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We consider the “missing label” problem for basis vectors of SU(3) representations in a basis
corresponding to the group reduction SU(3) 2 0(3) D 0(2). We prove that only two independent

O (3) scalars exist in the enveloping algebra of S U(3), in addition to the obvious ones, namely the
angular momentum L? and the two SU(3) Casimir operators C® and C®. Any one of these two
operators (of third and fourth order in the generators) can be added to C®, C®, L? and L, to
form a complete set of commuting operators. The eigenvalues of the third and fourth order scalars
X® and X™ are calculated analytically or numerically for many cases of physical interest. The
methods developed in this article can be used to resolve a missing label problem for any semisimple

group G, when reduced to any semisimple subgroup H.

1. INTRODUCTION

The general problem that we touch upon in this arti-
cle is that of providing a complete labeling for the states
transforming under an irreducible representation of a
given Lie group G. In a certain sense this problem has
been completely solved for the classical semisimple
groups,1 corresponding to the Cartan algebras A,, B,
C,, and D,. Indeed the Gel’fand— Tseitlin patterns® pro-
vide us precisely with such a set of labels, and the cor~
responding “canonical basis” consists of a complete non-
degenerate set of orthonormal basis functions. The basis
functions are the common set of eigenfunctions of a com-
plete set of commuting operators, consisting of the
Casimir operators of the group G and of all the Casimir
operators of a “canonical” chain of subgroups of G.
Thus, e.g., for the group SU(n) the canonical chain is

SU(n) > S[U(n - 1) xU(1)]> S[U(n - 2) xU(1) x U(1)]
DD S[U)x- -+ xU(1)x U(1)] )

so that the complete set of commuting operators con-
sists of all the Casimir operators of SU(n), SU(n - 1),
...,SU(2) and of the (z~ 1) linear operators (the
Cartan subalgebra), corresponding to the U(1l) sub-
groups. Similarly, the problem is solved for the ortho-
gonal and symplectic groups (and also for some of the
noncompact groups, corresponding to the same
algebras®).

Unfortunately, in physics one is often interested in
other operators, which may correspond to subgroups,
not figuring in the canonical reduction, or may lie in
the enveloping algebra of the Lie algebra of G, without
being Casimir operators of any subgroup of G. Hence it
is important to study other bases and indeed to perform
a systematic study of possible bases for representations
of various Lie groups.

In this article we restrict ourself to a very simple
case, which is, however, of considerable physical in-
terest, namely the group SU(3). The standard applica-
tion of SU(3) in particle physics, namely the “eightfold
way”* does indeed make use of the canonical chain of
subgroups SU(3) > S[U(2) xU(1)]> S[U(1) xU(1)]. However,
in nuclear physics®~? and more generally in group the-
oretical treatments of the many-body problem, ¢ the
quantity of prime interest is angular momentum, asso-
ciated with the group O(3) that is imbedded into SU(3) in
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an irreducible manner [this 0O(3) is the intersection of
SU(3) and SL(3, R)]. The corresponding chain of sub-
groups is

SU(3)> 0(3)> 0(2). (2)

Basis functions of SU(3), corresponding to the reduc-
tion (2) are eigenfunctions of the second C*’ and third
C'® order Casimir operators of SU(3) and of the angular
momentum operators L? and L;. There is one label
missing to characterize the states completely and indeed
there can be more than one state, characterized by given
0(3) quantum numbers (I, m) within a given representa-
tion (ky, ky) of SU(3). Several different methods have
been proposed to resolve this degeneracy problem, and
they can be divided into two classes.

The first type of solution leads to a simple labeling of
the states (by integers), but to nonorthogonal basis func-
tions that are not eigenfunctions of any complete set of
commuting operators. >%? The other type of solution of
the degeneracy problem for O(3) states in SU(3) rep-
resentations leads to orthonormal states, that are
eigenfunctions of ¥, € L? L, and an additional
Hermitian operator X in the enveloping algebra of
SU(3). 51 The eigenvalues of X provide the missing
label for the state vectors; they are, however, not in-
teger numbers and must in general be obtained by solv-
ing certain algebraic equations. What is more, Racah
has proven“’ that it is not possible to construct any
operator in the enveloping algebra of SU(3) that would
resolve this missing label problem and have integer
eigenvalues.

The purpose of this article is to investigate further
the second of the above approaches, that is, in general
to study all possible complete sets of commuting opera-
tors, the eigenfunctions of which will provide an ortho-
normal basis for the representations of the group G [in
this case G=SU(3)]. Investigations along these lines
have been carried out,!! e. g., for the rotation groups
O(3) and O(4), the Euclidean groups E(2) and E(3), and
the Lorentz groups 0(2,1) and O(3,1). Each nonequiv-
alent complete set of commuting operators (consisting
of operators from the enveloping algebra of the given
algebra that may or may not be Casimir operators of
subalgebras, and possibly of some further reflection
type operators) provides us with a different set of basis
functions. In particular the “nonsubgroup” type opera-
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tors lead to the appearance of many new types of special
functions in group theoretical studies!'!? (e.g., Lamé
and Heun functions),

In this article we consider the reduction of SU(3) to
0O(3) as in Eq. (2) and study the complete set of commut-
ing operators

C(Z)yc(S)yLz)Lsa and X: (3)

where X is the additional “degeneracy lifting” operator,
supplying the label missing in the reduction (2). In order
to commute with L? and L;, the operator X must be an
O(3) scalar. We shall search for X in the enveloping
algebra of SU(3)—hence it will automatically commute
with the SU(3) Casimir operators C? and C®.

Our main result is that we have shown that only a very
small number of independent O(3) scalars X exists in
the enveloping algebra of SU(3). Indeed only one third
order X® and one fourth order X'’ independent opera-
tor of this type can be found. All other O(3) scalars can
then be written as polynomials in C®, ¢® L2 x®,
and X’ (this result was probably well known, e.g., to
Racah, but we are not aware of any general proof).

In Sec. 2 we show for an arbitrary connected Lie
group G and an arbitrary (compact or semisimple) Lie
subgroup HC G that the number of independent scalars
with respect to H in the enveloping algebra of G is
finite. We then identify G with SU(3), H with O(3), and
derive a generating function for the number of O(3)
scalars of each order. Finally we present the indepen-
dent O(3) scalars explicitly. At this stage it is appropri-
ate to stress that the method presented for deriving the
generating function for the number of subgroup scalars
of a definite order in the enveloping algebra of a given
group is quite general and can'be applied to many cases
of physical interest.

