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Abstract

Quantum superintegrable systems are solvable eigenvalue problems. Their
solvability is due to symmetry, but the symmetry is often “hidden”. The
symmetry generators of 2nd order superintegrable systems in 2 dimensions
close under commutation to define quadratic algebras, a generalization of Lie
algebras. Distinct systems and their algebras are related by geometric limits,
induced by generalized Inönü-Wigner Lie algebra contractions of the
symmetry algebras of the underlying spaces. These have physical/geometric
implications, such as the Askey scheme for hypergeometric orthogonal
polynomials. The systems can be best understood by transforming them to
Laplace conformally superintegrable systems and using ideas introduced in
the 1894 thesis of Bôcher to study separable solutions of the wave equation.
The contractions can be subsumed into contractions of the conformal algebra
so(4,C) to itself.
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Introduction

Superintegrable Systems: HΨ = EΨ

A quantum superintegrable system is an integrable Hamiltonian system
on an n-dimensional Riemannian/pseudo-Riemannian manifold with
potential:

H = ∆n + V

that admits 2n − 1 algebraically independent partial differential operators
commuting with H, the maximum possible.

[H,Lj ] = 0, j = 1,2, · · · ,2n − 1.

Superintegrability captures the properties of quantum Hamiltonian
systems that allow the Schrödinger eigenvalue problem HΨ = EΨ to be
solved exactly, analytically and algebraically.
A system is of order K if the maximum order of the symmetry operators,
other than H, is K . For n = 2, K = 1,2 all systems are known.
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Introduction

2nd order systems with potential, K = 2

The symmetry operators of each system close under commutation to
generate a quadratic algebra, and the irreducible representations of this
algebra determine the eigenvalues of H and their multiplicity
2nd order superintegrable systems are multiseparable.
Smorodinsky, Winternitz and collaborators inaugurated this study in 1965
by pointing out the multiseparability of systems such as the
Smorodinsky-Winternitz system

H = ∂xx + ∂yy + α(x2 + y2) +
β

x2 +
γ

y2 .
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Introduction

Nondegenerate systems (2n − 1 = 3 generators)
In this talk I will consider only the nondegenerate superintegrable systems,
those with 4-parameter potentials (the maximum possible):

V (x) = a1V(1)(x) + a2V(2)(x) + a3V(3)(x) + a4

For these the symmetry algebra generated by H,L1,L2 always closes under
commutation and gives the following quadratic algebra structure: Define 3rd
order commutator R by R = [L1,L2]. Then

[Lj ,R] = A(j)
1 L2

1 + A(j)
2 L2

2 + A(j)
3 H2 + A(j)

4 {L1, L2}+ A(j)
5 HL1 + A(j)

6 HL2

+A(j)
7 L1 + A(j)

8 L2 + A(j)
9 H + A(j)

10, {L1, L2} = L1L2 + L2L1,

R2 = b1L3
1 + b2L3

2 + b3H3 + b4{L2
1, L2}+ b5{L1, L2

2}+ b6L1L2L1 + b7L2L1L2

+b8H{L1, L2}+ b9HL2
1 + b10HL2

2 + b11H2L1 + b12H2L2 + b13L2
1 + b14L2

2 + b15{L1, L2}

+b16HL1 + b17HL2 + b18H2 + b19L1 + b20L2 + b21H + b22,
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Introduction

Example: S9

H = J2
1 + J2

2 + J2
3 +

a1

s2
1

+
a2

s2
2

+
a3

s2
3

where J3 = s1∂s2 − s2∂s1 and J2, J3 are obtained by cyclic permutations of indices.

