z:
+%{ﬂ52 = Bz}[(Ml:’- = MZ#)E — (M, + MZE)E:
-%(ﬂﬁz + 32}[(M23 = Mu)l +(M,3+ Mm)z:
+H{ Mo+ M+ M, — M, B(My— Mys) — a(My5+ M,,)},

L, = a[(M;;+M;,)* —2M7,—2M3;— (M5 + M,,)°]
+218{M13_M14= M14+M23}

_%{M24+M34+ M,,— M3, M5 +M24}-

Class XIV. Real forms of the complex coordinates (20).

XIV1) (z3—2z2)* =x1X3%3, 2z1(23— 23) = X1 X5+ X1 X3+ X5X3 — X1 XoXs,
22=(x—1)(x,— 1D)(x5—1),
X:21>%,, 2,20 or %,21>20>%x,,x: or 1>x;x,>0>x,,
L, =(Myy+My,)* +{M,+ M3, My}
L,=M3,+Mj,— M5, — (M, + Mys)* +{My, — Mys, M}
XIV2) (z); — (izs, iz4, i24, i25)
xi>1>x,2>0 or 1>%,x:>0>x or U>x;, X, %5
Class XV. Real forms of the complex coordinates (21).
XV1) (2,4 2,2 =—2x,%,%s, (24+2,)(23+21) = %1%+ X X3+ X X5
(za+2)(z3— 21)—Hz1 + 22 =%t x,+ x5, sign (x,%,%5) =—,
L,= {M24: My — My + M, + M21}_%{M43 = MEI "'"Mz:-:. =3 Mﬂ)z
L,={M,y, Mys+ M+ M+ M, }+2{M,5, M, + M,,}
+ {Mu + Mza)z % (M43 i Mu}z-
XV2) (z); = (iz3, iz4, i24, 125), sign (x1X,X3) = +.

Appendix A. The EPD equation.
We choose the EPD equation in the form

(0,—9,,+rd, +(m>—=1)/r)¥(t, r)=0, (A.1)

where ¢ is real and r> 0. The symmetry algebra for this equation is isomorphic to
o(2, 1) with basis
N,=31—t*—r%9,—trd,, N,=—10,—r0,

A.2
M, =§{1+12+r1)ﬂr+lrﬁ, ( )
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and commutation relations
[NEI: Nz] =_M1: [N?ﬂ Ml]=_N1: [NE: M1}=N3_ {A*B')

Indeed, (A.1) is equivalent to Q¥ =G—m?*»)¥ where Q=M:;—N35—N3 is the
Casimir operator for O(2, 1). The EPD equation was studied in detail in [4] from
the viewpoint of separation of variables. As pointed out there, for any C®
function f(k) with compact support in (0, %) the function

v n=U{f)=r Lmei'klm(h r)f(k) dk (A.4)

is a solution of (A.1l). It follows easily that U can be extended to a unitary
mapping from the Hilbert space L,(0,») onto a Hilbert space of generalized
solutions of (A.1). The induced action of the operators (A.2) on L,(0, =) takes the
form

2
g pl m-t—l), N,=1+k2

dk* kdk k? dk

k( d* 1 d+m2+l)
dk® kdk k> ¥

N:,,:% k(
(A.5)

and for m=1,3,3, ..., iN,, iN,, iM, can be extended to self-adjoint operators on

L,(0, ) which determine unitary irreducible representations D,,_, of SO(2, 1)
from the discrete series.
SO(2, 1) also acts on the single-sheet hyperboloid &5 — & — & =—1 according to

N;= §1a§z + gzﬂ.fla N, = §1'5'.~53 i §3a§1= M,= 53552 it 525,53- (A.6)

Moreover, the eigenvalue equation QW (£) = (G— m?) W (%) for the Casimir operator
Q on the single-sheet hyperboloid can be identified with the EPD equation (A.1)
through the correspondence

__ & .3 > g2 g
hie TTEAE BT el
and the operators (A.2), (A.6) can be shown to coincide. However, this paramet-
rization of the hyperboloid covers only the surface where &, +&=r"'>0.

It follows that the separation of variables problems for the EPD equation and
the Casimir eigenvalue equation on §-&=—1 are virtually equivalent.

In analogy with our comments on O(2, 2) in section 1 we can impose a Hilbert
space structure on solutions of the eigenvalue equatiun for the hyperboloid. Let
V(E) ="(t,r)= U(f) fe L,(0, x) for fixed m=3,3, ... where € and ¢, r are related
by (A.7). Then W is a solution of the eigenvalue equation QW = (}—m?*)¥ on the
part of the hyperboloid such that & +&,>0. Moreover, the right-hand side of
(A.4) makes sense for r<0 and we have ¥(t, =r)=(=1)"*"*¥(¢, r). Thus we can
extend ¥ to the entire hyperboloid & - £=—1 by imposing the relation

(-8 = (1) ().