In Sec. 3 we discuss the operator X'® in detail,
derive formulas for its eigenvalues for the cases when
the O(3) representation J occurs at most twice in the
representation (k, 2,). We present a numeric method,
making use of the Gel’fand— Tseitlin states, for cal-
culating the X®* and X*¥ eigenvalues for arbitrary
representations. The method, which turns out to be
quite simple, is then applied to calculate the eigenvalues
on a computer for a large number of representations.
The results are presented in Tables I and I, A different
method for calculating the eigenvalues of X**? was quite
recently presented by Hughes. 13 For those four repre-
sentations that he considered our results coincide (up to
a normalization factor equal to 2v6). His operator Q‘,’
differs from X by an algebraic combination of the
lower order O(3) scalar operators so that the eigenval-
ues cannot be easily compared. Still another method for
calculating these eigenvalues was essentially contained
in the by now classical articles of Bargmann and
Moshinsky. ¢

2. SUBGROUP INVARIANTS IN THE ENVELOPING
ALGEBRA OF THE GROUP

A. Proof that the algebra of invariants is finitely
generated

Let Hbe a cdnnected Lie group, coinpact or semisim-
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ple, with Lie algebra // and let the matrices T(h), h<H,
be an n Xn matrix representation of H. The mapping
x— T(h)x, where x=(x;,...,%,) is a column vector, in-
duces a representation of H in the space P[x] of all
polynomials in the indeterminants x;,...,x, over the
complex field. Clearly, the subspaces P,[x] consisting
of homogeneous polynomials of degree m in the x; are
invariant under the group action, m=0,1,2,---.

An invariant in P[X] is a polynomial p(x) which is
fixed under the group action: p(T(g)x)=p(x) for all k< H,
Clearly, the invariants in P[x] form an associative
algebra I[x]. In particular a;p(X) +a,p,(x) € I[x] and
Pp1(X)po(x) € I[x] for any invariants py, p, € I[x] and con-
stants @,,a,c C. Furthermore, I[x]=3,.0l,[%], where
In[x]=I[x] N P,[x].

A fundamental fact about I[x] is that it is finitely gen-
erated. That is, there exists a finite set ¢;,...,7, of
ponconstant invariants such that for every p(x) € I[x] it
is possible to find a polynomial k(yy, ..., ¥y, with the
property p(x)=h(ii(X), ..., 7,(x)). Clearly one can choose
%4y...,%, as homogeneous polynomials in the x;. Fur-
thermore, if one of the generators, say ¢,, can be ex-
pressed as a polynomial in the remaining generators,
then we can remove it and 7y, . ..,%,; will still generate
1[x].

Proceeding in this way, we eventually obtain a
minimal set of nonconstant homogeneous polynomial in-
variants #{,...,4% which generate /[x]. Such a minimal
generating set for I[x] is called an integrity basis. A
proof of the existence of a finite integrity basis can be
obtained by a slight modification of that given by Weyl, !4
and will not be repeated here.

Let G be a connected Lie group containing H as a Lie
subgroup. Then // is a subalgebra of the Lie algebra g
of G. Let // be the universal enveloping algebra,1 of g
If Xy,...,X, is a basis for ¢, it follows from the
Poincaré— Birkhoff—Witt (PBW) theorem!® that as a vec-
tor space (/ *3 o ®(/n, Where (/,=C, ([1=(, and [/, is
the space of all symmetric polynomials p(X;,...,X,) in
the Lie algebra generators which are homogeneous of
degree m (see Ref. 1). Furthermore, H (and /) act on
{/ by means of the adjoint representation, and the sub-
spaces //,, are invariant under this action. In this paper
we are interested in computing the elements in {/ which
are fixed under the adjoint action of H. If we denote the
set of all such elements by ¢, we see easily that ¢ is an
associative algebra and ¢ =3 & ¢,, where §,C{/,.

Note that as a vector space {/ is isomorphic to P[x].
Indeed, by the PBW theorem every p €// can be written
uniquely as p=3 0 PnX1s ... X)), Pm€l/m- Moreover,
the assignment p,(X,,...,X,) — P.(xy,...,%,) yields an
isomorphism of //,, and P,[x]. Finally, if we define the
nXn matrix representation T of H to be that induced by
the adjoint action of H on the basis X,,...,X, of g, we
see that there is a one-to-one correspondence between
invariants in // and polynomial invariants in P[x].

We can define the notion of an integrity basis for the
invariants ¢ in // in exact analogy with the definition
for the invariants I[x] in P[x]. An integvity basis for §
is a finite set {y,...,7,f such that: (1) Each ;€ ¢ is
homogeneous of degree m;> 1 and symmetric in
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X4...,X,, i.e., each i,eﬂ,,,j. (2) Every i€ ¢ can be
expressed as a polynomial in4,...,7,. (Here we must
take into account the fact that the X, hence the ¢; may
not commute. ) (3) No one of the 7, may be expressed as
a polynomial in the remaining ¢;, j#k.

Due to the noncommutativity of the X; it is not im-
mediately obvious that ¢ has a finite integrity basis.
However, the following holds.

Theovem: If 14(x), .. .,%,(X) is an integrity basis of
homogeneous polynomials for I(x), then
13Xy, ., X)), ., 5, .., X)) contains an integrity
basis for ¢. Here, ;(X;,...,X,) is the homogeneous
symmetric polynomial in // corresponding to
ij(‘Xi’ LI 7Xn)~

Proof: We will show that any C € ¢ can be expressed
as a polynomial in iy, ...,%,. Without loss of generality
we can assume C=C,, € ¢,. The proof now proceeds by
induction on m. The case m =0 is obvious. Suppose C,,
can be expressed as a polynomial in 4,,...,%, for any
m <mg and consider some C, < g, . Since {i;®)} is an
integrity basis for I[x], if follows that the polynomial
Cnyx)€g mo[x] can be expressed as a polynomial in the
1;(x).

Suppose for example that CmO(x) =144(x)i5(x) where
iy € I, [x], iy € I,,[x], and mq=m+m, Now consider the
elements C,,,D(Xj) and #;(X;)i,(X;) in {/. We have C'no(Xi)
€ J , While in general
mg

ii(Xf)iz(X,-)';mZ:)oeaﬂm.

However, it is easy to see that the component of i,i; in
-Q"‘O is just Cmo(Xj). Thus,
mg-1

Cmo(Xj) -4 X)X ) = »Zjo CalXy).

Since each C,,(X;) for m <m; can be expressed as a
polynomial in the invariants 7,,...,,, the induction step
is complete. Our example easily extends to the general
case. QED

In general 7,(X;), . . . , 5(X ) is not an integrity basis
for ¢ but rather a subset i{,...,4, is an integrity basis.
This is because there may exist algebraic relations be-
tween #4(X;),...,%,(X;) in ¢ which have no counterpart in
I(x). Such relations are consequences of the commuta-
tion relations of (;. Indeed, if ;(X;) and 7,(X;) do not
commute, then i(X;)=[i;(X),,(X,)] is also an invariant
and the relation ¢ =147, — 7,7, is not obtainable from I(x).

In conclusion: To find an integrity basis for ¢ we first
find an integrity basis ¢,,...,%, for I(x). Then, forming
all possible commutators [i4(X,),%,(X,)], we determine a
minimal subset of the 7, which are independent.

B. Generating function for the number of O(3) invariants
of arbitrary finite order in the enveloping algebra of SU(3)

In this paper we are concerned with the example
G=SU(3), H=0(3).