Basis symmetries: (s2
1 + s2

2 + s2
3 = 1)

L1 = J2
1 +

a3s2
2

s2
3

+
a2s2

3

s2
2
, L2 = J2

2 +
a1s2

3

s2
1

+
a3s2

1

s2
3
, L3 = J2

3 +
a2s2

1

s2
2

+
a1s2

2

s2
1
,

Structure equations:

[Li ,R] = 4{Li , Lk} − 4{Li , Lj} − (8 + 16aj )Lj + (8 + 16ak )Lk + 8(aj − ak ),

R2 =
8
3
{L1, L2, L3} − (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3+

52
3

({L1, L2}+{L2, L3}+{L3, L1})+
1
3

(16+176a1)L1+
1
3

(16+176a2)L2+
1
3

(16+176a3)L3

+
32
3

(a1 + a2 + a3) + 48(a1a2 + a2a3 + a3a1) + 64a1a2a3, R = [L1, L2].
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Introduction

Stäckel Equivalence Classes and Contractions

All 2nd order 2d superintegrable systems with potential are known. There are
44 nondegenerate systems, on a variety of manifolds, but they are related.

1 Under the Stäckel transform, an invertible structure preserving mapping,
they divide into 6 equivalence classes with representatives on flat space
and the 2-sphere.

2 Under geometric coordinate limits, non-invertible mappings, one
superintegrable system can contract into another.

3 Every 2nd order superintegrable system can be obtained from S9 by a
sequence of Stäckel transforms and contractions.

4 Contractions of the superintegrable systems can be induced by ordinary
Inönü-Wigner Lie algebra contractions of the symmetry algebras of the
underlying Riemannian manifolds.
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Constant curvature space Helmholtz systems

Nondegenerate flat space systems: HΨ = (∂2
x + ∂2

y + V )Ψ = EΨ.

1 E1: V = α(x2 + y2) + β
x2 + γ

y2 , (2) E2: V = α(4x2 + y2) + βx + γ
y2 ,

3 E3′: V = α(x2 + y2) + βx + γy ,
4 E7: V = α(x+iy)√

(x+iy)2−b
+ β(x−iy)√

(x+iy)2−b
(

x+iy+
√

(x+iy)2−b
)2 + γ(x2 + y2),

5 E8 V = α(x−iy)
(x+iy)3 + β

(x+iy)2 + γ(x2 + y2),
6 E9: V = α√

x+iy
+ βy + γ(x+2iy)√

x+iy
,

7 E10: V = α(x − iy) + β(x + iy − 3
2 (x − iy)2) + γ(x2 + y2 − 1

2 (x − iy)3),
8 E11: V = α(x − iy) + β(x−iy)√

x+iy
+ γ√

x+iy
,

9 E15: V = f (x − iy),
10 E16: V = 1√

x2+y2
(α + β

y+
√

x2+y2
+ γ

y−
√

x2+y2
),

11 E17: V = α√
x2+y2

+ β
(x+iy)2 + γ

(x+iy)
√

x2+y2
,

12 E19: V = α(x+iy)√
(x+iy)2−4

+ β√
(x−iy)(x+iy+2)

+ γ√
(x−iy)(x+iy−2)

.

13 E20: V = 1√
x2+y2

(
α + β

√
x +

√
x2 + y2 + γ

√
x −

√
x2 + y2

)
,
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Constant curvature space Helmholtz systems

Nondegenerate systems on the complex 2-sphere:
HΨ = (J2

23 + J2
13 + J2

12 + V )Ψ = EΨ, Jk` = sk∂s` − s`∂sk , s2
1 + s2

2 + s2
3 = 1.

Here,

1 S1: V = α
(s1+is2)2 + βs3

(s1+is2)2 +
γ(1−4s2

3)

(s1+is2)4 ,

2 S2: V = α
s2

3
+ β

(s1+is2)2 + γ(s1−is2)
(s1+is2)3 ,

3 S4: V = α
(s1+is2)2 + βs3√

s2
1+s2

2

+ γ

(s1+is2)
√

s2
1+s2

2

,

4 S7: V = αs3√
s2

1+s2
2

+ βs1

s2
2

√
s2

1+s2
2

+ γ
s2

2
,

5 S8: V = αs2√
s2

1+s2
3

+ β(s2+is1+s3)√
(s2+is1)(s3+is1)

+ γ(s2+is1−s3)√
(s2+is1)(s3−is1)

,

6 S9: V = α
s2

1
+ β

s2
2

+ γ
s2

3
,

W. Miller (University of Minnesota) Bôcher contractions Prague 10 / 41



Constant curvature space Helmholtz systems

Darboux 1 systems:HΨ =
( 1

4x (∂2
x + ∂2

y ) + V
)

Ψ = EΨ. (Winternitz et. al., 2002)
1 D1A: V = b1(2x−2b+iy)

x
√

x−b+iy
+ b2

x
√

x−b+iy
+ b3

x + b4,

2 D1B: V = b1(4x2+y2)
x + b2

x + b3
xy2 + b4,

3 D1C V = b1(x2+y2)
x + b2

x + b3y
x + b4.

