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The Theory of Orthogonal R-Separation
for Helmholtz Equations
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We develop the theory of orthogonal R-separation for the Helmholtz equation on
a pseudo-Riemannian manifold and show that it, and not ordinary variable
separation, is the natural analogy of additive separation for the Hamiltonian—Jacobi
equation. We provide a coordinate-free characterization of R-separation in terms of
commuting symmetry operators.

1. INTRODUCTION

Let { )’} be a local coordinate system on the pseudo-Riemannian manifold
V., The Helmholtz equation in these coordinates is

Ady(y) = Ey(y) (1.1)

where E is a nonzero constant and 4 is the Hamiltonian or Laplace—Beltrami
operator |1]

A= N a:(/g g"8). (1.2)
d=1

1
Vg

Here, &;=d,;, the metric on V, is

wi3

ds* =Y g dy'dy, g=det(g,) “
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and ), g%g,;=0;. Closely associated with (1.1) is the Hamilton-Jacobi
equation |2|

HoW)= > g'o,WoW=E (1.3)

=1

where H is the Hamiltonian function

H(p)= Y. &0} (1.4)

ij=1
Both A and H are defined independent of coordinates.

It is well known that there is a close association between additively
separable solutions of (1.3) in an appropriate orthogonal coordinate system
and multiplicatively separable solutions of (1.1). Indeed the famous
Robertson—-Eisenhart condition [2], R;; =0, i + j, is just the requirement that
a separable system for (1.3) also separate (1.1). In this paper we will develop
a theory of orthogonal R-separation for the Helmholtz equation, that is,
separation up to a fixed factor:

MﬂZR@HJWWf} (1.5)

(Ordinary separation corresponds to R=1 and trivial R-separation to
d,;LogR=0 for i#j.) We will show that, despite the elegance of the
Robertson condition, 1t 1s R-separation rather than the more restricted
ordinary separation that is the proper analog of separation for the Hamilton—
Jacobi equation. Also we will demonstrate that nontrivial R-separable
systems are abundant. The extension of cur methods to Helmholtz (or
Schrodinger) equations with potentials is straightforward.

In Section 2 we give a precise operational definition of orthogonal R-
separation and review the theory of ordinary separation for both the
Helmholtz and Hamilton—Jacobi equations. In Section 3 we introduce the
elementary concepts of self-adjoint and reduced self-adjoint form for second-
order differential operators that commute with 4. Section 4 is devoted to the
proof of our basic result, an intrinsic characterization of R-separable coor-
dinates for the Helmholtz equation which is in exact analogy to our previous
result for the Hamilton—Jacobi equation |3 ]. Briefly, we show that necessary
and sufficient conditions for orthogonal R-separation of (1.1) are the
existence of an n — l-dimensional family of commuting symmetry operators
for A4 which are in self-adjoint form and can be simultaneously diagonalized.
The coorinates can be computed from the simultaneous eigenforms. In
Section 5§ we provide some examples of nontrivial R-separation. Section 6 is
devoted to a short discussion of the significance of our results.
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All our considerations are local rather than global, although Theorem 3
clearly has global implications. Any function occurring in this paper is
assumed to be analytic.

2. STACKEL FORM AND R-SEPARATION

Let {x'} be an orthogonal coordinate system on the (local) pseudo-
Riemannian manifold V,. Then the metric in these coorainates takes the

form
"

ds*= Y H}(dx')’ (2.1)

f=1
and the Helmholtz equation becomes
I
— 3 6,(hH[ 5,y) = Ey (2.2)

i

Ay

where h=H, ..« H,. In order to explain the problem posed in Section 1 and
our method of solution we give here the construction to obtain R-separable
solutions

v(x)=R@) [] v (x) (23)

for (2.2) and derive condititions on the success of that construction. Let
[S“-{:::f )) be a Stdckel matrix, i.e., an n X n nonsingular matrix whose ith row
depends only on the variable x, and set S = det(S ;). Further let A, = —FE,
Aysen A, be complex parameters and define differential operators K,
J= Tty by

n

Ki=08;+;0,+m;+ 3 1,8,(x) (2.4)