Let dv be the SO(2, 1)-invariant measure on &€ - £€=—1 which for & >0 takes
the form dv(§) = d¢, d&;/€,. Now suppose ¥, = U(f,), j=1, 2, where f; € L,(0, »).
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A straightforward computation making use of (A.4) yields the

Tueorem. If m=3,3,... then

[ edae=2 ff:(k)fz{k} dk.
&< 8= s

This result permits us to introduce a Hilbert space structure on the eigenspace
&, of eigenfunctions of the operator —Q on &-£=-1 with eigenvalue
(m+3)(m—3), a realization of D;,_ ;. Thus the spectral resolutions computed in
[4] can be carried over directly to &Ly

Appendix B. Coordinate systems on the hyperboloids &7 — & — & ==+1.
The above mentioned hyperboloids are invariant under the group SO(2, 1) with
induced Lie algebra action provided by operators

N3 =805+ 605, No=803,+ &0,

(B.1)
M, = &3353 3 fzaéj
obeying commutation relations
[N3, No]J=—M,, [N;, Mi]=—N,, [N, M;]=N;. (B.2)
We consider the eigenvalue equation
(M7 — N3 —N3)f(E) = Af(§) (B.3)

on each of these hyperboloids. As follows from [4, 21, 22], for each hyperboloid
(B.3) admits separable solutions in exactly nine coordinate systems and the
separated solutions f(&)=X,(x,)X5(x,) for each system are characterized as
eigenfunctions of a second-order symmetric operator L in the enveloping algebra
of 0(2,1): Lf= uf. The eigenvalue p is the separation constant. We now list the
nine systems and their operator characterizations.

type 1

(&)=

lxl 1 {5(21;}1 i (Il == 1){~I1-1) 1
a 871

. _a](ﬂ_xl}
(65°) = i

ED o £ = (g2 (£D)2 {5%”)221.

The coordinates on £-£=—1 are obtained by the substitution & — (" and
x,<0<1<x,<a. Here L,= N3+ aNs.

1 <X <a<x,

type 2
e (X —1D(1—x,) W2 xlxz
gpp= X8 e X
(x; —a)(a—x,)

n<f<l<a<zx, £-87=1.

(5{2] 2L a{ﬂ_l) :
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The coordinates on £-&=—1 are obtained via the substitution £— i€ and
1<x,,x,<a or x;, x,>a>1. The operator is L = Nz —aM?.

type 3
(EP+i)? =2(x;—a)(x,—a)la(a—Db), (£)>=—x,x,/ab,
a=b=a+iB, x,<0<x, £ -gI=1,
For £€-E=—1 we use the substitution £€— i§ and x,, x,>0. The operator is
L = a(M7—N3)— B{M,, N,}.
type 4
P+ =[-x10:PF, &7=[0—-x)(x—-1)F,
£ — &Y = —(—x )% F +[x:/(—x,) F +[—x, %, ]
X0l £ 89 =1,

The coordinates on the single sheet hyperboloid are obtained via the substitution
E—= i with either x;,x>1, 0<x,x<1 or x;,x,<0. Here, L=
Ng_(NE__MI)E*

type 3
EP+ED =[xxF, £ =[1—x)(x:—1)E,
0 - & =[x/x, P+ [n/x F-[xix,l, 0<x,<1<x,, E®-E9=1.
The coordinates for £-E=—1 are obtained via the substitution &— i§ with
x,<0<x,<1. Here, L=N3+(N,—M,)~.
type 6

f{ﬁj+ &= [_xﬂ:zF £ =3lx/(—x)F—3[— Ilfxz}’
EP— &P =(x, _xz)Em(_xle}i, 3n<0<x, E9-E2=1,

The coordinates for £-£=—1 are obtained via the substitution &£ — i with
X1, X, > 0. The operator is L ={N;, N,+M_}.

type 7T
fm 1 'Em = Iz f;(aﬂ = széa Eipfr:II zﬂ =X TEF xzx

X1, xz}oa gﬁ}'gﬁ}= .

The coordinates on the single sheet hyperboloid are obtained via the substitution
£— it with x, <0<x,. Here, L=(N,—M,)>.

type 8
£® = (cosh x, cosh x,, cosh x, sinh x,, sinh x,) with £® .9 =1 or
£® = (sinh x, cosh x,, sinh x, sinh x,, cosh x,)
gig} _ (Sin xl Si‘nh xz: Sin xl mSh IE, E{'.I'S .:‘.':1)

with €% . §9=—1. Here, L = N2.
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type 9
£ = (cosh x,, sinh x; cos x,, sinh x, sin x,), €2 -£2=1, or

sl

£ = (sinh x,, cosh x, cos x,, cosh x, sin x,)

with £ - £ =—1. The operator is L = M2

i WD DD =] o oLn - hd 2 s

e
o ek b2

—
o Lh

17
18
19
20
21
22
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