Under the adjoint representation of O(3) the eight-
dimensional Lie algebra SU(3) splits into a direct sum
of the irreducible three- and five-dimensional represen-
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tations of O(3). The elements L;, T;;, 1<4,j<3 forma
basis for SU(3) where the vector L; transforms accord-
ing to the three-dimensional representation D; and the
symmetric traceless tensor T;; transforms according
to the five-dimensional representation D, of O(3).

In more physical terms we can identify L ={L;} and
T ={T,,} with the angular momentum and quadrupole
moment operators, putting

Lf=el'lkxlpk7 (4)
Tio=3(Psbr+%Xs%) - %(52 +§2)51k,

where x; are the coordinates of a particle and p;
=-198/0x,; its momentum. These operators satisfy the
SU(3) commutation relations

(Lj, Ly)=tes0Ly,
(L, Ter) = t€5amT im + €5 0mT boms (5)
[Ty Timl= %i(bjlekmn + 81mEptn + Ort€imn + OamEiin) -

In the defining representation of SU(3) these genera-
tors can be identified as follows:

Lfo10 S fo-1 0
Li=—|1 0 1), Ly=—={1 0 -1},
VZ\p 1 0 2\ 1 o
10 0
L3=00 0,
00 -1
f-10 3 [-10 -3
T11=§ 02 0, T22=g 02 0,
30 -1 -3 0 -1
1 00
T33=§0—203 . (6)
0 01
ioo-1> , fo-10
T12—"'00 0, T23="—""1 01,
2\1 0 o 2V2\g _1 0
L [0 10
Ty=—=(1 0 -1
22\g -1 o

By our theorem, to find an O(3) integrity basis for the
enveloping algebra of SU(3) it is enough to find an in-
tegrity basis for the space of all polynomials in the
eight indeterminants 1;, #;,, 1<4,j, k<3, where f;,=1,;
and #;;=0. Here the /; transform under O(3) according
to Dy and the ¢;, according to D,. In this case it is clear
that the subspace P,, of polynomials homogeneous of
degree n in the /; and degree m in the f;, is invariant
under the group action. Thus we can classify polynomial
invariants C»™ in terms of their degrees of homo-
geneity », m.

It is very easy to construct examples of polynomial
invariants, e.g., .

C(z'0)=l¢li, C(z'i)zlitulﬁ
COB =ty COD=tt b, )
c(2,2) - litift.ikllv C(3,3) = Eabctbktcltfhlﬂlklh'

The basic problem is to find all such independent in-
variants, or more specifically, to construct an in-
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tegrity basis. We will show below that the above list of
six invariants is in fact an integrity basis and thus
solve our problem.

First of all it is useful to apply Lie’s theory of in-
variants to this problem, e.g., Ref. 15. It follows
easily from this theory that the action of the three-
dimensional algebra so(3) on eight-parameter functions
F(l;,t;,) implies the existence of exactly five functional-
ly independent invariants %,(l;,¢;,), @a=1,...,5. By this
we mean that there exist five invariant functions analy-
tic (but not necessarily polynomials) in the variables
1;,t;, such that every other invariant is an analytic func-
tion of these five. Furthermore, no one of the &, can be
expressed as an analytic function of the remaining four.

By inspection one can show that the invariants C% %,
CHY O 0P B are functionally independent, so
that all other invariants must be analytic functions of
these five, However, the remaining invariants would
have to be expressible as polynomials in these five in-
variants for them to be an integrity basis. C‘*® is not
so expressible. Indeed a direct computation yields

[C(S,S)]Z
- c(z. D)C(Z, l)c(0,3)C(2,2) ¥ %c(z, O)C(O,Z)[C(Z,Z)]Z

- %C(z'0)[C(0’2)]2[C(2'1)]2 _ %[C<2.0)]3[C(o.a)]z
- _;.[C(Z, 0)]20(0,2)0(2, i)c(O, 3) + %C(0,2)[c(2,1)]20(2,2)
- %[C(Z, 1)]30(0,3) _ [0(2'2)]3, (8)

i.e., [C*™®7] is a polynomial in the first five invariants
but C**? is not.

To show explicitly that we have found an integrity
basis we generalize a technique found in Ref. 14, p. 181,
and Ref. 16, to derive a generating function for the
number of invariants of rank (z,m). For this we recall
that the irreducible representations of O(3) can be
denoted by D,;, §=0,1,2," -, and that the character
x;(#) of D, corresponding to a rotation through the
angle 8 is

%0)= 2 exp(ike). ©)

By choosing a weight basis it is straightforward to
check that the charactery, ,(6) of O(3) acting on the sub-
space P, , is

Xmm(8)= 25 explibla~c+2d+e—g-2h)], (10)

Gyanesh

where the sum is taken over all nonnegative integers
a,...,hsuchthat a+b+c=n, dre+f+g+h=m. It fol-
lows from this that

Flexp(é6), P, D]
=[(1 - exp(i6)P)(1 — P)(1 - exp(—i6)P)(1 - exp(2:6)D)

X (1 — exp(i6)D)(1 - D)(1 — exp(~ i6)D)(1 — exp(— 2i6)D)]™

- 3 Xpml®PD™, (1)
0

ny m=

i.e., Flexp(i8), P, D] is a generating function for the
character y,, ,(6). Note that the number of invariants of
degree (n, m) is just the multiplicity of the identity rep-
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resentation D; of O(3) in P, ,. Thus, using the ortho-
gonality relations

O fad —_— [}
p /0‘ Xn ()X m(6) sinz-z- d8=b5,,, (12)

we find

27 o
1 f sintd F(exp(i6), P,D)d6= 2, N, ,.P"D"  (13)
T Jo 2 ny m=0
where the integer N, , is the number of linearly inde-
pendent O(3) invariants of rank (n,m). Setting exp(;6)
=2, we can regard the left-hand side as a contour in-
tegral about a unit circle in the complex X plane.
Evaluating the integral by residues and employing some
tedious algebra, we finally obtain

1+P3p3 = .
(1= PA)(1- DY)(1 - D¥)(1 - P2DY)(1 - P'D) =m§0NmmPD .

(14)

It is illuminating to compare this expression with our
earlier results. Since C%%% C@%1 &2 c@d gpq
C»? are functionally independent, we can construct in-
variants of the form [C% O J[CHDP[C D [CHI)
X[C®¥e where a,,..,e run over the nonnegative in-
tegers and the set of all such invariants is linearly in-
dependent. If these were all possible invariants, then
the generating function (14) would be

1
(1= P (1 - D)1 - D% (1 - P2D)(l - P’D?) *

However, the actual N, , is in general larger than that
predicted by (15) which shows that there are additional
invariants. Indeed N3 3=1, while it is impossible to
construct a (3, 3) invariant out of C*% .., C%? Thus,
there must exist a new (3, 3) invariant, This new in-
variant is clearly C®%, We can now obtain new in-
variants of the form C*¥[Cc®D | [C%?e, This
accounts for all terms in (14) and completely solves the
problem of finding all O(3) invariants. (It is not possible
to obtain independent invariants by taking higher power
of C%%® pecause [C* ]2 can be expressed as a poly-
nomial in C'%*® C%2 )

(15)

C. The 0O(3) invariants and the SU(3) 2 O(3) reduction

It was shown above that there are at most six alge-
braicly independent O(3) scalars in the enveloping
algebra of SU(3). They can easily be expressed in terms
of the generators L; and T, of Eqs. (4)—(6) and indeed
they are given by Eq. (7) with /; and ¢#;; replaced by the
operators L; and T;.

