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Abstract

We make explicit the intimate relationship between quasi-exact
solvability, as expounded for example by Ushveridze, and the tech-
nique of separation of variables as it applies to specific superintegrable
quantum Hamiltonians. It is the multiseparability of superintegrable
systems that forces the existence of interesting families of polynomial
solutions characteristic of quasi-exact solvability, that enables us to
solve these systems in distinct ways, and that gives us the basis of a
classification theory. This connection is generalized in terms of the
understanding of the role of finite solutions of quantum Hamiltonians.
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1 Introduction

This paper is an extension of our study of the intimate connections between
second order superintegrable quantum systems and quasi-exact solvability
[1]. It also relies on the structure and classification theory for these systems,
as presented in many articles [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Here we understand a quasi-exactly solvable (QES) problem, in the sense
of Turbiner and Ushveridze 2, [12], as a one-dimensional Schrödinger many
parameter eigenvalue problem, where for certain values of the parameters, a
finite subset of the energy eigenvalues and corresponding eigenfunctions may
be found as solutions of algebraic equations. This means in practice that for
these fixed parameters it is possible to write the solution as a special factor
times a polynomial and to solve algebraic equations to find the energy one-
dimensional oscillator with the same anharmonicity. Magyari [13] stated the
theorem that the one-dimensional Schrödinger equation

d2ψ(x)

dx2
+ [E − V (N)(x)]ψ(x) = 0 (1)

with anharmonic potential

V (N)(x) =
2N−1
∑

n=1

bnx
2n, b2N−1 > 0, N = 1, 2, 3.... (2)

admits square integrable even (s = 0) and odd (s = 1) parity eigenfunctions
of the form

ψ(s)(x) = exp

(

−1

2

N
∑

n=1

anx
2n

)

xs P
(s)
M (x), aN > 0 (3)

where

P
(s)
M (x) =

M
∑

m=0

c(s)m x2m, (4)

is a polynomial of degreeM , M = 0, 1, 2..., if the first parameters (b1, b2, ..., bN−1)
satisfy a set of N − 1 constraints. The last constrained parameter bN−1 is
given by the following formula

bN−1 = −N(2N + 4M + 2s− 1)aN +
i+j=N
∑

i,j

ijaiaj, (5)

2In the previous article [1] we introduced another definition of quasi-exact solvability.
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which ensures the existence of a polynomial solution of degree 2M, (4).
The numbers ai, (i = 1, 2, ..., N) formed from the N arbitrary constants

(bN , bN+1, ..., b2N−1); the energy E, the coefficients c(s)m and constrained cou-
pling constants (b1, b2, ..., bN−1), are determined from the systems of algebraic
equations (see for details [13]).

The change of variable |y| = x2 or x = sgny
√

|y| (R → R) together with

a wave function transformation ψ(y) = |y|−1/4φ(y) reduces equation (1) to

d2φ(y)

dy2
+

[

ǫ+
α

|y| −
ν(ν − 1)

y2
− Ṽ (N)(y)

]

φ(y) = 0 (6)

where ǫ = −b1/4, α = E/4, ν takes two values ν = 1/4, ν = 3/4 and

Ṽ (N)(y) =
1

4
(b2y + b3y

2 + ...+ b2N−1y
2N−2) =

1

4

2N−2
∑

n=1

bn+1y
n, N = 2, 3, ... (7)

and gives us a new class of QES systems which are dual to the first one.
Indeed, in the equation (6) the energy E is fixed and plays the role of a
coupling constant, the coupling constant b1 is quantized, and the quantity
ǫ = −b1/4 has the meaning of energy. Note, also that after the substitution
y = x2 > 0 (R → R+) and with ψ(y) = y−1/4φ(y) the equation (1) transforms
to an equation having the same form as (6) but where y has the meaning of
a radial variable for the three-dimensional Schrödinger equation.

Recently, an interesting extension of the QES family has been obtained
in the article of Bender and Boettchter [14]. They introduced a new class of
QES PT symmetric Hamiltonians (see also [15] for PT symmetric quantum
mechanics) with a quartic polynomial potential, which formally can be con-
sidered as a particular case of eq. (6) for N = 2, α = 0, ν = 0 and imaginary
coupling coefficients b2 and b4. The further generalization of QES systems in
the complex plane is presented in articles of Znojil [16, 17, 18].

The main problem in subsequent investigations of QES systems is to un-

derstand just which potentials and just which specializations of the parameters

in these potentials allow explicit algebraic solutions.
It has long been understood [12, 19] that one way of approaching such

problems is to obtain the eigenfunction equation as one of the separation
equations for a higher dimensional (PDE) Schrödinger equation that is sepa-
rable in some set of coordinates. The parameters are the separation constants
and the permissible values of these parameters and energy eigenvalues are
obtained by solving the PDE eigenvalue problem.

In our work we make clear that quasi-exactly solvable equations are bet-
ter treated as arising from higher dimensional superintegrable systems, in
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particular those that are multiseparable [1]. This enables us to solve these
systems in distinct ways, thus better understanding the solutions, and gives
us the basis of a classification theory [10, 20]. Our approach leads us to many
new examples of QES systems.

To motivate our approach we start by reviewing some simple exactly solv-
able (ES) and QES systems. The solution of many of the partial differential
equations of mathematical physics can be achieved via the method of sep-
aration of variables. Among the solutions found in this way are classical
polynomials such as those of Legendre, Laguerre, Hermite and Jacobi [21].
As an example, Legendre polynomials Pℓ(x) satisfy the differential equation

(1 − x2)
d2

dx2
Pℓ(x) − 2x

d

dx
Pℓ(x) + ℓ(ℓ+ 1)Pℓ(x) = 0, −1 ≤ x ≤ 1.

If we look for polynomial solutions Πℓ
i=1(x − θi) of this equation we find as

necessary and sufficient conditions that the zeros θi must satisfy the relations

(2ℓ+ 1)θi + 2
∑

j 6=i

1

θj − θi
= 0.

These are just the relations satisfied by the zeros of the Legendre polynomials
Pℓ(x). Now consider the Laplace equation

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

f = 0 (8)

expressed in conical coordinates u, v, r (r > 0, e1 < u < e2 < v < e3):

x2 = r2 (u− e1)(v − e1)

(e1 − e2)(e1 − e3)
, y2 = r2 (u− e2)(v − e2)

(e2 − e1)(e2 − e3)
, z2 = r2 (u− e3)(v − e3)

(e3 − e1)(e3 − e2)
.

If we look for separated solutions of the form f = rℓU(u)V (v) we see that
the separation equations for the functions U(u) and V (v) are of Lamé type
viz

√

P (λ)
d

dλ

√

P (λ)
d

dλ
Λ(λ) + [−ℓ(ℓ + 1)λ+ µ]Λ(λ) = 0

where P (x) = −4(x − e1)(x − e2)(x − e3), and Λ = U, V and λ = u, v.
Requiring polynomial solutions

Λ(λ) = (λ− e1)
p(λ− e2)

q(λ− e3)
rΠn

i=1(λ− θi)

where p, q, r are 0 or 1
2

we see that this is possible if and only if

p+ 1

θi − e1
+

q + 1

θi − e2
+

r + 1

θi − e3
+
∑

j 6=i

2

θi − θj

= 0

3



where ℓ = 2(n+ p + q + r) and

µ = e1[−4(r + q + n)2 + 2p(2p− 1)] + e2[−4(r + p+ s)2 + 2q(2q − 1)]

+e3[−4(p+ q + n)2 + 2r(2r − 1)] + [8(p+ q + r + n) − 2]
n
∑

i=1

θi.