=1

where [;, m; are functions of x' alone and ;=d,. We say that the
orthogonal coordinates {x'} are R-separable for the Helmholtz equation (2.2)
provided there exist functions g,(x) and R(x) (R # 0) such that

R'4R—-E= ) g(x)K,. (2:5)

j=1

(Explicitly,

1
R~ AR =—3 0/(hH[*8)+2 Y H;*(9;10g R) &, + R™'(4R) (2.6)

I
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as an operator.) If the coordinates are R-separable then the function w, (2.3).
is a solution of 4y = Ew whenever the w' satisfy the (ordinary differential)
separation equations

Ky¥=0, j=1..n (2.7)

J

It follows easily from (2.4), (2.5) that a necessary condition for R-separation
IS

gi(x)=S"/S (2.8)

where §’' is the (j, 1) minor of (S;); hence from (2.5), (2.6) the metric must
be in Stdackel form

H'=8"/S, j=l..n (2.9)

It is well known that the orthogonal coordinates {x'} permit (additive)
separation of the Hamilton—Jacobi equation
n
Yo H e Wi=E (2.10)
I

J=

that is, separation in the form W=7 A WY (x'), if and only if condition
(2.9) holds for some Stdckel matrix (S;;(x")) [2].

However, Stackel form is not sufficient for (product) R-separation of the
Helmholtz equation. In addition we must require equality of the coefficients
of ¢; and the zeroth-order terms on each side of (2.5):

fi+28,Log R = I(x") (2.11)
RAR) =) H; “m(x"). (2.12)

Here
[;=8,f=3d;Log(h/S). (2.13)

Solving for R from (2.11) and substituting this expression into (2.12) we find
that the separation conditions become

1
N HPH(f+ 4D = Hy i) (2.14)

= i

o

where the #i; are functions of x' alone. (Indeed, i, = —2m, + &,l. + 3I;.)

To express these conditions more simply we recall some results from
Ref. [4]. Given a metric ds® = Y  H; *(dx')* in Stdckel form, we say that the
function Q(x) is a Stdckel multiplier (for ds®) if the metric d§* = Qds’ is
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also in Stdckel form with respect to the coordinates {x’}. It can be shown
that Q is a Stdckel multiplier if and only if there exist functions y, = y(x’)
such that

o)=Y yy(x) Hj 2 (2.15)

J=1

Furthermore, necessary and sufficient conditions that Q be a Stackel
multiplier are

04,0—0,08,Log H; * —6,Q8; Log H; * =0, Jj#+k.  (2.16)

(Recall that necessary and sufficient conditions that ds® be in Stickel form
are [2]:

Iy Log Hi "+ ;Log H; 9y Log H; > — &; Log H; 6, Log H;*
—dyLog Hy*o;Log Hy*=0  j#k.) (2.17)

THEOREM 1. Necessary and sufficient conditions that the orthogonal
coordinates |x'} be R-separable for the Helmholtz equation

1 .ﬂ'-‘
?:\_ o(hH;>0;w)=Ey, h=H,---H

i=1

"

are:
(1) The metric ds* =" H:(dx')* is in Stdckel form.
(2) Y HXf;+3f7) is a Stiackel multiplier, where [, = ¢; Log(h/S)
and S is the determinant of the Stdackel matrix.

If these conditions are satisfied then

R=(S/W)" [ Lix") 2.18)

where the L, = L/(x') are arbitrary.

We say that the orthogonal coordinates {x'| are separable for the
Helmholtz equation provided they are R-separable with R = 1. Furthermore,
R-separable coordinates are frivially R-separable if R=]]"_, L,(x') and
(since coordinates are trivially R-separable if and only if they are separable)
we regard trivial R-separation as equivalent to ordinary separation.

Past stu f separation for (2.2) have focussed almost exclusively on
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ordinary separation. For R = 1 condition (2.12) is satisfied identically and
(2.11) becomes the Robertson condition [5]:

8, Log(h/S)=0,  i+#J. (2.19)

The Robertson condition appears to depend critically on the choice of the
Stackel matrix. However, Eisenhart (2| has shown that (2.19) is equivalent
to the requirement

R;.=0, i# (2.20)

£

where R;; is the Ricci tensor expressed in terms of the orthogonal coor-
dinates {x*}.