The two Casimir operators!” C? and C® of SU(3)
are, of course, also O(3) scalars and must be contained
among those found. Indeed, it is easy to check that we
have

CP= ()2 (Lr+2TY = () (L, L +2T Ty, (16)
const C® =LTL -3 TTT=L,T;,Ly— ST, Toi Ty,

It is also easy to verify that the operator
X® €abc Toa T ceTorLaLleLly

can be expressed in terms of the commutator of the two
operators
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X®=-p,T,L, and X =L, T, T, L, (1)

and lower order terms.

In addition to the angular momentum L? and the two
Casimir operators C? and C*®’ we thus only have two
new independent O(3) invariants X® and X' [see (17)].

Note that the scalars of this section do not quite
coincide with those listed in Eq. (7) because they are
not all symmetrized. However, they do agree in the
highest order terms and they provide an alternative
integrity basis which is computationally easier to deal
with,

Let us note here that the operator X‘® is equivalent
to an operator used in a similar context by Bargmann
and Moshinsky.

Returning to the problem of representations in the
SU(3)D> O(2) basis, we see that the basis functions of
irreducible representations of SU(3) can be chosen to be
eigenstates of the operators C», C'® L? L, andX,
where X is in principle an arbitrary function of the
operators (17).

If we make the natural restriction that X be an opera-
tor of a definite order in the enveloping algebra of SU(3),
we find that only one third-order and one fourth-order
are available. Some physical implications of this fact
will be discussed in the final section.

In conclusion, the operators L2, C*® C® X and "
X form an integrity basis for the O(3) scalars in the
enveloping algebra of SU(3).

3. SPECTRUM OF THE O(3)—SCALAR OPERATORS

The purpose of this section is to calculate the spec-
trum of the third and fourth order operators X ‘) and
X and to demonstrate some of their general proper-
ties. Indeed, for any practical use of the present state
labeling method it is essential to know the spectrum of
the operators for all SU(3) representations likely to
appear in applications.

The SU(3)D O(3) case is only the simplest of many
group—subgroup pairs of physical interest where some
labels are missing. Higher order operators can resolve
these labeling problems not only in principle, but in our
opinion are the most practical way to approach the prob-
lem. It is therefore natural to perform the (computer)
calculations of the spectra in a way which is not limited
to the SU(3) D> O(3) case but can readily be extended to
cases like SU(4) D SU(2) XSU(2), G,> O(3), and others.
The basis we use for deriving the secular equations is
that of Gel’fand and Tseitlin,? with U(3) generators E;,
satisfying the commutation relations

[E:s, Ent] = 8;E s ~ 85y, (18)

where 3;, is the Kronecker delta. An explicit form of the
matrix elements of the U(3) generators can be found in
the second example of Ref. 18 [Eq. (22)]; correspon-

dence between the notations in the present paper and Ref.

18 is established by putting E,;, = C% and m;, =h;,, where
m;, are the elements of each pattern-basis vector.

It is convenient to replace the generators L;, L,, and
L4 of (6) by equivalent ones:
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Li=Eyy+Eg, Ly=Ey-Ey, L=Ey+Ey, (19)
whose commutations relations
[Liqu]:Lo, [Lo,lq]:Li: [Lo, L-1]=‘L-1 (20)

follow from (18). The generators (19) can be realized
as 3 X3 matrices:

010 10 O 000

Li=(o0 01}, L,={0 0 0} L,={1 00} (21)
000 00 -1 010

With the choice (19) the five components of the operator

Ty, then can be taken as

Ty=Ey3, Ti=Ey—Ey, Ty=Ey—2Eyp+Es,
22
Tp=Ey, T.=Ey-Es. (22)
Realized as 3 X3 matrices, these are
001 01 O 1 00
T2=000,T1=00—'1,T0=0—20,
000 00 O 0O 01
(23)
000 0 00
T,=[0 0 0}, 7 ,=(1 o o]
100 0 -10

USing (18), one readily verifies that T; indeed is the
rank two O(3)-tensor operator:

[TZ,L1]=0, [TZ,L0]=—2T2, [T2,L_1]= Ty,

[Ty, Ly]=2T,, [Ty,Lo)==Ty, [T(,L4]l=T,,

[To, L1]=3T1, [TO,L0]=0, [TO,L_1]=— 3T, etc.
The second order operators C? L? and 7% are then

L*-L,L,+L_L,+L}

(24)

T2 =TTy + Ty Ty + 5(Ty Ty + T T) + T2, (25)

3
cw . i;:,lEmEki: @)L +2T?).

The labeling operators then are
X® -3(L,T,L +L_(T,L_)
+3(L T\ Ly+LTyL_ +L T Ly+L,T_L,)
—3(L Ty L+ L4 TyLy)+ L,ToL, (26)
and
X =T LoLoTy+ (= ToL L Ty+3ToL LTy +3TLoL, T,
= 8T LyL T4+ 9T, L LTy +3T L LyT,
+3T Lol Ty— 3T\ L LT +3T,L,L,T_,
= 3T\ L\ L T +9T,L,L,T,+9T,L,L,T,
-6T,L L Ty+9T,L L ,T  +9T,L,L_,T,
+8TyL LT o~ 12T,LoLT 5 +6ToL,L_T.)
+(+-1), ' (26")

where (---) stands for terms with signs of indices op-
posite to those in the first bracket. Here X and X ¥
are normalized so that their eigenvalues are integers
whenever possible. The operators X’ in (17) and (26/)
differ by O(3)-scalars of order lower than four. By a
straightforward calculation one verifies that X’ in-
deed, are O(3) scalars:
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XD L)=x® L ]=[Xx" L,]=0, i=3or 4. (27)

Mmyp My
= (Mg + Mg + Mgz + 3myq — 3myy — 3myy) { My >
An irreducible representation of U(3) is denoted by

integers (m,3, my3, My3) such that myy = myg = Mgy, If Mg (29b)
=0, a U(3) representation reduces to that of SU(3) with An arbitrary SU(3) pattern for a given representation
b =my5—my; and g =my;, The patterns is a linear combination of O(3) states |JM):
mlsm“:;lfjm”mw} lmizm“mn = %“JIJMK% (30)
Miyest = Mig > Mist,py Mip IntEGETS, @8 Here a; are some coefficients,
transformed by the generators E;, according to (22) of
Ref. 18, form an orthonormal basis in a space in which M =myy +Myp + Mag — Myg = Ma3 = Mgy 1)
an irreducible unitary representation of the group U{(3) is the eigenvalue of L,, J denotes an O(3)-irreducible
acts. If m;;=0, the space is irreducible with respect to subspace, and K are the eigenvalues of X ‘¥’ which we
SU(3). Since miy3, my3, and mgz are fixed throughout an want to find, The values of J for any U(3) representation
irreducible representation of U(3), we shall omit them are well known. 1%2® The summation in (30) extends over
when writing the patterns. all J=M which occur in the SU(3) space labeled by m4