Such polynomial solutions can also be obtained for the Schrödinger equa-
tion HΨ = EΨ in the presence of a potential. An example of this in three
dimensions [22] is

H = −
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

+ [ω2(x2 + y2 + z2) +
p2 − 1

4

x2
+
q2 − 1

4

y2
+
r2 − 1

4

z2
]. (9)

If we again choose conical coordinates and look for solutions of the form
Ψ = R(r)U(u)V (v) we see that the functions U(u) and V (v) must satisfy
the differential equation

√

P (λ)
d

dλ
(
√

P (λ)
d

dλ
Λ(λ)) + [−ℓ(ℓ + 1)λ+ µ+ (e1 − e2)(e1 − e3)

(p2 − 1
4
)

λ− e1

+(e2 − e1)(e2 − e3)
(q2 − 1

4
)

λ− e2
+ (e3 − e2)(e3 − e1)

(r2 − 1
4
)

λ− e3
]Λ(λ) = 0

where Λ = U, V and λ = u, v. Looking for solutions in exactly the same
manner as we have done for solutions of Laplace’s equation in these coordi-
nates, we uncover the same relations obeyed by the zeros θi and the same
expressions for ℓ and µ. The only difference is that p, q, and r can now be
arbitrary. The radial equation satisfied by R(r) is

d2R

dr2
+

2

r

dR

dr
+ [E − ω2r2 − ℓ(ℓ+ 1)

r2
]R = 0.

This equation admits polynomial solutions of the form

R(r) = rℓ exp(−ω
2
r2)L

ℓ+ 1

2
n (ωr2)

where the energy eigenvalues are En = ω(2n+ p+ q+ r+ 3) for n = 0, 1, · · ·
and the zeros of the associated Laguerre polynomials Lα

n(z) ≈ Πs
i=1(z − θi)

satisfy the relations

−α− 1 + θi + 2
∑

j 6=i

θi

θj − θi

= 0.
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The above examples are all ES systems because the solutions can be given
explicitly in terms of hypergeometric functions (for instance in spherical or
Cartesian coordinates).

To motivate our more complicated results to follow we give one more
example, a true QES system. This example is closely related to one treated
our paper [1] but its ingredients are relevant to the present work. Consider
the differential equation

d2F

dℓ2
+ {−144k2

1ℓ
4 − 96k1k2ℓ

3 + 16(2k2
2 + 3k1k3)ℓ

2 + Eℓ+ µ}F = 0, (10)

a form of the triconfluent Heun equation that completely coincides, for ℓ = ix,
k1 = 1/12, 4k2 = a, 4k3 = 2b − 3a2, µ = −E and J = N + 1, with the PT
symmetric QES example presented in [14]. It is known [23, 14] that in case
of

E = 8[2k2k3 + 2
k3

2

k1
− 3k1(n+ 1)], n = 0, 1, 2... (11)

the equation (10) has finite solutions

F = exp

(

4k1ℓ
3 + 2k2ℓ

2 − 2(
k2

2

k1

+ k3)ℓ

)

n
∏

i=0

(ℓ− θi)

where the θi satisfy the relations

−2k1k3 − 2k2
2 + 4k1k2

n
∑

i=1

θi + 12k2
1

n
∑

i=1

θ2
i +

∑

j 6=i

k1

θi − θj

= 0

and the parameter µ is determined by the formulas

µ = −4
k4

2

k2
1

− 8
k2

2k3

k1

− 4k2
3 − 4(1 + 2n)k2 − 24

n
∑

i=1

θi.

Thus we have a true QES solution for a potential that is a polynomial of
order 4. It is also possible to obtain such solutions by factoring out the
expression f = exp(4k1ℓ

3 + 2k2ℓ
2 − 2(k2

2/k1 + k3)ℓ) and then looking directly
for strictly polynomial solutions (see for instance [14]).

A natural question is: How is this particular set of solutions related to

superintegrability? To answer this consider the quantum Hamiltonian

H =
∂2

∂x2
+
∂2

∂y2
+36k2

1[2(x− iy)3−4(x2 +y2)]+24k1k2[3(x− iy)2−2(x+ iy)]

−16(2k2
2 + 3k1k3)(x− iy).
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The corresponding Schrödinger equation is superintegrable and multisepara-
ble, [6]. If the coordinates x and y are related to semi-hyperbolic coordinates
u, v via

x+ iy = −1

2
(u− v)2, x− iy = u+ v (12)

then the Schrödinger equation can be written as

HΨ =
{

1

u− v

[(

∂2

∂u2
− 144k2

1u
4 − 96k1k2u

3 + 16(2k2
2 + 3k1k3)u

2
)

−
(

∂2

∂v2
− 144k2

1v
4 − 96k1k2v

3 + 16(2k2
2 + 3k1k3)v

2
)]}

Ψ = EΨ.

This can be solved for Ψ via the usual separation of variables ansatz Ψ =
U(u)V (v). In particular we can look for finite solutions of the form

Ψ = exp[4k1(u
3 + v3) + 2k2(u

2 + v2) − 2(
k2

2

k1

+ k3)(u+ v)]
n
∏

i=1

(u− θi)(v − θi)

where the functions U(u) and V (v) satisfy the same separated differential
equation as F above and the energy spectrum given the formula (11).

Another important question is: How can we determine the values of µ
for polynomial solutions of this type? This is done by noting that µ is the
eigenvalue of the symmetry operator

M =
1

u− v

[

v
(

∂2

∂u2
− 144k2

1u
4 − 96k1k2u

3 + 16(2k2
2 + 3k1k3)u

2
)

−u
(

∂2

∂v2
− 144k2

1v
4 − 96k1k2v

3 + 16(2k2
2 + 3k1k3)v

2
)]

.

The eigenvalues can be determined by solving the eigenvalue equation MΨ =
µΨ in the form

Ψ = exp(4k1(u
3 + v3) + 2k2(u

2 + v2) − 2(
k2

2

k1

+ k3)(u+ v))S(u, v)

where S(u, v) is a sum of symmetric polynomials

Sij = Sji = uivj + ujvi, 0 ≤ i+ j ≤ 2n,

i.e., S(u, v) =
∑

i≤j aijSij, subject to the restriction 0 ≤ i + j ≤ 2n. There
are 1

2
(n + 1)(n + 2) such functions. If we require that MΨ = µΨ then we

must solve a set of linear equations of the form
∑

k≤ℓ

(Ckℓ
ij − µ)akℓ = 0
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where
M̂Sij =

∑

k≤ℓ

Ckℓ
ij Skℓ,

and M̂ is the induced action of M on S(u, v). There is a determanental con-
dition to be satisfied in order that these equations have nontrivial solutions.
This condition must include the possibility of solutions of the form

Ψ = exp[4k1(u
3 + v3) + 2k2(u

2 + v2)− 2(
k2

2

k1

+ k3)(u+ v)]Πs
i=1(u− θi)(v− θi)

where 0 ≤ s ≤ n. This is clear from the observation that we have a linear
system of dimension 1

2
(n+1)(n+2). If we wish to determine the eigenvalues

associated with solutions corresponding to s = n only then we could take
Snn = 1. The rank of the system then becomes n + 1, but the price we pay
for this is that the determanental condition is more awkward to implement.
As a illustration of this process, if we look for solutions of the form

S(u, v) = c1uv + c2(u+ v) + c3

then µ satisfies the factorizable cubic equation

(µk2
1 +4k2

1k
2
3 +4k2k

2
1 +4k4

2 +8k1k3k
2
2)(k

4
1µ

2+8k2
1(2k2k

2
1 +k2

3k
2
1 +2k1k3k

2
1 +k4

2)µ

−96k3k
5
1 − 48k2

2k
2
1 + 64k2

3k
2
1k2 + 16k4

3k
4
1 + 128k3

2k3k
3
1 + 64k3

3k
3
1k

2
2 + 64k5

2k
2
1

+96k2
1k

4
2k

2
3 + 64k6

2k1k3 + 16k8
2) = 0.