Darboux 2 systems: HΨ =
(

x2

x2+1 (∂2
x + ∂2

y ) + V
)

Ψ = EΨ.

1 D2A: V = x2

x2+1

(
b1(x2 + 4y2) + b2

x2 + b3y
)

+ b4.

2 D2B: V = x2

x2+1

(
b1(x2 + y2) + b2

x2 + b3
y2

)
+ b4,

3 D2C: V = x2√
x2+y2(x2+1)

(
b1 + b2

y+
√

x2+y2
+ b3

y−
√

x2+y2

)
+ b4,

Darboux 3 systems: HΨ =
(

1
2

e2x

ex+1 (∂2
x + ∂2

y ) + V
)

Ψ = EΨ.

1 D3A: V = b1
1+ex + b2ex√

1+2ex+iy (1+ex )
+ b3ex+iy√

1+2ex+iy (1+ex )
+ b4,

2 D3B: V = ex

ex+1

(
b1 + e−

x
2 (b2 cos y

2 + b3 sin y
2 )
)

+ b4,
3 D3C: V (= ex

ex+1

(
b1 + ex ( b2

cos2 y
2

+ b3
sin2 y

2
)
)

+ b4,.

4 D3D: V = e2x

1+ex (b1e−iy + b2e−2iy ) + b3
1+ex + b4.
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Constant curvature space Helmholtz systems

Darboux 4 systems: HΨ =
(
− sin2 2x

2 cos 2x+b (∂2
x + ∂2

y ) + V
)

Ψ = EΨ.

1 D4(b)A: V = sin2 2x
2 cos 2x+b

(
b1

sinh2 y + b2
sinh2 2y

)
+ b3

2 cos 2x+b + b4,

2 D4(b)B: V = sin2 2x
2 cos 2x+b

(
b1

sin2 2x + b2e4y + b3e2y
)

+ b4.

3 D4(b)C: V = e2y

b+2
sin2 x

+ b−2
cos2 x

(
b1

Z+(1−e2y )
√

Z
+ b2

Z+(1+e2y )
√

Z
+ b3 e−2y

cos2 x

)
+ b4.

Generic Koenigs spaces:
1 K [1,1,1,1]: HΨ = 1

V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1
x2 + a2

y2 + 4a3
(x2+y2−1)2 − 4a4

(x2+y2+1)2 ,

2 K [2,1,1]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1
x2 + a2

y2 − a3(x2 + y2) + a4,

3 K [2,2]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1
(x+iy)2 + a2(x−iy)

(x+iy)3 + a3 − a4(x2 + y2),
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Constant curvature space Helmholtz systems

Generic Koenigs spaces:

1 K [3,1]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1 − a2x + a3(4x2 + y2) + a4
y2 ,

2 K [4]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) =
a1−a2(x + iy)+a3

(
3(x + iy)2 + 2(x − iy)

)
−a4

(
4(x2 + y2) + 2(x + iy)3

)
,

3 K [0]: HΨ = 1
V (b1,b2,b3,b4)

(
∂2

x + ∂2
y + V (a1,a2,a3,a4)

)
Ψ = EΨ,

V (a1,a2,a3,a4) = a1 − (a2x + a3y) + a4(x2 + y2),
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Constant curvature space Helmholtz systems

Special functions and superintegrable systems

Special functions arise in two distinct ways:

As separable eigenfunctions of the quantum Hamiltonian. Second order
superintegrable systems are multiseparable. (The separated solutions
are characterized as eigenfunctions of a 2nd order symmetry operator.)
As interbasis expansion coefficients relating distinct separable coordinate
eigenbases for a fixed energy eigenspace. Often these are solutions of
difference equations.
The properties of all these functions are closely related to the
representation theory of the symmetry algebras.