The C® and C® operators are!? diagonal in the and m,3 (mg3=0). There is no summation over M in (30)
basis (28) because they are the Casimir operators of because both the Gel’fand—Tseitlin and |JMK) states are

) {i
U(3) [and SU(3)]. Since E,,, Ey,, and Ey, are diagonal in eigenvectors of the O(2) generator L,. When X‘" acts on

(28) too, L, and T, are also diagonal. One has, in both sides of (30), one gets

. myy m22
particular 2 Xm(My2, Mgz, M) . iy
m mqq+mygmog=M+my3+mo3
n Wigo
L l 2 >
0 1

=2 a,K|JMK). (32)
- - _ 'mm dv K
= (Myq + Myg + Mgy — M3 — Ma3 — Mgg) myy

M2

> (29a)

The coefficients x, are matrix elements of X ) petween

and the patterns with the same value (31) of M. They are
'm " m22> calculated using (20), (22), (26), and (22) of Ref. 18,

T, myy For example, the diagonal matrix element of X ¥ ig

|

<m12 g o [ m22> ___ 3 (‘mw — 1) (13 = gy + 1) (s = mgg +2)(msz = msy + D[2(myy — mag) — 2 = N/3]
2T myy - Mg = Mgy + 1 (m12 — My +2)
. (my3 — mag + 1) (ma3 — mag) (maz — mgs + 1) (myy — M) [2(myy — myp— 1) — 2M = NQ])
(my5 — M)

N (my3— myy+1)(myp — mgs) (myy — m33 +1)
+3myg = M)ty = iy + 1) (ZM— 37 2 (mya = myy +1)(myz — myy)

(my3 — Mgy +2) (1123 — Mz + 1) (mgy — m3s) ) 1
-2 +eN(M+1)(2M +3), 33
(myy — mgg +1)(Myy = Mgy + 2) 2N+ 1)( ) (83)

[

where M is given by (31) and N is the eigenvalue of T: The order of Eq. (35) increases, in general, when the
absolute value | M| diminishes, and for M =0, (35) is of
N'=3(myy = My = o) + Mgy + Mgy + M. B9 e highest order. The order of (35) in this case equals
Substituting (30) into the left side of (32), and comparing to the number of different patterns (28) with M =0, or,
the coefficients of the linearly independent vectors what is the same, it equals the number of O(3) represen-
|JMK), we arrive at the secular equation tations contained in (m243, 7243, 7233).
| %414y, My, M) =K | =0. (35) From the property
The roots Ky, K,,- -+ of (35) are real because X ‘¥ is XD |JME) =K |JME) for M=d,J-1,...,—J,
Hermitian, The value of M in (30) is a fixed parameter.
Hence we have secular equation (35) for every value of of X9 it follows that the eigenvalue will occur as a root

M which occurs in the U(3) representation (s, M3, M33).  of the secular equation (35) for any M, Similarly, an
[For SU(3) we still have m45 =0, ] Equation (35) is of the eigenvalue, say K’, calculated from (35) with M= M,

first order when M equals its highest (smallest) value will be a root of every secular equation with |M| < |M'|.
within the inequalities (28), i.e., M=m 53— my3 (M=mgy, One has thus two alternative ways for computating the
- my3). Then indeed, there is only one pattern, namely spectrum of X ‘¥ for a given representation
My = Mgy = Myg, May=Mgg (Myy= Mgy ="Mg3, Myy="Myy). (my3, My3, Mmg5). First is solution of (high order) equation
Consequently, (30) has the form (35) for M =0 in order to get all the eigenvalues K at
m m ‘ once. The second way is the solving of equation (35)
By 2 = |myy—mgg, myg— mgg, K). (36)  first for M=my;— mg;, then for M=mz3— Mg — 1, M=m;
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—mg3— 2, and so on. In this manner the order of the
secular equation for a given M is drastically reduced
because most of its roots are known from solving the
secular equation for M +1, To illustrate this point, let
us notice that, e.g., for the SU(3) representation

(12, 6, 0) of dimension 343, the order of (35) at M=0
equals 25. Proceeding the second way, one would have
to solve 4, 4, 3, and 1 secular equations of orders

1, 2, 3, and 4, respectively.

The tables contain the eigenvalues of X ® and X9 cal-
culated by a computer for the lower SU(3) representa-
tions, For pairs of contragredient representations [i. e.,
representations (myg, #y5, 0) and (myg, My — My, 0)] the
O(3) branching rules coincide and the eigenvalues of
X giffer by a sign, and those of X’ are the same.
Therefore, the tables contain only one representation of
each pair. The computer time needed for construction
of the tables was negligible, Thus in order to verify the
eigenvalues we have obtained, the secular equation (35)
was solved for all M= 0 for both X®) gng X ‘4,

The numerical results presented in the Table I for
the SU(3) representations

(g, Ry, 0) = (145 — Mgg, Moy — Mgy, 0) (37

[note that %y >k, > 0 and &, and k, are the lengths of the
first and second row in Young patterns for SU(3)] were
obtained using the above algorithm, starting from
Gel’fand— Tseitlin states, For the particular case con-
sidered in this article, i.e., the SU(3)D> O(3) > O(2)
group—subgroup chain a different method could also be
used for calculating the eigenvalues K, Indeed, Barg-
mann and Moshinsky® and Elliott’ have calculated the
matrix elements of the operator X®>= LTL in certain
nonorthogonal bases. All we have to do is take these
matrices and diagonalize them. For analytic calcula-
tions (as opposed to computer ones) this procedure is
simpler.

Since in many applications it is convenient to have
explicit formulas for the eigenvalues K, rather than
only numeric tables, we present below expressions for
K in special cases, when the O(3) representation J oc-
curs in the SU(3) representation (&, ;) once (hence K
is uniquely determined as a solution of a linear equation)
or twice (then K is the solution of a quadratic equation).

To do this, we choose to make use of the Bargmann—
Moshinsky basis vectors P,eik2 7¢ in which we have

X(s)pk1k2h=—3§ Bt a Pripgl o (38)

[see formula (62) of the second of Refs. 6; the factor

(- 3) is due to a difference in the normalization of our
X® and their operator @]. The matrix elements By, are
given by formulas (66) and (67) of Ref. 6 and restric-
tions on the region of summation on (38) are given by
their formula (59).

All we have to do is restrict ourselves to cases when
only one or two values of the label ¢ exist (no degenera-
cy or twofold degeneracy). If there is no degeneracy,
then K = - 38,,; if there is a degeneracy, then we obtain
the eigenvalues K by diagonalizing the matrix Bytq.

By inspecting the Bargmann—Moshinsky formulas,
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we see immediately that the representation J is con-
tained in representation (&4, k,) at most once in any of
the following cases:

J=0,1,k;~1 or k; (B, and &, arbitrary), (39)
or

ky=0,1,k -1,k (J arbitrary). (40)
The degeneracy is at most twofold if

J=2,3,k; -2 or ky—-3 (ky and k, arbitrary), (41)
or

ky=2,3,k -2 or By -3 (J arbitrary). (42)

Proceeding as described, we obtain the following ex-
pressions for the eigenvalues K in nondegenerate cases.