Thus we have used the superintegrable system to determine the values µ,E
for which the separated equation is QES, and we have obtained the results
in an alternate from that for the separated equations treated alone. Note
further that if we perform a special ansatz in the nonseparable Cartesian
coordinates to try to find polynomial solutions in x, y we will obtain exactly
the same exponential phase factor as the product of the phase factors in
u and in v. This means that the possible polynomial solutions in x, y for a
fixed energy eigenspace (11) correspond exactly with the polynomial solutions
symmetric in u and v. The polynomial energy eigenspace is degenerate but
the diagonalization of M breaks the degeneracy.

We can exploit the fact that our superintegrable system is multiseparable:
It also separates in shifted semi-hyperbolic coordinates, obtained formally
from the standard semi-hyperbolic coordinates (12) through the transforma-
tion

x→ x+ a, y → y − ia.
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Then

V (x, y) −E → V (x, y) − 96ak1[3k1(x− iy) − k2] − E = V̄ (x, y) − Ē

which is again of the same form if we make the transformations

k1 → k1, k2 → k2, k3 → 6ak1 + k3, E → E + 96k1k2a

of the parameters. From this observation we deduce that separation of vari-
ables can also be achieved in displaced coordinates for arbitrary a. Also the
polynomial solutions in the u, v coordinates can be written as linear combi-
nations of the polynomials in the shifted separable coordinates.

In addition to the possibility of solving the Schrödinger’s equation via
separation of variables there is the possibility of obtaining an explicit solu-
tion that corresponds to Lie form in the corresponding classical mechanical
problem. This form can be calculated by writing the Schrödinger equation
in complex conjugate coordinates, in which it becomes

∂2Ψ

∂z∂z̄
+ (A(z̄)z +B(z̄))Ψ = 0,

not separable but solvable. We set Ψ = ezC(z̄)+D(z̄). This will be a solution
provided that

C(z̄)2 = 2
∫

A(z̄)dz̄, D(z̄) =
∫

B(z̄)

C(z̄)
dz̄ − lnC(z̄).

In our case we obtain the solution

C(z̄) = 2
√

3k1(3k1z̄
2 + 2k2z̄ + Λ)1/2,

D(z̄) = − 1

8
√

3k1

[
1

3
(−16k3

1Λ+52k2
1k2z̄−84k2

1k
2
2−48k2

1k3+24k4
1z̄

2)(3k1z̄
2+2k2z̄+Λ)1/2

+
1

k2
1

√
3k1

(28k3
2 − 12k1k2Λ − Ek1 + 16k1k2k3) ln[2

√

3k1(3k1z̄ + k2)+

6k1(3k1z̄
2 + 2k2z̄ + Λ)1/2]] − 1

2
ln(3k1z̄

2 + 2k2z̄ + Λ)

to within a constant. Can Λ and E can be chosen in such a way that there are
“polynomial” solutions to within a factor of this type? We note here that the
constant Λ has a definite meaning in terms of symmetries of H . One could
in principle expand a given set of such solutions in terms of a separable set
of solutions, but it is our intention to study this elsewhere.

Based on these examples, a natural question to ask is: What is the most

general way that we can obtain 1d QES eigenvalue problems and their so-

lutions, related to separation of variables of a nondegenerate superintegrable

system?
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2 Polynomial solutions from Euclidean space

superintegrable systems.

A crucial observation to answer the preceding question is that the Hamil-
tonian H in our example is superintegrable and admits three second order
symmetry operators: a quantum superintegrable system. To answer the
question fully we need to recall some facts about generic elliptical coordi-
nates in complex Euclidean n space and on the complex n sphere, and their
relationship to superintegrable systems with nondegenerate potentials.

A quantum system of the form HΨ = EΨ where H = ∆n + V (x) (and
∆n is the Laplace-Beltrami operator) on an n-dimensional real or complex
pseudo-Riemannian manifold is second order superintegrable if there are
2n−1 second order differential operators (expressed in local coordinates xs),
Lj =

∑

k,ℓ a
kℓ
(j)∂

2
kℓ+ lower order terms, j = 1, · · · , 2n − 1 that commute with

H = L1 and such that the corresponding quadratic forms Lj =
∑

k,ℓ a
kℓ
(j)pkpℓ

are functionally independent on an open set in the classical 2n dimensional
phase space. In general, the potential V and the corresponding potential
terms in the symmetry operators Lj need not be fixed but can range over
a vector space of potentials. Suppose the pseudo-Riemannian space is con-
formally flat and the xs are Cartesian-like coordinates with respect to which
the metric tensor takes the diagonal form gkℓ = δkℓ/λ(x). The potential is
nondegenerate if it is the general solution of a system of the form

Vjj − V11 =
n
∑

ℓ=1

Ajj,ℓ(x)Vℓ, j = 2, · · · , n, (13)

Vkj =
n
∑

ℓ=1

Akj,ℓ(x)Vℓ, 1 ≤ k < j ≤ n,

where all of the integrability conditions for this system of partial differen-
tial equations are identically satisfied, [8, 9]. (Here Vj = ∂jV , etc. and
the Akj,ℓ are analytic in an open set of the n dimensional space with co-
ordinates x.) In this case there is an n + 2 dimensional solution space of
nondegenerate potentials V that can be parametrized by choosing the values
V (x0), V11(x0), Vℓ(x0), ℓ = 1, · · · , n at some fixed point x0. One ordinarily
refers to these nondegenerate potentials as n + 1- parameter, neglecting the
trivial constant that can be added to any potential. Equations (13) always
arise from the Bertrand-Darboux equations for the potential of a superinte-
grable systems such that the 2n− 1 symmetries are linearly independent at
a point [9], but in general the integrabilty conditions are not satisfied iden-
tically so that the space of solutions V has dimension < n + 2. Thus the
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nondegenerate potentials are those with the maximum number of parameters
possible.