Let us suppose that {x*} R-separates the Helmholtz equation. Then
expanding the Stickel matrix in (2.4) on the ith column we obtain operators
A,, i=1,n, such that A, = A,y for an R-separated solution y:

S.f:'
i)

AI:_T_ (ﬂﬂ+dﬂ3+m+—6|f—f|+—|f !_§|)* (2.21)

It is convenient at this point to introduce the functions p!*’(x), where
SS=pE-% | SRS (2.22)

Then pj'’ =1 and it can be shown that |1, Appendix 13; 2]

805" = (p{* —pj¥) &; Log H; ", (2.23)
Thus we have
A=Y pPH Mo+ f;0,+¢&),  1<k<gn (2.24)
T
where
&=m+10,(fi— )+ 1) (2.25)

and, using (2.11), (2.12) and (2.22), it is not difficult to verify that
[AnAd=0, 1<i, k<n (2.26)

where [A,B|=AB — BA. We see that the A,, k> 2, form a commuting
family of symmetry operators for 4, i.e., they commute with 4 and with each
other. Furthermore, the separated solutions (2.2) are simultaneous eigen-
functions of the symmetry operators.

The above construction starts with an orthogonal separable coordinate
system {x'} and produces a commuting family of second-order symmetry
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operators {A,}. Not all families of n —1 commuting symmetry operators
correspond to variable separation. (See |6, p. 55| for a counterexample.) In
this paper we shall derive necessary and sufficient conditions on a
commutative family {A,} in order that it correspond to an orthogonal
separable coordinate system {x'} for (2.2) via the relations (2.24).

In Ref. [3] we solved the corresponding problem for the Hamilton—Jacobi
equation (2.10). In that case one utilizes the natural symplectic structure on
the cotangent bundle V, of V,. Corresponding to local coordinates {x'} on
V., we have coordinates {x', p;} on the 2n-dimensional space V.. The
Poisson bracket of two functions F(x’, p;), G(x/, p;) on V, is defined by

(F, G} =) (8,F8.,G—0d,Fd,G). (2.27)
!

Let H=),H; ’p; be the Hamiltonian corresponding to (2.10). If (x| is an
orthogonal separable coordinate system for the Hamilton-Jacobi equation
then there exists a Stiickel matrix (S;(x')) such that H, * is given by (2.9).
Furthermore, the quadratic forms 4, (4, = H),

A=) pi°H; °p;, k= 1l,..,n (2.28)

J

satisfy {4,,4,} =0, and when evaluated for p,=dJ, W with W a separable
solution of (2.8) they satisfy 4, = 4,, where 4, = —E...., 4, are the separation
parameters. Thus the {4,} form an involutive family of Killing tensors for
V

o
Let a”(y) be a symmetric contravariant 2-tensor on F,, expressed in
terms of local coordinates {y*}, and let g”(y) be the contravariant metric
tensor. A root p(y) of a' is an analytic solution of the characteristic

equation
det(a” —pg”’)=0 (2.29)

and an eigenform w =Y, u, dy* corresponding to p is a nonzero one-form
such that

N (@ —pgu;=0, i=l..,n (2.30)

5=

Roots and eigenforms are defined independent of local coordinates |1]. If a”
has »n distinct roots then the corresponding eigenforms constitute an
orthogonal basis for the one-forms on V.

Note from (2.18) that for an orthogonal separable system {x’} the p{*.
j=1,.., n, are the roots of the quadratic forms 4, and the dx* constitute a
basis of simultaneous eigenforms. In Ref. [3] we proved the following
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strengthened version of a result due to Eisenhardt |1, Appendix 13|. Let
H=) g”(y)p; p; be the Hamiltonian for (1.1).

THEOREM 2. Necessary and sufficient conditions for the existence of an
orthogonal separable coordinate system |x'} for the Hamilton-Jacobi
equation (1.3) are that there exist n quadratic functions A, =", ,at, p: P;
(4, = H) on V, such that:

(1) (A, A4}=0,1<k i<n
(2) The set |A,| is linearly independent (as n quadratic forms).