Most of the special functions in the DLMF appear in this way.
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Constant curvature space Helmholtz systems

The big picture: Contractions and special functions

Taking contractions starting from quantum system S9 we can obtain other
superintegrable systems.
These limits induce limit relations between the special functions
associated with the superintegrable systems.
The limits induce contractions of the associated quadratic algebras, and,
again, limit relations between the associated special functions.
The Askey scheme for orthogonal polynomials of hypergeometric type fits
nicely into this picture. (Kalnins-Miller-Post, 2014)
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Constant curvature space Helmholtz systems

Lie algebra contractions

Let (A; [; ]A), (B; [; ]B) be two complex Lie algebras. We say B is a contraction
of A if for every ε ∈ (0; 1] there exists a linear invertible map tε : B → A such
that for every X ,Y ∈ B,

lim
ε→0

t−1
ε [tεX , tεY ]A = [X ,Y ]B.

Thus, as ε→ 0 the 1-parameter family of basis transformations can become
singular but the structure constants go to a finite limit.
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Lie algebra contractions

Contractions of e(2,C) and o(3,C)

These are the symmetry algebras of free systems on constant curvature
spaces. Their contractions have long since been classified. The are 6
nontrivial contractions of e(2,C) and 4 of o(3,C). They are each induced by
coordinate limits.

Example: An Inönü-Wigner- contraction of o(3,C). We use the classical
realization for o(3,C) acting on the 2-sphere, with basis
J1 = s2∂3 − s3∂2, J2 = s3∂1 − s1∂3, J3 = s1∂2 − s2∂1, commutation relations

[J2, J1] = J3, [J3, J2] = J1, [J1, J3] = J2,

and Hamiltonian H = J2
1 + J2

2 + J2
3 . Here s2

1 + s2
2 + s2

3 = 1.

Basis change : {J ′1, J ′2, J ′3} = {εJ1, εJ2, J3}, o < ε ≤ 1

New structure relations : [J ′2, J
′
1] = ε2J ′3, [J ′3, J

′
2] = J ′1, [J ′1, J

′
3] = J ′2,

Let ε→ 0 : [J ′2, J
′
1] = 0, [J ′3, J

′
2] = J ′1, [J ′1, J

′
3] = J ′2, get e(2,C)

coordinate implementation x =
s1

ε
, y =

s2

ε
, s3 ≈ 1, J = J3
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Contractions of superintegrable systems

Contractions of quadratic algebras.

Just as for Lie algebras we can define a contraction of a quadratic algebra in
terms of 1-parameter families of basis changes in the algebra: As ε→ 0 the
1-parameter family of basis transformations becomes singular but the
structure constants go to a finite limit.
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Contractions of superintegrable systems

Lie algebra contractions⇒ quadratic algebra
contractions

Constant curvature spaces:

Theorem

(Kalnins-Miller, 2014) Every Lie algebra contraction of A = e(2,C) or
A = o(3,C) induces uniquely a contraction of a free quadratic algebra Q̃
based on A, which in turn induces uniquely a contraction of the quadratic
algebra Q with potential. This is true for both classical and quantum algebras.

Complications:

Darboux spaces: They support superintegrable systems, but their Lie
symmetry algebras are only 1-dimensional so Wigner contractions don’t apply.
Konigs spaces: They support superintegrable systems, but have no Lie
symmetry algebra.
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Figure : The Askey scheme and contractions of superintegrable systems



Figure : The Askey contraction scheme



The Bôcher method

Unification of the theory: The Laplace equation

Every 2D Riemannian manifold is conformally flat, so we can always find a
Cartesian-like coordinate system with coordinates (x , y) ≡ (x1, x2) such that
the Helmholtz eigenvalue equation takes the form

(∗) H̃Ψ =

(
1

λ(x , y)
(∂2

x + ∂2
y ) + Ṽ (x)

)
Ψ = EΨ.