J=0: We have
K=0 (43)

for k; and %, both even [the representation J=0 is not
contained in (&, k,) otherwise].

J=1: We obtain

K=—ky+2k, for &y even, k&, odd
=2ky—ky+3  for ky odd, k, even
= - (k1 +k2 + 3) for k1 Odd, k2 odd (44)

(/=1 is not present for k, even, %k, even).
J=Rk;: We have

K =3(ky +1)(2k, +3)(ky — 2k,). (45)
J=k;-1: We have

K = 5(ky +3)(2k, + 1) (k, — 2k,). (46)
ky=0: We have

K=7%(2k, +3)J(J +1) for k —J even 47

and J is not contained in (k,; 0) for &y~ J odd.
ky=1: We have
K=-3(ky+1)+(ky~z)J(J +1) for ky—dJ even
==3(ky +1)+ (kg + ) +1) for ky—J odd. (48)

ky=k, and ky=k; — 1: These are contragradient to 2,=0
and %k, =1; hence formulas (47) and (48) apply with re-
versed signs.

In the cases when at most a twofold degeneracy can oc-
cur, we obtain:

J=2: We have
K= +3[(2ky +3) - 4ky (kg — ky)]1/2

for 2y even, k, even, 2<ky<k; -2,

==~3(2k;+3) for % even, k, even, ky=k,,

=3(2k; +3) for ky even, &, even, ky=0,

=3(ky - 2ky) for &y even, k, odd

= - 3(2k; - ky+3) for k, odd, k, even

=3(ky+ky+3) for &, odd, &, odd. (49)

J=3: We have
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1794

TABLE I. Eigenvalues K of the third order operator X’=L TL. The first column gives the representations of SU(3), the rows
give all possible values of the O(3) label J and of K within the corresponding representation of SU(3).

0,0,0) J
K

(1,0,0) J
K

(2,0,0) J
K

2,1,04
K

3,0,0) J
K

3,1,0) J
K

4,0,0 J
K

(4,1,00 J
K

“4.2,0J
K

(5,0,0) J
K

(5,1,0) J
K

(5,2,00 J
K

(6,0,0) J
K

6 1,04J
K

(6,2.00 J
K

(6,3,0) J
K

(7,0,0) J
K

(7,1,0) J
K

(7,2,0) J
K

(7,3,0) J
K

(8,0,0) J
K

8,1,00 J
K

8,2,00 J
K

8,3.00 J
K

(8,4,0) J

N X

9,0,0) J
K

9,1,00 J
K

(9,2,0) J
K

DN Q= OO

[

[ o
WW wWw O

-
[
(=3

o
[

195

117

39

315

210

105

476

340

204

68
684
513
342

171

a ©
w0 ol
© o O OO o m»

525

0

0

1

0

1

9
2 1
21 -7
2 0
33 0
3 2
63 6
3 2
0 30.741
3 1
78 13
4 3
132 36
4 3
44 79.573
4 2
150 45
5 4
234 89
5 4
117 160
5 4
0 58. 864
5 3
255 102
6 5
375 171
6 5
225 277.903
6 5
75 137.827
6 4
399 190
7 6
561 288
7 6
374 439.120
7 6
187 256.966
7 6
0 -92.223
7 5
588 315
8 7
798 446
8 7
570 649.542

22

-~ 58. 864

1
17

4
166

5
82. 097

5
—-17.827

2
57

5
288

6
172.880

6
49.034

6
92,223

3

126
6
453

7
300.458

0

0

1

-9
2 1
-~33 11
2 1
12 -4
3 2
0 41.677
3 3

92.223 ~92.223

3 2

54 33

4 3

60 100.723

4 4

186.231 -56.231
0
0

4 3

123 99

5 4

153 195.426

5 5

321.259 8.741

5 5
148.704 —-148,704

1

21
5 4
225 200
6 5
285 331.966

~41.677

=11

-10.723

-108

2
18

4
42.574

4

O = OO

—45

30

4

87.827 ~67.827

4

4

214.075~214.075

3
72

5
124.034

2
39

4
76

1
15
2 1
39 -13
2 2
53.075 —53.075
3 3
109. 763 ~ 121,763
4 3
0 0
1
-13
3 3
122,795 -8.795

AN o0

2

et v ——— e e—————e ey
R e —

1
-2

2

51.701 -51.701

2
- 57

19
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TABLE 1. (continued)

9,3,00 J 9 8 7 7 6 6 5 5 4 4 3 3
K 315 342 422,117 147.883 503.385 108.615 182.223 —2.223 219.031 —69,031—137.223 47.223
J 2 1
K 45 -15

(9,4,0) J 9 8 7 7 6 6 5 5 5 4 4 3
K 105 114 208.882 -18,.882 284,014 —~80.014 365.586 —167.567 56.981 —241.259 71.259 127.426
J 3 2 1
K —25.426 -51 17

(10,0,0) J 10 8 6 4 2 0
K 1265 828 483 230 69 0

(10,1,0) J 10 9 8 7 6 5 4 3 2 1
K 1012 1092 651 667 366 342 157 117 24 -8

(10,2,0) J 10 9 8 8 7 6 6 5 4 4 3 2
K 759 819 915,101 470.899 462 239.837 516.163 189 231.906 62.094 0 64.692
J 2 0
K —64.692 0

(10,3,0) J 10 9 8 8 7 7 6 6 5 5 4 4
K 506 546 639 285 738.624 249.376 320.882  93.118 373.216 16.784 119 —79
J 3 3 2 1
K=151.460 127.460 12 -4

(10,4,0) J 10 9 8 8 7 7 6 6 6 5 5 4
K 253 273 374.279 87.721 468.452  25.548 568.366 149.892 —91.257 182.014-—182.014 247.375
J 4 4 3 2 2 0
K-269.112  21.737 0 —62.426  62.426 0

(10,5,0) J 10 9 8 8 7 7 6 6 8 5 5 5
K 0 0 130,111 —-130.111 213.169 ~213,169 315,728 — 315,728 0 409. 805 -409, 805 0
J 4 4 3 3 2 1
K 92.223 -92.223 138.942 —138.942 0 0

(11,0,0) J 11 9 7 5 3 1
K 1650 1125 700 375 150 25

(11,1,0) J 11 10 9 8 7 6 5 4 3 2 1
K 1350 1449 909 936 552 531 279 234 90 45 -15

(11,2,00 J 11 10 9 9 8 7 7 6 5 5 4 3
K 1050 1127 1241.755 690.245 690 753.821 396.179 345 387 165 92 145.426
J 3 2 1
K -17.426 -69 23

(11,3,00 J 11 10 9 9 8 8 7 7 6 6 5 5
K 750 805 913,394 466.606 1032.968 437,032 223,721 510.279 578.506 141,494 230.023 9.977
J 4 4 3 3 2 1
K 252,168 —82.168-166.763 64.763 51 -17