Classification of the possible superintegrable systems with nondegenerate
potentials in complex Euclidean n-space is a very difficult task that has been
carried out only for n = 2, with significant results for n = 3, [8, 10]. How-
ever, there is an important subclass of such systems that can be constructed
for all n ≥ 2, based on their relationship to variable separation in generic
Jacobi elliptic coordinates. The prototype superintegrable system which is
nondegenerate in n dimensional flat space has the Hamiltonian [22]

H =
n
∑

i=1

(∂2
i + αx2

i +
βi

x2
i

) + δ, ∂i = ∂xi
. (14)

The system HΨ = EΨ is superintegrable with nondegenerate potential and
a basis of n(n + 1)/2 second order symmetry operators given by

Pi = ∂2
i + αx2

i +
βi

x2
i

, Jij = (xi∂j − xj∂i)
2 + βi

x2
j

x2
i

+ βj
x2

i

x2
j

, i 6= j.

Although there appear to be “too many” symmetry operators, all are func-
tionally dependent on a subset of 2n − 1 functionally independent symme-
tries. A crucial observation is that the corresponding equation HΨ = EΨ
admits multiplicative separation in n generic elliptical coordinates x2

i =
c2Πn

j=1(uj − ei)/Πk 6=i(ek − ei), simultaneously for all values of the parame-
ters with ei 6= ej if i 6= j and i, j = 1, · · · , n. If we were dealing with real Eu-
clidean space then we could assume that the inequalities e1 < e2 < · · · < en

and e1 < u1 < e2 < · · · < en < un hold. Thus the equation is multiseparable
and separates in a continuum of elliptic coordinate systems (and in many
others besides). The n commuting symmetries characterizing a fixed elliptic
separable system are polynomial functions of the ei, and requiring separation
for all ei simultaneously sweeps out the full n(n + 1)/2 space of symmetries
and uniquely determines the nondegenerate potential. The infinitesimal dis-
tance in Jacobi elliptical coordinates uj has the form

ds2 = −c
2

4

n
∑

i=1

Πj 6=i(ui − uj)

P (ui)
du2

i , (15)

where P (λ) = Πn
k=1(λ − ek). However, it is well known that (15) is a flat

space metric for any polynomial P (λ) of order ≤ n and that each choice of
such a P (λ) defines an elliptic type multiplicative separable solution of the
Laplace - Beltrami eigenvalue problem (with constant potential) in complex
Euclidean n-space, [24]. The distinct cases are labeled by the degree of the
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polynomial and the multiplicities of its distinct roots. If for each distinct
case we determine the most general potential that admits separation for all
ei compatible with the multiplicity structure of the roots, we obtain a unique
superintegrable system with nondegenerate potential and n(n+ 1)/2 second
order symmetries, [20, 10]. These are the generic complex superintegrable
systems. (Thus, for n = 3 there are 7 distinct cases for −1

4
P (λ):

(λ− e1)(λ− e2)(λ− e3), (λ− e1)(λ− e2)
2, (λ− e1)

3,

(λ− e1)(λ− e2), (λ− e1)
2, (λ− e1), 1,

where ei 6= ej for i 6= j. The first case corresponds to Jacobi elliptic coor-
dinates.) The number of distinct generic superintegrable systems for each
integer n ≥ 2 is

n
∑

j=0

p(j),

where p(j) is the number of integer partitions of j, given by the Euler gen-
erating function

1
∏∞

k=1(1 − tk)
=

∞
∑

j=0

p(j)tj .

All of the generic separable systems, their potentials and their defining
symmetries can be obtained from the basic Jacobi elliptic system in n di-
mensions by a complicated but well defined set of limit processes [20, 10].
Although we cannot write down master canonical expressions for all such
generic systems in Cartesian coordinates, it is easy to take these limits and
write down a master equation for the separated ordinary differential equa-
tions in the elliptic coordinates, ui. The separation equation for each of the
coordinates x = ui is essentially the same:

√

P (x)
d

dx
(
√

P (x)
dF

dx
)+ (an+p0

xn+p0 + · · ·+anx
n + ân−1x

n−1 + · · ·+ â0 (16)

+
b
(1)
1

(x− e1)
+

b
(1)
2

(x− e1)2
+ · · · + b(1)p1

(x− e1)p1

+ · · ·+ b
(r)
1

(x− er)
+

b
(r)
2

(x− er)2
+ · · ·

+
b(r)pr

(x− er)pr

)F = 0, P (x) = −4(x− e1)
p1 · · · (x− er)

pr (17)

and p0 + p1 + · · · + pr = n. Here the n constants âs, s = 0, · · · , n − 1
are the separation constants for the superintegrable system in these elliptic
coordinates. In particular, E = ân−1. The other n + 1 constants depend
on the n + 1 parameters in the potential and can be assigned arbitrarily by
specifying the appropriate potential.

11



First we look for explicit solutions of the single equation (16), ignoring the
fact that it is a separation equation for a superintegrable system. To obtain
polynomials, we perform a gauge transformation and look for solutions of
the form

Ψ = exp



ℓ1x+ ℓ2x
2 + · · ·+ ℓp0+1x

p0+1 +
c
(1)
1

(x− e1)
+

c
(1)
2

(x− e1)2
+ · · ·+

c
(1)
p1−1

(x− ep1
)p1−1

+ · · ·+ c
(r)
1

(x− er)
+

c
(r)
2

(x− er)2
+ · · · + c

(r)
pr−1

(x− er)pr−1





×Πr
t=1(x− et)

qtΠs
i=1(x− θi) = f(x)Πs

i=1(x− θi) = f(x)Φ(x). (18)

We require that the differential equation satisfied by Φ(x) is of the form

(rn−p0
xn−p0 + · · ·+r0)

d2Φ

dx2
+(snx

n+ · · ·+s0)
dΦ

dx
+(tn−1x

n−1+t0)Φ = 0. (19)

This can be achieved by choosing values for an+p0
, · · · , an to make the

coefficients of powers of x (xi, i = n + p0, · · · , n) zero in the expression for
the polynomial multiplying Φ in (19). Similarly by choosing the coefficients

b
(J)
j j = 1, · · · , pJ all singular terms in this equation can be removed. Now,

polynomial solutions of (19) can be sought and there are just enough con-
ditions to determine ân−1, · · · , â0 and θi, i = 1, · · · , s, in terms of a solution
Φ = Πs

i=1(x− θi). We will not write down these equations for the separation
constants in the general case, but note that they exist. The zeros θi of these
polynomials satisfy relations of the form

∑

j 6=i

1

θi − θj
+ ℓ1θi + 2ℓ2θ

2
i + · · ·+ (p0 + 1)ℓp0+1θ

p0

i +
1
4
p1 + q1

(θi − e1)
− c

(1)
1

(θi − e1)2

+
(p1 − 1)c

(1)
p1−1

(θi − e1)p1

· · · +
1
4
pr + qr

(θi − er)
− c(1)r

(θi − er)2
+ · · ·+ (pr − 1)c

(r)
pr−1

(θi − er)pr

= 0.

This is easy to see from the ansatz (18). Indeed if we evaluate the differential
equation using (18) at x = θi, these equations are readily obtained.

Next we relate these finite solutions to the superintegrable system in n
dimensional Euclidean space from which they are obtained by separation of
variables. To begin this process we first label Cartesian type coordinates
by yJ

j , j = 1, · · · , pJ , J = 0, · · · , r. In terms of the separable coordinates
x = u1, · · · , un the Cartesian type coordinates are specified by the relations
[25, 20]

y0
j =

1

j!
(
∂

∂ǫ
)j

[

(ǫu1 − 1) · · · (ǫun − 1)

(1 − ǫe1)p1 · · · (1 − ǫer)pr

] 1

2

|ǫ=0 .
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For coordinates corresponding to yK
k , k = 1, · · · , pK and K 6= 0 we choose

yK
k =

1

(k − 1)!
(
∂

∂eK
)k−1

[

(u1 − eK) · · · (un − eK)

ΠJ 6=K(eK − eJ)pJ

] 1

2

.