However, this equation is equivalent to the flat space Laplace equation

(∗∗) HΨ ≡
(
∂2

x + ∂2
y + V (x)

)
Ψ = 0, V (x) = λ(x)(Ṽ (x)− E).

In particular, the symmetries of (*) correspond to the conformal symmetries of
(**). Thus without loss of generality we can assume the manifold is flat space
with λ ≡ 1.
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The Bôcher method

2D conformal superintegrability of the 2nd order

Systems of Laplace type are of the form

HΨ ≡ ∆nΨ + V Ψ = 0.

Here ∆n is the Laplace-Beltrami operator on a conformally flat nD
Riemannian or pseudo-Riemannian manifold.

A conformal symmetry of this equation is a partial differential operator S in the
variables x = (x1, · · · , xn) such that [S,H] ≡ SH − HS = RSH for some
differential operator RS.

The system is conformally superintegrable for n > 2 if there are 2n − 1
functionally independent conformal symmetries, S1, · · · ,S2n−1 with S1 = H. It
is second order conformally superintegrable if each symmetry Si can be
chosen to be a differential operator of at most second order.
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The Bôcher method

The conformal Stäckel transform

Suppose we have a second order conformal superintegrable system

H = ∂xx + ∂yy + V (x , y) = 0, H = H0 + V

where V (x , y) = W (x , y)− E U(x , y) for arbitrary parameter E .

Theorem
The transformed (Helmholtz) system

H̃Ψ = EΨ, H̃ =
1
U

(∂xx + ∂yy ) + Ṽ

is truly superintegrable, where Ṽ = W
U .

There is a similar definition of Stäckel transforms of Helmholtz superintegrable
systems HΨ = EΨ which takes superintegrable systems to superintegrable
systems, essentially preserving the quadratic algebra structure.
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The Bôcher method

Thus any second order conformal Laplace superintegrable system admitting a
nonconstant potential U can be Stäckel transformed to a Helmholtz
superintegrable system.

By choosing all possible special potentials U associated with the fixed
Laplace system we generate the equivalence class of all Helmholtz
superintegrable systems obtainable through this process.

Theorem
There is a one-to-one relationship between flat space conformally
superintegrable Laplace systems with nondegenerate potential and Stäckel
equivalence classes of superintegrable Helmholtz systems with
nondegenerate potential.

The conformal symmetry algebra of the underlying flat space is so(4,C),
much bigger than e(2,C) and so(3,C). We can use contractions of so(4,C) to
compute our limits.
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The Bôcher method

The equivalence classes for nondegenerate systems

System Non-degenerate potentials in flat space

(∂xx + ∂yy + V (x , y))Ψ = 0

[1,1,1,1] a1
x2 + a2

y2 + 4 a3
(x2+y2−1)2 − 4 a4

(x2+y2+1)2

[2,1,1] a1
x2 + a2

y2 − a3 (x2 + y2) + a4

[2,2] a1
(x+i y)2 + a2 (x−i y)

(x+i y)3 + a3 − a4 (x2 + y2)

[3,1] a1 − a2 x + a3 (4 x2 + y2) + a4
y2

[4] a1 − a2 (x + i y) + a3 (3(x + i y)2 + 2(x − i y))− a4 (4(x2 + y2) + 2(x + i y)3)

[0] a1 − (a2 x + a3 y) + a4 (x2 + y2)

(1) a1
(x+i y)2 + a2 − a3

(x+i y)3 + a4
(x+i y)4

(2) a1 + a2(x + i y) + a3(x + i y)2 + a4(x + i y)3
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The Bôcher method

A Stäckel transform example

[1, 1, 1, 1] : (∂2
x + ∂2

y +
a1

x2 +
a2

y2 +
4a3

(x2 + y2 − 1)2 +
4a4

(x2 + y2 + 1)2 )Ψ = 0.

Multiplying on the left by x2 we obtain(
x2(∂2

x + ∂2
y ) + a1 + a2

x2

y2 + 4a3
x2

(x2 + y2 − 1)2 − 4a4
x2

(x2 + y2 + 1)2

)
Ψ = 0.