(11,4,0) J 11 10 9 9 8 8 7 7 7 6 6 5
K 450 483 594,225 233,775 708.135 173.865 828.332 287.538 18.131 339.169 —87.169 417.241
J 5 5 4 4 3 3 2 1
K —200.262  98.020 — 296. 648 86.648 147.906 —21.906 - 63 21

(11,5,0) J 11 10 9 9 8 8 7 7 7 6 6 6
K 150 161 292,172 ~-16.172 397.298 -103.298 517.824 —231.787 91.962 633.480-345.871 111.391
J 5 5 5 4 4 3 3 2 1
K —454.366 205.257 -35,892 273.216 -—83.216 —155.636 41.636 57 -19

(12,0,0) J 12 10 8 6 4 2 0
K 2106 1485 972 567 270 81 0

(12,1,0) J 12 11 10 9 8 7 6 5 4 3 2 1
K 1755 1875 1226 1266 789 773 444 396 191 135 30 -10

(12,2,0) J 12 11 10 10 9 8 8 7 6 6 5 4
K 1404 1500 1635.477 964.523 975 599,201 1050.799 550 305.969 594,031 225  269.154
J 4 3 2 2 0
K  80.846 0 76.426 —176.426 0

(12,3,0) J 12 11 10 10 9 9 8 8 7 7 6 6
K 1053 1125 1251.147 698.853 1392.403 677.597 756.225 395.775 840.970 311.030 388.597 133.403
J 5 5 4 4 3 3 2 1
K 425.641 24,359 151.231 —91.231 145.245 —181.245 18 -6
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TABLE L (continued)

(12,4,0) J 12 11 10 10 9 9 8 8 8 7 7 6
K 702 750  874.359 425.641 1009.088 370.912 1151,439 477.878 164.683 549.298 48,702 642,696
J 6 6 5 5 4 4 4 3 2 2 0
K 212,121 —95.817 216,187 —216.187 —324.526 281,695 42,831 0 73.546 —173.546 0

(12,5,0) J 12 11 10 10 9 9 8 8 8 7 7 7
K 351 375 511.507 138.493 638.709  51.291 779.553 227.926 —110.479 918.293 270.150 —243.443
J 6 6 6 5 5 5 4 4 3 3 2 1
K -377.824 371.787 48.038 —498.902 460.440 8.463 120.023 —100,023 —~168.361 156.361 6 -2

(12,6,0) J 12 11 10 10 9 9 8 8 8 7 7 7
K 0 0 —172.049 172.049 —284.747 284.747 429.367 —429.367 —0 566.960 —566. 960 0
J 6 6 6 6 5 5 4 4 4 3 2 2
K —698.844 698.844 138.430 —~138.430 213.169 —213,169-301.257 301.257 0 0 72,560 - 72.560
J 0
K 0

TABLE II. Eigenvalues K of the fourth order operator X4 =T L L T. The first column gives the representations of SU(3), the rows
give all possible values of the O(3) label J and of K within the corresponding representation of SU(3).

0,0,00 J 0
K 0
(1,0,0) J 1
K -35
(2,0,0) J 2
K 63
2,1,00 J 2
K 63
(3,0,0) J 3
K 342
3.1,00 J 3
K 222
4.0,00 J 4
K 898
(4.1.00 J 4
K 490
4,2.0) J 4
K 354
(5,0,0) J 5
K 1875
5,104 5
K 963
(5,2.00 J 5
K 507
6.0,0) J 6
K 3465
6,1,00 J 6
K 1785
6,2,0) J 6
K 777
6,3,00J 6
K 441
(7,0,0) J 7
K 5908
(7,1,00 J 7
K 3148
(7,2,0) J 7
K 1308

-840

-315

—-1323

—-105

-1881

438

270

— 2562

1458

922

~ 3366

3147

1995

1611

— 4245

5745

3681

1
—1043

0
—2352

2
- 1617

2
-297

1
- 3347

3
— 2466

3
-2307.729

2
~4689

4
— 3638

4
—3678.851

4
- 3654

3
— 6522

5
- 5133

5
—5596.600

— 1547

- 1449

2
-1881

3
543. 729

0
- 4536

3
- 2154

4
2114, 851

4
1530

1
-6107

4
—2318

5
4642, 600

~2016

- 2691

-1185

—-4065

- 1578

- 954

—-6114

- 2094

- 2699

- 3419

- 3825

774

2
~ 4425

3

2
-1617

— 3825

1
~4979

3

—5836.759 —1543,241

0
- 3864

- 3051

-~ 2745

—-5091

—
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K=0 for ky even, ky even, 2<ky <k -2,
=~ 3{ky = 2ky + [(ky — 2ky)° +15(ky +1)(ky +3) ' /%}
for ki even, ky odd, 3<ky<k -3,
=-9(k;+3) for ky even, Ry odd, ky=Fk -1,
=9(ky+3)
=3{2k, — ky+ 3+ [(2k; — ky+3)? + 15k, (ky +2)]' 2}
for &, odd, %k, even, 2<k,<k -3,
=~ 9(k; - 1) for k; odd, &, even, ky=k -1,
=6(2k;+3) for k; odd, k, even, k,=0,
=~ 3{ky +ky+ 3£ [(ky +ky+3)2 +15(ky — ky) (B — Ry + 2)]1 /2
for by odd, k, odd, 3 <k, <k, -2,
=—6(2ky +3) for ky odd, &, odd, 2y =£k,,

for k; even, ky odd, ky=1,

=9(k;-1) for &, odd, k, odd, ky=1. (50)
J=Rk;~2: We have
K==3{(2ky+1)(ky+1)(2k; - &y)
+ 6[— 43Ry (kg — ky) + R} + 203 — R} — 2k~ 111/2} (B1)

valid for 2 <k, <k, - 2 [if &, is outside these bounds,
there is no degeneracy and we can use Egs. (47) and
(48)].

J=Fky-3: We have
K== 3{(2k, +1)(k, +3)(2k, — k)
+ 6(— 4kiky(ky — ko) + k% + 6k3 — O] — 6k + 9]1/%}
for 3<ky<k;-3
=+3(2k,+1)(ky +1)(ky—6) for ky=2 or By -2,
For ky=0,1,k; -1 or k;, see (47) and (48).
ky=2: We have
K=¥ @k, +1)(J - 2)(J +3)
£ [T = 1)(T+1)(T +2) + (2k; + 1)2]1/%} for by~ J even
=42k + [J( +1) - 12] for k; —J odd
(53)

[the first formula holds for 2 <J <k, - 2; otherwise there
is no degeneracy—see (43)~(46)].

ky=3: We have
K= {30k, - (20, - 3)J(J+1)

+ 6[16k] — 4k J(J +1) +J* + (J - 3)(J - 1) (27 +3) ] /%}
(54)

(52)

for By~ J even, 3s<J sk =3,
K=3+{30k; - (20 +3)J( +1)
+6[16kF +4RJ(T +1) + T4+ (J - 3)(J - 1)(27 +3)]1/%}
for ky~J odd, 3sJ <k ~3.
For J<2 or J =k, - 2 see earlier formulas.

ky=k -2 and k- 3: These are contragredient to k,=2
and ky=3. Hence formulas (53) and (54) apply with re-
versed signs.