These coordinates can be identified with the standard Cartesian coordinates
via the quadratic form

∑

s+t=p0+1

y0
sy

0
t +

r
∑

J=1

∑

s+t=pJ

yJ
s y

J
t = x2

1 + · · · .+ x2
n.

Indeed if we label the Cartesian coordinates by xJ
j , j = 1, · · · , pJ , J = 0, · · · , r

then we can make the choices

yJ
j =

1√
2
(xJ

j + ixJ
2m+1−j), yJ

j+m =
1√
2
(xJ

j − ixJ
2m+1−j)

where J = 2m, j = 1, · · · , m, and

yJ
j =

1√
2
(xJ

j + ixJ
2m+2−j), yJ

j+m+1 =
1√
2
(xJ

j − ixJ
2m+2−j), yJ

m = xJ
m+1

where J = 2m+ 1, j = 1, · · ·m. The infinitesimal distance is given by

ds2 =
r
∑

I=0

pI
∑

i=1

(dxI
i )

2 =
n
∑

i=1

Πj 6=i(ui − uj)

P (ui)
du2

i .

If we take the equations (17) and allow x to have the values u1, · · · , un

and F = f(u1, .., un) then we can calculate each of the expressions âj, j =
n−1, · · · , 0 in terms of the general coordinates yI

i . In permitting x to take on
these values we are identifying the resulting ordinary differential equations as
the separation equations of a separable Schrödinger equation with potential
in n dimensions. To do this calculation we need to make use of the symmetric
functions Sj, j = 1, · · · , n, defined by the expressions

Si
0 = 1, Si

1 = Si
1[u1, · · · , ui−1, ui+1 · · · , un] =

n
∑

j=1

uj, j 6= i,

Si
2 = Si

2[u1, · · · , ui−1, ui+1 · · ·un] =
n
∑

j 6=k

ukuj + · · · , k, j 6= i,

· · · , Si
n−1 = Si

n−1[u1, · · · , ui−1, ui+1 · · · , un] = Πn
j=1uj, j 6= i.

13



Previously we considered âj , j = 0, · · · , n − 1 as an eigenvalue. Now we
consider it as the symmetry operator with this eigenvalue.) Solving the n
equations of type (17) we find

âj =
n
∑

i=1

1

Πk 6=i(ui − uk)
Si

n−1−jPi

where

Pi =
√

P (ui)
d

dui

(
√

P (ui)
d

dui

) + an+p0
un+p0

i + · · ·+ anu
n
i +

b
(1)
1

(ui − e1)
+

b
(1)
2

(ui − e1)2
+ · · · + b(1)p

(ui − e1)p1

+ · · ·+ b
(r)
1

(ui − er)
+

b
(r)
2

(ui − er)2

+ · · ·+ b(r)p

(ui − er)pr

.

If we look for an eigenfunction F of the form

F = Πn
j=1f(uj)Π

s
r=1(uj − θr)

then the expression for the second part of this viz Πn
j=1Π

s
r=1(uj − θr) can be

written in terms of the yI
i via the identity

S0
0λ

p0−1 + S0
1λ

p0−2 + · · ·+ S0
p0−1 +

r
∑

J=1

pJ
∑

j=1

SJ
pJ+2−j

(λ− eJ)j
=

Πn
j=1(uj − λ)

P (λ)

where SJ
j =

∑

ℓ+k=s y
J
ℓ y

J
k .

The product function Πn
j=1f(uj) can be written in terms of the yI

i variables
via our implicit evaluation of symmetric functions Sj [u1, · · · , un] in terms
of the yI

i . We can determine that ân−1 has the form of an n dimensional
Laplacian plus a potential which is rational in the coordinates yI

i .
We now take a closer look at H = ân−1. The differential operator part

of this term can be identified with the Laplacian of the operator associated
with the metric ds2. The various parts of the potential can be associated
with the calculation of Stäckel multiplier terms of the form

n
∑

i=1

1

Πk 6=i(ui − uk)
Qi

where Qi = us
i or Qi(ui − eJ )−t corresponding to the coefficients as or b

(J)
t

of (17). We can calculate a basis for these Stäckel multipliers in the yI
i

14



coordinates. For Stäckel multipliers with terms of the form Qi = us
i we

observe the identity

Πr
I=1(1 − ǫeI)

Πn
i=1(ǫui − 1)

=
n
∑

i=1

up0−1
i Πr

J=1(ui − eJ)pJ

Πj 6=i(uj − ui)(ǫui − 1)
.

From this identity we can calculate combinations of Stäckel multipliers of the
form with Q = us

i and s > n− 1. Indeed we differentiate according to

(
∂

∂ǫ
)t

[

Πr
I=1(1 − ǫeI)

Πn
i=1(ǫui − 1)

] ∣

∣

∣

∣

∣

ǫ=0 =
n
∑

i=1

(−1)tt!
up0+t−1

i Πr
J=1(ui − eJ)pJ

Πj 6=i(uj − ui)(ǫui − 1)

∣

∣

∣

∣

∣

ǫ=0

where 1 ≤ t ≤ p0 + 1.
From this formula we see that we can we can construct Stäckel multipliers

in which the Qi are polynomials in ui where the maximal order is n+ t− 1.
Further, we can explicitly calculate these in terms of the coordinates y0

i . This
can be seen from the formulas for S0

s . If we define

1

(ỹ0
0)

2
=

Πr
I=1(1 − ǫeI)

Πn
i=1(ǫui − 1)

=
n
∑

i=1

up0−1
i Πr

J=1(ui − eJ)pJ

Πj 6=i(uj − ui)(ǫui − 1)

then the terms that we need for our Stäckel multipliers are

Ỹ 0
t = (

∂

∂ǫ
)t

[

1

(ỹ0
0)

2

]

|ǫ=0, t = 1, · · · , p0 + 1 ,

where we can use the recurrence formula ∂/∂ǫ(ỹ0
j ) = (j + 1)ỹ0

j+1 and, once
all the calculations are done, we put ǫ→ 0 and then ỹ0

j → y0
j .

In this way we can construct basis elements for those parts of our potential
which are entirely polynomial in the ui variables. For the parts that are
singular in these variables we use the identity

ΠJ 6=K(eK − eJ )pJ

Πn
i=1(ui − eK)

=
n
∑

i=1

ΠJ 6=K(ui − eJ)pJ

(ui − eK)Πj 6=i(ui − uj)
.

The right hand side of this expression is in the form of a Stäckel multiplier
with Qi = ΠJ 6=K(ui − eJ)p/(ui − eK) which can be written as a polynomial
in ui plus a term 1/(ui − eK). We see immediately that Stäckel multipliers
containing terms of the form 1/(ui − ek)

t where t ≥ 2 can be generated
by differentiating this identity t − 1 times with respect to eK . Indeed we
recognize that

ΠJ 6=K(eK − eJ)pJ

Πn
i=1(ui − eK)

=
1

(yK
1 )2

.
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The additional terms that arise in the potential and complete our basis
have the form

Y K
t = (

∂

∂ek
)t

[

1

(yK
1 )2

]

, t = 0, · · · , pK − 1.