Introduce variables x = e−a, y = r . Then(
∂2

a + ∂a + e−2a∂2
r + a1 + a2

e−2a

r 2 + a3
4

(e−a + ea(r 2 − 1))2 − a4
4

(e−a + ea(r 2 + 1))2

)
Ψ = 0.

Horospherical coordinates on the complex 2-sphere, s2
1 + s2

2 + s2
3 = 1:

s1 =
i
2

(e−a + (r2 + 1)ea), s2 = rea, s3 =
1
2

(e−a + (r2 − 1)ea)

Now
(
∂2

s1 + ∂2
s2 + ∂2

s3 + a2
s2

2
+ a3

s2
3

+ a4
s2

1

)
Ψ = −a1Ψ, explicitly the

superintegrable system S9.
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The Bôcher method

The Bôcher approach

In his 1894 thesis Bôcher developed a geometrical method for finding and
classifying the R-separable orthogonal coordinate systems for the flat space
Laplace equation ∆nΨ = 0 in n dimensions. It was based on the conformal
symmetry of these equations. The conformal symmetry algebra in the
complex case is so(n + 2,C). We will use his ideas for n = 2 , but applied to
the Laplace equation with potential

HΨ ≡ (∂2
x + ∂2

y + V )Ψ = 0.

The so(4,C) conformal symmetry algebra in the case n = 2 has the basis

P1 = ∂x , P2 = ∂y , J = x∂y − y∂x , D = x∂x + y∂y ,

K1 = (x2 − y2)∂x + 2xy∂y , K2 = (y2 − x2)∂y + 2xy∂x .

Bôcher linearizes this action by introducing tetraspherical coordinates. These
are 4 projective coordinates (x1, x2, x3, x4) confined to the nullcone
x2

1 + x2
2 + x2

3 + x2
4 = 0.
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The Bôcher method

Tetraspherical coordinates

They are complex projective coordinates on the null cone

x2
1 + x2

2 + x2
3 + x2

4 = 0.

Relation to Cartesian coordinates (x , y):

x = − x1

x3 + ix4
, y = − x2

x3 + ix4
,

HΨ =
(
∂xx + ∂yy + Ṽ

)
Ψ = (x3 + ix4)2

(
4∑

k=1

∂2
xk

+ V

)
Ψ = 0

where Ṽ = (x3 + ix4)2V .
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The Bôcher method

Relation to flat space 1st order conformal symmetries

We define
Ljk = xj∂xk − xk∂xj , 1 ≤ j , k ≤ 4, j 6= k ,

where Ljk = −Lkj . The generators for flat space conformal symmetries are
related to these via

P1 = ∂x = L13 + iL14, P2 = ∂y = L23 + iL24, D = iL34,

J = L12, K1 = L13 − iL14, K2 = L23 − iL24.

Here
D = x∂x + y∂y , J = x∂y − y∂x , K1 = 2xD − (x2 + y2)∂x ,

etc.
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The Bôcher method

Relation to separation of variables and Bôcher’s limits

Bôcher uses symbols of the form [n1,n2, ..,np] where n1 + ...+ np = 4, to
define coordinate surfaces as follows. Consider the quadratic forms

Ω = x2
1 + x2

2 + x2
3 + x2

4 = 0, Φ =
x2

1
λ− e1

+
x2

2
λ− e2

+
x2

3

λ− e3
+

x2
4

λ− e4
.

If the parameters ej are pairwise distinct, the elementary divisors of these two
forms are denoted by [1,1,1,1].

Given a point in 2D flat space with Cartesian coordinates (x0, y0), there
corresponds a set of tetraspherical coordinates (x0

1 , x
0
2 , x

0
3 , x

0
4 ), unique up to

multiplcation by a nonzero constant. If we substitute into Φ we see that there
are exactly 2 roots λ = ρ, µ such that Φ = 0. These are elliptic coordinates.
They are orthogonal with respect to the metric ds2 = dx2 + dy2 and are
R-separable for the Laplace equations (∂2

x + ∂2
y )Θ = 0 or (

∑4
j−1 ∂

2
xj

)Θ = 0.
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The Bôcher method

The potential V[1,1,1,1]

Consider the potential

V[1,1,1,1] =
a1

x2
1

+
a2

x2
2

+
a3

x2
3

+
a4

x2
4
.