Further explicit formulas (for J=4,5,k; -4,k - 5,
ky=4,5 k- 4,k — 5) could be obtained by solving cubic
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equations (that may in some cases reduce to quadratic
or linear ones), and we could proceed even further by
solving quartic equations. We have, however, decided
not to proceed in this direction.

Let us make a few further comments:

1. The eigenvalues of the operators X ‘) coincide for
the U(3) representation (11,5, My3, M) and the SU(3)
representation (miy; — Mgs, My — Mys) = (By, Ry).

2. For any self-contragredient representation, i.e.,
such that my5 — mg3 = 2(my3 — Mmy3), and for any fixed value
of J, the sum of all eigenvalues of X ‘*’corresponding to
J equals zero. More precisely, one has

X® m1zm m22>=0' (55)
1

Mgy My
mygemigamag=Tsimyg\ My

This property is evidently connected to the auto-
morphism T;—~-T;, L;—~L;, for which X® —_X®,

3. A given eigenvector |JMK) of X ) pelonging to a
representation space of (3, M,3, M33) is readily con-
structed if one knows all eigenvalues K; belonging to
(m13, M3, My3). Indeed,

| TME ) ~ 11 XD - K )y, (56)
where ¥ is an arbitrary vector from the representation
space of (13, g3, Ms3) such that

(b|JMK,)#0.
4. CONCLUSIONS

The contents of this article can be summarized as
follows:

1. We have shown that for an arbitrary semisimple
group G and its semisimple subgroup H there exists only
a finite number of independent scalars with respect to
H in the enveloping algebra of G.

2. We have derived a generating function for the num-
ber of O(3) invariants of any given order in the envelop-
ing algebra of SU(3). The method is quite general and
can be applied to any (semisimple) group G and its
(semisimple) subgroup H.

3. We have used the above results to prove that be-
sides the Casimir operators of SU(3) and angular mo-
mentum L? only two other independent O(3) scalars exist
in the enveloping algebra of SU(3), namely X’ =L,T,,L,
and X¥=L,T,T, L. (both of these operators have al-
ready made an appearance in the literature®!%1%), Either
of these operators (or an arbitrary nontrivial poly-
nomial in C®, €™, L? X X and L,) can be used
to resolve the missing label problem in the SU(3)> O(3)
5 0(2) reduction.

4. We consider the basis functions

| (my3, myg, mas) TMK) (57)

for irreducible representations of U(3), where

(my3, Myg, M43) label the U(3) representation [y =m,

— Mgy, ky=myy~ My, for SU3)], J is an eigenvalue of L2,
Mof Ly, and K of X'¥) i.e.,

XD (mygmysmgs) JMK) = K | (m5mq3mys) JMK), =3 or 4.

We also make use of the Gel’fand—Tseitlin formalism to
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derive a simple algorithm for evaluating K for any rep-
resentation. The values of K are computed numerically
for a large number of representations of SU(3) and
presented in the tables (containing all representations
of known physical interest). In the case when the mul-
tiplicity of the O(3) representation J in the SU(3) rep-
resentation (&, k,) is 1 or 2, we give explicit formulas
for the eigenvalues K of X®’ in terms of k,, k;, and J
[see Eqs. (43)—(54)]. They are, of course, in agree-
ment with Table I

The eigenvalues K are integer whenever there is no
degeneracy in J, If there are two or more multiplets
with the same J, then the sum of the eigenvalues is in-
teger, although the individual K’s are solutions of
algebraic equations of order equal to the multiplicity
of J in the given SU(3) representation, The eigenvalues
K corresponding to the same J in contragredient rep-
resentations of SU(3) differ by a sign in the case of X ‘®
and remain unchanged for X 4 For self- contragradient
representations the sum of all X’ eigenvalues corre-
sponding to O(3) multiplets with the same J equals zero:
if there is only one multiplet with a given J=J, then its
K equals zero.

We have chosen to present a smaller number of com-
puter calculated eigenvalues of X 4’ in Table II, than for
X in Table I. The computer programs we have used
are available on request and are suitable for arbitrary
representations of SU(3). Similarly we have running
programs for explicit construction of eigenvectors of
X® and X as linear combinations of Gel’fand—
Tseitlin patterns, and also a program for calculating
matrix elements of any polynomial of U(3) generators
relative to both the basis of patterns and to the basis
(57).

1t should also be mentioned that a large amount of
literature related inter alia to the SU(3)> O(3) D> 0O(2)
missing label problem exists. Besides the articles al-
ready quoted we mention the work of Biedenharn, A the
review by Louck and Galbraith?? (containing numerous
references) and the recent article by Asherova and
Smirnov, 2

Let us make a few comments on physical applications
of the results of this paper.

1. The fact that the basis functions (57) form an
orthonormal set is particularly helpful, e.g., if we are
interested in calculating matrix elements of some
operator @ (a Hamiltonian, a term in a Hamiltonian, a
transition operator, etc.) that commutes with X ‘¥
since we will then obtain selection rules with respect to
K. Similarly, if some polynomial PX® x® ¢c® ¢,
L2, L;) commutes with @, rather than X itself, then
this operator P should be used to provide the missing
label. It is certainly of interest that the algebra of such
polynomials is finitely generated.

2. Various O(3) scalars in the enveloping algebra of
SU(3) have been succesfully used as models for two- and
three-body forces. "% One implication of the present
results is the following:

The only “fundamental” forces that can be introduced
in an SU(3) scheme with an O(3) invariant interaction
are two-body forces involving C?’ and L?, three-body
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forces involving C® and X®’ and four-body forces,
involving X9, Any other forces can be represented as
polynomials in the fundamental ones.

3. The formalism developed in this article has an
amusing application in elementary particle physics. In-
deed, the problem of constructing a state vector for N
identical pions in a state with definite isospin T can be
solved by embedding an O(3) group, related to the
isospin, into an U(3) group. ?*% The N-pion state will
be characterized by the U(3) labels N;, N,, N; (with
N=N;+N,+N3, Ny=N,=N;=0), the isospin T, charge
@ = T; and the degeneracy label K (the correspondence
with the notations of the present article is N, =m,,
Ny=mys, Ny=mgy, T=L, @=L;). If K is identified with
the eigenvalue of operator X®’ ag in this article, it is
possible to obtain rigorous limits on the charge distri-
bution of pions in N-pion production, following from
isospin conservation and Bose statistics alone. This can
then be done for arbitrary values of the isospin T; pre-
vious considerations®?® were restricted to T=0 and 1,
when no degeneracies occur. The results are presented
in a separate article, ¥

Other group—subgroup chains of physical interest with
a missing label problem are presently being con-
sidered. Work in progress on the Wigner supermultip-
let scheme SU(4)> SU(2) XSU(2) (two missing labels) and
also the schemes SO(5) D SU(2) xU(1) (one missing),
SO(5) > SO(3) (two missing), and G,> SO(3) (four labels
missing).
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