These expressions can be determined in terms of the yK
s via the recursion

relation
∂

∂eK
(yK

k ) = (k + 1)yK
k+1.

Indeed we could establish the eigenvalues of the operators âj by acting on
the functions Φ(u1, · · · , un) when expressed in terms of a basis of symmetric
polynomials in the variables ui. In general these expressions are of a different
form than those obtained from the single separated equation, and are easier
to calculate.

This procedure is best illustrated by a specific example. If we choose
P (x) = (x− 1)2x and n = 4 then the corresponding separated equation is

{
√

P (λ)
d

dλ
(
√

P (λ)
d

dλ
(20)

+(a5λ
5 + a4λ

4 + â3λ
3 + â2λ

2 + â1λ+ â0 +
b1

λ− 1
+

b2
(λ− 1)2

+
c1
λ

)}f(λ) = 0.

If we consider this equation in isolation then we can find polynomial solutions
as follows. Making the assignments

a5 = −4ℓ24, a4 = 4ℓ4(2ℓ4−ℓ5), b1 = ℓ6(−ℓ6+2p−1), b2 = −ℓ26, c1 = −1

2
q(2q−1),

we can look for solutions of the form

f(λ) = exp(ℓ4λ
2 + ℓ5λ+

ℓ6
λ− 1

)(λ− 1)pλqΠs
r=1(λ− θr)

where the θj satisfy the relations

4ℓ5 + 8ℓ4θi +
2(2p+ 1)

θi − 1
− 6ℓ6

(θi − 1)2
+

4q + 1

θi
−
∑

j 6=i

4

θi − θj
= 0.

The values of the constants âj , j = 0, · · · , 3 can be represented in terms of
the θi via the formulas

â3 = −ℓ25 − 4ℓ24 + 8ℓ4ℓ5 − [4(p+ q + s) + 5]ℓ4,

â2 = −2ℓ25 − 4ℓ4ℓ5 + 4ℓ4ℓ6 − [2(p+ q + s) +
3

2
]ℓ5 + 4(p+ 2q + 2s+ 2)ℓ4 − 4ℓ4

s
∑

i=1

θi,
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â1 = −ℓ25 + 2ℓ5ℓ6 + 2[p+ 1 + 2q + 2s]ℓ5 − [4s+ 4q + 3]ℓ4 − (p+ q)(p+ q +
1

2
)

− s(s+
1

2
) − 2(p+ q)s+ (−2ℓ5 + 8ℓ4)

s
∑

i=1

θi − 4ℓ4
s
∑

i=1

θ2
i ,

â0 = −(2q + 2s+
1

2
)ℓ5 + (2p+ 2q + 2s− 1

2
)ℓ6 + [4ℓ5 − 4ℓ4 − 2p− 2q

− 1

2
(4s− 1))

s
∑

i=1

θi + (−2ℓ5 + 8ℓ4)
s
∑

i=1

θ2
i − 4ℓ4

s
∑

i=1

θ3
i .

We now show the superintegrable context of these observations. Consider
the coordinates in four dimensions given by the formulas

y2
1 = −4(s− 1)(t− 1)(u− 1)(v − 1), y4 = −2(s + t+ u+ v − 2),

2y1y2 = 4(3−2(s+t+u+v)+(st+su+sv+tu+tv+uv)−stuv), y2
3 = −4stuv,

where we identify four dimensional Cartesian coordinates as

y1 =
1√
2
(x+ iy), y2 =

1√
2
(x− iy), y3 = z, y4 = t.

The appropriate superintegrable system in four dimensions is

H = ∆ +
α

y2
1

+
βy2

y3
1

+
γ

y2
3

+ δ(4y2
4 + 2y1y2 + y2

3) + µy4

where ∆ = ∂2
x + ∂2

y + ∂2
z + ∂2

t . In these coordinates the separation equations
for HΨ = EΨ have exactly the form (20) with the identifications

α = i4(1 − 2p), β = −8ℓ26, γ = −2q(2q − 1), δ = −ℓ24, µ = 4ℓ4ℓ5,

and identification of â3 with E. Indeed, if we use coordinates y1, y2, y3 and
y4 in the Schrödinger equation ∆Ψ = EΨ and employ the relationship

2y1y2

L− 1
+

y2
1

(L− 1)2
+
y2

3

L
− 2y4 − L = −(u− L)(v − L)(s− L)(t− L)

L(L− 1)2

we can find finite solutions of the form

Ψ = exp(
1

2
ℓ4(2y1y2 + y2

3 + 2y2
4) − ℓ5y4 + 2iℓ6

y2

y1
)y

p/2
1 y

q/2
3 ×

Πs
r=1(

2y1y2

θr − 1
+

y2
1

(θr − 1)2
+
y2

3

θr
− 2y4 − θr)
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where the same equations for the zeros are satisfied. This method of deriva-
tion is in complete analogy with that used by Niven [21]. The â2, â1, â0

are then separation constants. A useful feature of this observation is the
availability of direct algebraic methods to determine the eigenvalues of these
parameters. Indeed in this case if we write (in operator form)

âi =
1

(s− t)(s− u)(s− v)
P i

s+
1

(t− u)(t− s)(t− v)
P i

t +
1

(u− t)(u− s)(u− v)
P i

u

+
1

(v − t)(v − u)(v − s)
P i

v

then typically

P 3
s =

√

P (s)
∂

∂s
(
√

P (s)
∂

∂s
) + (a1s

5 + a2s
4 +

b1
s− 1

+
b2

(s− 1)2
+
c1
s

),

P 4
s = (t+ u+ v)P 3

s , P 5
s = (tu+ tv + uv)P 3

s , P 6
s = tuvP 3

s .

Since the products of separated eigenfunctions are symmetric in s, t, u, v
we see that eigenvalues of âi can be obtained by acting on a basis of symmetric
functions. We consider the symmetric functions

S0 = 1, S1 = s+ t+ u+ v, S2 = st+ su+ sv + tu+ tv + uv,

S3 = stu+ tuv + suv + stv, S4 = stuv.

We can, as a particular example, look for solutions of the form

Ψ = exp(ℓ4(s
2 + t2 + u2 + v2) + ℓ5(s+ t+ u+ v) + ℓ6(

1

s− 1
+

1

t− 1
+

1

u− 1

+
1

v − 1
)[(s− 1)(t− 1)(u− 1)(v − 1)]p(stuv)q[B0S0 +B1S1 +B2S2 +B3S3].

If we look for eigenvalues of âi, i = 0, · · · , 3 we obtain the determanental
equations for the corresponding eigenvalues ai. In the simplified case for
which ℓ4 = ℓ5 = ℓ6 = p = q = 1 we find

(a3−18)(a3−14)4 = 0, (2a2−33)(4a4
2−1344a3

2+42472a2
2−596992a2+3141805) = 0,

(a1 − 3)(4a4
1 − 92a3

1 + 1005a2
1 − 6318a1 + 15641) =

(2a0 − 11)(4a4
0 − 120a3

0 + 1309a2
0 − 6321a0 + 11723) = 0.
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3 Polynomial solutions from superintegrable

systems on the complex n sphere.