It is the only potential V such that equation

(
4∑

j−1

∂2
xj

+ V )Θ = 0

is R-separable in elliptic coordinates for all choices of the parameters ej . The
separation is characterized by 2nd order conformal symmetry operators that
are linear in the parameters ej . In particular the symmetries span a
3-dimensional subspace of symmetries, so the system
HΘ = (

∑4
j−1 ∂

2
xj

+ V[1,1,1,1])Θ = 0 must be conformally superintegrable.
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The Bôcher method

Contraction [1,1,1,1]→ [2,1,1]

If some of the ei become equal then Bôcher shows that the process of making
e1 → e2 together with suitable transformations of the x ′i s produces a
conformally equivalent H:

e1 = e2 + ε2, x1 →
i(x ′1 + ix ′2)√

2ε
, x2 →

(x ′1 + ix ′2)√
2ε

+ ε
(x ′1 − ix ′2)√

2
, xj → x ′j , j = 3,4,

This coordinate limit induces a contraction of so(4,C) to itself:

L′12 = L12, L′13 = − i√
2 ε

(L13− iL23)− i ε√
2

L13, L′23 = − i√
2 ε

(L13− iL23)− ε√
2

L13

L′34 = L34, L′14 = − i√
2 ε

(L14−iL24)− i ε√
2

L14, L′24 = − i√
2 ε

(L14−iL24)− ε√
2

L14.

We call this the Bôcher contraction [1,1,1,1]→ [2,1,1]. There is a family of
such contractions to [2,2], [3,1], [4], based on the roots of quadratic forms.
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The Bôcher method

What is a Bôcher contraction?

Let x = A(ε)y, and x = (x1, · · · , x4), y = (y1, · · · , y4) be column vectors, and
A = (Ajk (ε)), be a 4× 4 matrix with matrix elements

Akj (ε) =
N∑

`=−N

a`kjε
`

where N is a nonnegative integer and the a`kj are complex constants. We say
that the matrix A defines a special Böcher contraction of the conformal
algebra so(4,C) to itself provided A(ε) ∈ SO(4,C) for all ε 6= 0.
The contraction is implemented as ε→ 0. It takes the null cone x · x = 0 to the
null cone y · y = 0. Bôcher contractions can be multiplied., since
A ∈ SO(4,C). To generate all such contractions we simply compute the
possible 1-parameter subgroups of SO(4,C) from Gantmacher (Matrix
Theory, 1960).
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The Bôcher method

To generate all such contractions we simply compute the possible normal
forms for of so(4,C) from Gantmacher (Matrix Theory, 1960)

C1 =


0 λ 0 0
−λ 0 0 0
0 0 0 0
0 0 0 0

 , C2 =


0 λ 0 0
−λ 0 0 0
0 0 0 µ
0 0 −µ 0

 ,

C3 =


0 1 + i 0 0

−1− i 0 −1 + i 0
0 1− i 0 0
0 0 0 0

 , C4 =
1
2


0 1 i 2λ
−1 0 2λ i
−i −2λ 0 −1
−2λ −i 1 0

 .

Every 1-parameter subgroup A(t) of SO(4,C) (i.e., A(t1 + t2) = A(t1)A(t2)), is
conjugate to one of the forms Aj (t) = exp(tCj ), j = 1,2,3,4. By making an
appropriate change of coordinate t = t(ε) we can obtain a special Böcher
contraction matrix.

A1(t) =
1
2


ε2+1
ε − i(ε2−1)

ε 0 0
i(ε2−1)

ε
ε2+1
ε 0 0

0 0 0 0
0 0 0 0

 , ε = eiλt ,
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The Bôcher method

A2(t) =
1
2


ε2

1+1
ε1

− i(ε2
1−1)
ε1

0 0
i(ε2

1−1)
ε1

ε2
1+1
ε1

0 0

0 0 ε2
2+1
ε2

− i(ε2
2−1)
ε2

0 0 i(ε2
2−1)
ε2

ε2
2+1
ε2

 , ε1 = eiλt , ε2 = eiµt

A3(t) =


1− 1

2ε2
1
ε

i
2ε2 0

− 1
ε 1 i

ε 0
i

2ε2 − i
ε 1 + 1

2ε2 0
0 0 0 1

 , ε =
2

t(1 + i)
,

A4(t) =
1
2


ε2

1+1
ε1

1
ε1ε2

i
ε1ε2

i(ε2
1−1)
ε1

− ε1
ε2

ε2
1+1
ε1

i(ε2
1−1)
ε1

iε1
ε2

− iε1
ε2

i(ε2
1−1)
ε1

ε2
1+1)
ε1

− ε1
ε2

i(ε2
1−1)
ε1

i
ε1ε2

1
ε1ε2

ε2
1+1)
ε1

 . ε1 = eiλt , ε2 =
1
t
.
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The Bôcher method

Partial list of Bôcher contractions of Laplace systems

1 [1,1,1,1] ↓ [2,1,1] contraction:
V[1,1,1,1] ↓ V[2,1,1], V[3,1] ↓ V[2,1], V[4] ↓ V[0],

2 [1,1,1,1] ↓ [2,2] contraction:
V[1,1,1,1] ↓ V[2,2], V[2,1,1] ↓ V[2,2],V[3,1] ↓ V(1), V[4] ↓ V(2),

3 [2,1,1] ↓ [3,1] contraction:
V[1,1,1,1] ↓ V[3,1], V[2,1,1] ↓ V[3,1], V[2,2] ↓ V[0], V[4] ↓ V[0], V(1) ↓ V(2),

4 [1,1,1,1] ↓ [4] contraction: V[1,1,1,1] ↓ V[4], V[2,1,1] ↓ V[4], V[2,2] ↓
V[0], V[3,1] ↓ V[4], V[4] ↓ V[0], V(1) ↓ V(2),

5 [2,2] ↓ [4] contraction: V[1,1,1,1] ↓ V[4], V[2,1,1] ↓ V[4], V[2,2] ↓ V[4], V[3,1] ↓
V(2), V[4] ↓ V(2), V(1) ↓ V(2),

6 [1,1,1,1] ↓ [3,1] contraction:
V[1,1,1,1] ↓ V[3,1], V[2,1,1] ↓ V[3,1], V[2,2] ↓ V[3,1], V[4] ↓ V[0], V(1) ↓ V(2).
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The Bôcher method

Helmholtz contractions from Bôcher contractions

Bôcher contractions of conformal superintegrable systems induce
contractions of Helmholtz superintegrable systems.

The basic idea is that the procedure of taking a conformal Stäckel transform of
a conformal superintegrable system, followed by a Helmholtz contraction
yields the same result as taking a Bôcher contraction followed by an ordinary
Stäckel transform: The diagrams commute.

All quadratic algebra contractions are induced by Lie algebra contractions of
so(4,C), even those for Darboux and Konigs spaces.
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The Bôcher method

Figure : The bigger picture
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The Bôcher method

Figure : Relationship between conformal Stäckel transforms and Bôcher contractions
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Discussion and conclusions

Wrap-up. 1

There are 3 basic structures in superintegrability theory: 1) the structures
of the symmetry algebras, and their representation theory, 2) Stäckel
equivalence of superintegrable systems on distinct manifolds, and 3)
contractions relating different systems.
Taking contractions step-by-step from the S9 model we can recover the
Askey Scheme. However, the contraction method is more general. It
applies to all special functions that arise from the quantum systems via
separation of variables, not just polynomials of hypergeometric type, and
it extends to higher dimensions.
The theory can be unified and symplified by recognizing that each
equivalence class of Stäckel equivalent superintegrable systems
corresponds to a single flat space Laplace conformally superintegrable
system. Contractions of these systems are determined by Lie algebra
contractions of the conformal symmetry algebra so(4,C).
This work can be generalized to higher dimensions. The case n = 3 is
under active investigation.
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