Applications of superintegrable systems on the complex n-sphere proceed
in analogy with the approach in complex Euclidean n-space. There is an
important subclass of such systems with nondegenerate potentials that can
be constructed for all n ≥ 2, based on their relationship to variable separation
in generic Jacobi elliptic coordinates. The prototype superintegrable system
which is nondegenerate on the n dimensional sphere has the Hamiltonian

H =
n
∑

i=0

(∂2
i +

βi

s2
i

) + δ, ∂i = ∂si
, (21)

where
∑n

i=0 s
2
i = 1. The system HΨ = EΨ has a basis of n(n + 1)/2 second

order symmetry operators given by

Mij = Mji = (si∂j − sj∂i)
2 + βi

s2
j

s2
i

+ βj
s2

i

s2
j

, i 6= j.

Again, all are dependent on a subset of 2n − 1 functionally independent
symmetries. The corresponding equation HΨ = EΨ admits multiplicative
separation in the generic n dimensional elliptical coordinates.

s2
i = Πn

j=1(uj − ei)/Πk 6=i(ek − ei)

simultaneously for all values of the parameters with ei 6= ek if i 6= k and i, k =
0, · · · , n. If we were dealing with the real sphere then we could assume that
the inequalities e1 < e2 < · · · < en and e0 < u1 < e1 < · · · < en−1 < un < en

hold. Thus the equation is multiseparable and separates in a continuum of
elliptic coordinate systems (and in others besides).

The infinitesimal distance in Jacobi elliptical coordinates uj has the form

ds2 =
n
∑

i=1

Πj 6=i(ui − uj)

P (ui)
du2

i , (22)

where P (λ) = −4Πn
k=0(λ − ek). Here ej 6= ek for j 6= k. However, it is

well known that (22) is a metric on the sphere for any polynomial P (λ)
of order n + 1 and that each choice of such a P (λ) defines an elliptic type
multiplicative separable solution of the Laplace - Beltrami eigenvalue problem
(with constant potential) on the complex n-sphere. The distinct cases are
labeled by the multiplicities of the n + 1 roots. If for each distinct case
we determine the most general potential that admits separation for all ej
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compatible with the multiplicity structure of the roots, we determine a unique
superintegrable system with nondegenerate potential and n(n+ 1)/2 second
order symmetries, [25, 10]. These are the generic superintegrable systems on
the sphere. (Thus, for n = 3 there are 5 distinct cases for −1

4
P (λ):

(λ− e0)(λ− e1)(λ− e2)(λ− e3), (λ− e0)(λ− e1)(λ− e2)
2, (λ− e0)

2(λ− e1)
2,

(λ− e0)(λ− e1)
3, (λ− e0)

4,

where ej 6= ek for j 6= k. The first case corresponds to Jacobi elliptic co-
ordinates.) The number of distinct generic superintegrable systems for each
integer n ≥ 2 is p(n+ 1) where p(j) is the number of integer partitions of j.

As in the Euclidean case, all of the generic separable systems, their po-
tentials and their defining symmetries can be obtained from the basic Jacobi
elliptic system in n dimensions by a complicated but well defined set of limit
processes [25]. Although we cannot write down master canonical expressions
for all such generic systems in Cartesian-like coordinates sk, it is easy to take
these limits and write down a master equation for the separated ordinary
differential equations in the elliptic coordinates, ui. The separation equation
for each of the coordinates x = ui is essentially of the same form:

√

P (x)
d

dx
(
√

P (x)
dF

dx
) +

(

an−1x
n−1 + · · ·+ â0 (23)

b
(1)
1

(x− e1)
+

b
(1)
2

(x− e1)2
+ · · · + b(1)p1

(x− e1)p1

+ · · ·+ b
(r)
1

(x− er)
+

b
(r)
2

(x− er)2

+ · · ·+ b(r)pr

(x− er)pr

)

F = 0

where P (x) = −4(x− e1)
p1 · · · (x− er)

pr and p1 + · · ·+ pr = n+1, given that
there are now n variables u1, · · · , un. Much of what has already been done
for Euclidean space coordinates carries over, with the essential difference
that there is no singularity at infinity. If we look for finite solutions we can
proceed as before. We seek solutions of the form

Ψ = exp





c
(1)
1

(x− e1)
+

c
(1)
2

(x− e1)2
+ · · · + c

(1)
p1−1

(x− ep1
)p1−1

+ · · ·

+
c
(r)
1

(x− er)
+

c
(r)
2

(x− er)2
+ · · · + c

(r)
pr−1

(x− er)pr−1



Πr
t=1(x− et)

qtΠs
i=1(x− θi)

= g(x)Πs
i=1(x− θi)
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for which the zeros of the polynomials satisfy

0 =
∑

j 6=i

1

θi − θj

+ · · · +
1
4
p1 + q1

(θi − e1)
− c

(1)
1

(θi − e1)2
+ · · ·

+
(p1 − 1)cp1−1

(θi − e1)p1

· · · +
1
4
pr + qr

(θi − er)
− c(1)r

(θi − er)2
+ · · ·+ (pr − 1)cpr−1

(θi − er)pr

To relate these finite solutions to superintegrable systems on the sphere
we introduce a set of coordinates that we again call yK

k , k = 1, · · · , pk, K =
1, · · · , r and which are given by the formulas

yK
k =

1

(k − 1)!
(
∂

∂eK
)k−1

[

(u1 − eK) · · · (un − eK)

ΠJ 6=K(eK − eJ)pJ

] 1

2

.

These coordinates can be identified with the usual coordinates on a sphere
via the relation

r
∑

K=1

∑

s+t=pK

yK
s y

K
t = 1.

This is done via the assignment

yJ
j =

1√
2
(sJ

j +isJ
2m+1−j), y

J
j+m =

1√
2
(sJ

j −isJ
2m+1−j), J = 2m, j = 1, · · · , m,

yJ
j =

1√
2
(sJ

j + isJ
2m+2−j), y

J
j+m+1 =

1√
2
(sJ

j − isJ
2m+2−j), yJ

m = sJ
m+1

where
r
∑

K=1

pk
∑

k=1

(sK
k )2 = 1

The infinitesimal distance is given by

ds2 =
r
∑

K=1

pK
∑

k=1

(dsK
k )2 =

n
∑

i=1

Πj 6=i(ui − uj)

P (ui)
du2

i .

Solving the n equations of type (23), we find the operator expressions

âj =
n
∑

i=1

1

Πk 6=i(ui − uk)
Si

n−1−jPi

where

Pi =
√

P (ui)
d

dui

(
√

P (ui)
d

dui

) +





b
(1)
1

(ui − e1)
+

b
(1)
2

(ui − e1)2
+ · · · + b(1)p

(ui − e1)p1

+ · · · + b
(r)
1

(ui − er)
+

b
(r)
2

(ui − er)2
+ · · · + b(r)p

(ui − er)pr



 .
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We look for an eigenfunction of the form

F = Πn
j=1g(uj)Π

s
r=1(uj − θr).

Then the second part of this expression viz Πn
j=1Π

s
r=1(uj −θr) can be written

in terms of the yI
i via the identity

r
∑

J=1

pJ
∑

j=1

SJ
pJ+2−j

(λ− eJ)j
=

Πn
j=1(uj − λ)

P (λ)
.

The product function Πn
j=1g(uj) can be written in terms of the yI

i variables
via our implicit evaluation of symmetric functions Sj [u1, · · · , un] in terms
of the yI

i . We can determine that ân−1 has the form of an n dimensional
Laplacian plus a potential which is rational in the coordinates yI

i . If we look
at H = ân−1, we can identify the differential operator part with the Laplacian
of the operator associated with the metric ds2. The various parts associated
with the potential require the calculation of the Stäckel multiplier terms of
the form

n
∑

i=1

1

Πk 6=i(ui − uk)
Qi

where Qi = (ui − eJ)−t corresponding to the coefficients b
(J)
t of (23). We

can readily calculate a basis for these Stäckel multipliers in terms of the yI
i

coordinates. For the parts that are singular in these variables we proceed as
previously. We first observe the identity

ΠJ 6=K(eK − eJ )pJ

Πn
i=1(ui − eK)

=
n
∑

i=1

ΠJ 6=K(ui − eJ)pJ

(ui − eK)Πj 6=i(ui − uj)
.

Note that the right hand side of this expression is in the form of a Stäckel
multiplier with Qi = ΠJ 6=K(ui − eJ)p/(ui − eK) which can be written as a
polynomial in ui plus a term 1/(ui − eK). We see immediately that Stäckel
multipliers containing terms of the form 1/(ui − ek)

t where t ≥ 2 can be
generated by differentiating this identity t − 1 times with respect to eK .
Indeed,

ΠJ 6=K(eK − eJ)pJ

Πn
i=1(ui − eK)

=
1

(yK
1 )2

.

The additional terms that arise in the potential, and complete our basis, have
the form

Y K
t = (

∂

∂ek

)t

[

1

(yK
1 )2

]

, t = 0, · · · , pK − 1.
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These expressions can be determined in terms of the yK
s via the recursion

relation
∂

∂eK
(yK

k ) = (k + 1)yK
k+1.

We could now establish the eigenvalues of the operators âj by acting
on the functions Φ(u1, · · · , un) expressed in terms of a basis of symmetric
polynomials in the variables ui. The observations we have made are best
illustrated by a specific example. If we choose P (x) = (x − 1)2x and n = 2
then the ordinary differential equation is

{
√

P (λ)
d

dλ
(
√

P (λ)
d

dλ
+ (â1λ+ â0 +

b1
λ− 1

+
b2

(λ− 1)2
+
c1
λ

)}f(λ) = 0. (24)

If we consider this equation in isolation then we can find polynomial solutions
as follows. We make the assignments

c1 = −p(p +
1

2
) b1 = −ℓ(ℓ− 1) + 2ℓq, b2 = −ℓ2,

and look for solutions of the form

f(λ) = exp(
ℓ

λ− 1
)(λ− 1)qλpΠs

r=1(λ− θr)

where the θj satisfy the relations

2(3 + 2q)

θi − 1
− ℓ2

(θi − 1)2
+

3 + 4q

θi
+
∑

j 6=i

4

θi − θj
= 0.

The values of the constants âj , j = 0, 1, can be represented in terms of the
θi via the formulas

â1 = −1

2
(p+ q + s+ 2)(2p+ 2q + 2s+ 3),

â0 = 2s(2p+ q + s + 2) + ℓ(2p+ 2q + 2s+
5

2
) + 2p(p+ q) + 4p+

3

2
q + 2

+{−2(p+ q) − 1

2
(5 + 4s)}

s
∑

r=1

θr.

To display the superintegrable context of these observations we employ
the coordinates on the 2-sphere given by the formulas

s2
1 + s2

2 = 1 − uv, (s1 + is2)
2 = (u− 1)(v − 1), s2

3 = uv,
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and consider the superintegrable system [10]

H = p2
s1

+ p2
s2

+ p2
s3

+ α
1

(s1 + is2)2
+ β

s1 − is2

(s1 + is2)3
+
γ

s2
3

.

In these coordinates the separation equations for HΨ = EΨ have exactly the
form (24) with

α = ℓ(2q − 1), β = −2ℓ2, γ = −p(p+
1

2
)

and the identification of â1 with E. Indeed, using coordinates y1, y2 and y3

in the Schrödinger equation ∆Ψ = EΨ and the relationship

2(s2
1 + s2

2)

L− 1
+

(s1 + is2)
2

(L− 1)2
+
s2
3

L
=

(u− L)(v − L)

L(L− 1)2

we can find finite solutions of the form

Ψ = exp[−2ℓ(
s1 + is2

s1 − is2

)]s
p/2
3 (s1 + is2)

q/2Πs
r=1(

2(s2
1 + s2

2)

θr − 1
+

(s1 + is2)
2

(θr − 1)2
+
s2
3

θr

)

where the same equations for the zeros are satisfied. This method of deriva-
tion is in complete analogy with that used by Niven. The â1, â0 are separation
constants. A useful feature of this observation is the availability of direct al-
gebraic methods to determine the eigenvalues of these parameters. We write

â1 =
1

(u− v)
[Pu − Pv], â0 =

1

(u− v)
[vPu − uPv]

where

Pλ =
√

P (λ)
∂

∂λ
(
√

P (λ)} ∂
∂λ

) + (a1λ+ a0 +
b1

s− 1
+

b2
(s− 1)2

+
c1
s

).

We can now demonstrate that eigenvalues of âi can be obtained by acting
on a basis of symmetric functions. As a particular example, if we look for
solutions of the form

Ψ = exp(
ℓ

u− 1
+

ℓ

v − 1
)[(u− 1)(v − 1)]q(uv)p(k1uv + k2(u+ v) + k3),

we find that the corresponding eigenvalues of a1 and a0 are determined by

(2a1 + 45)2(a1 + 14) = 0, (a0 − 18)(4a2
0 − 200a0 + 2423) = 0,

where we have made the simplifying assumptions p = 1, q = 1, ℓ = 1.
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Note further that if we perform a gauge transformation in the nonsepara-
ble Cartesian coordinates to try to find polynomial solutions in s2

1, s
2
2 we will

obtain exactly the same exponential phase factor as the product of the phase
factors in u and in v. This means that the possible polynomial solutions in
s2
1, s

2
2 for a fixed energy eigenspace correspond exactly with the polynomial

solutions symmetric in u and v. The polynomial energy eigenspace is degen-
erate but the diagonalization of a0 breaks the degeneracy. For a dramatic
example of similar behavior on the n-sphere see [26].

4 Conclusion.

We have demonstrated for a large class of superintegrable potentials that
the method of separation of variables can be used to solve the corresponding
Schrödinger equation in a specific form of elliptical coordinates. In these co-
ordinates we have demonstrated that finite polynomial solutions are possible
up to multiplication by an explicit function. This provides a generalization
for the property of quasi-exact solvability as given by Ushveridze [12]. It also
consolidates further the close connection with classical separation of variables
concepts of families of polynomial solutions. In addition, the problem of find-
ing all the algebraic equations determining the separation parameters has its
natural place in the multivariable interpretation of these equations. The
very fact that these polynomial solutions arise from superintegrable systems
and that these systems have polynomial algebras associated with them im-
plies that there are relations among the various solutions of the Schrödinger
equation. This is a matter that we will pursue.
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