(3) There is a basis {w: 1< j< n} of simultaneous eigenforms for
the {A,|. If conditions (1)-(3) are satisfied then there exist functions g'(x)
such that w ;= g’ dx/, j=1..., n.

In Section 4 we will show that, with suitable modification, this result also
characterizes orthogonal R-separable systems for the Helmholtz equation.

3. SELF-ADJOINT FORM

We return to the Hamiltonian operator A, (1.2). expressed in terms of
some arbitrary local coordinate system {)’}. Let A be a second-order
symmetry operator for 4, i.e., a differential operator such that [A, 4| =0
and which in local coordinates can be written

A= "51”(}'}5@_;“": b'(y) 8; + c(y), 0= Oy (3.1)

[0 i

where @ = a’' and not all @ vanish. We can decompose 4 uniquely in the
form

A=S+L (3.2)
where
3
SZT}_ &/ g a"d;) +c (3.3)
g T
L=%"b"2, (3.4)

I

and this decomposition is coordinate independent.

Lemma 1. [L,4|=0and [S,4]=0.
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Proof. Let dV = \/g dy be the invariant volume element for V, and
consider the inner product

fihy=] 1) hy)av (3.5)

where f, h are c-functions with compact support on ¥,. (We allow f, 4 to be
arbitrary except that their support must lie in the {)’} coordinate
neighbourhood and be chosen such that the following inner products are well
defined and such that the boundary terms vanish in the integration by parts
formulas to follow.) Defining the adjoint A* of A by the usual formula

(AYf hy={(f,AR), all fh (3.6)

we verify easily that A* =4, S* =S, and [A*, 4] = |A*, 4%| = |4, A|* =0
so that A* is a second-order symmetry operator. It follows that A can be
decomposed uniquely in the form A=A, + A,, where [A,,4]|=0,i=1,2,
Af=A,, A¥f=—A,.

If L=0 then 4, =S and we are done. If L # 0 choose new coordinates
{x’} such that L=0,. Then A,=4, + 1d, Log g and since |A,,4]=0 it
follows that d, g¥ =0 for all i, j; hence &, Log g =0. We conclude that
Al Q.E.D.

We say that a second-order symmetry operator S is in self-adjoint form if
S* =S, that is, if S can be expressed in the form (3.3). It follows from the
proof of the Lemma that every second-order symmetry A can be expressed
uniquely as A =S + L, where S is in symmetric form and L is a first-order
symmetry (automatically skew-symmetric). Finally, we say that a second-
order symmetry operator S is in reduced self-adjoint form if S is given by
expression (3.3) with ¢ a constant. Note that if L;=b{,d,, j=1,2, are
nonzero first-order symmetries then L,L,+L,L, is a second-order
symmetry in reduced self-adjoint form.

4. THE FUNDAMENTAL RESULT

From (2.13) and (2.21)-(2.23) we see that operators A, defining
orthogonal R-separation for the Helmholtz equation are always in self-
adjoint form. Thus to characterize orthogonal separation by symmetries we
must necessarily restrict ourselves to operators of this form.

Let { )’} be a local coordinate system on ¥, and let A be a second-order
symmetry operator in self-adjoint form, expressed in these coordinates by

l

Ve

A=Y d,(Vg a’8,) + c. (4.1)
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Then A is uniquely associated with a quadratic form 4 on ¥, and defined in
local coordinates by

A=> a"p;p;. (4.2)

We can talk about the roots and eigenforms of A, meaning by this the roots

(2.29) and eigenforms (2.30) of A.
With these preliminaries out of the way, we present our basic result. Let 4,

(1.1), be the Hamiltonian operator for V.

THEOREM 3. Necessary and sufficient conditions for the existence of an
orthogonal R-separable coordinate system |x'} for the Helmholtz equation
(1.1) are that there exists a linearly independent set {A, =4, A,...A,} of
second-order differential operators on V, such that:

(1) [A,A]=0,1<k, i<n.

(2) Each A, is in self-adjoint form.

(3) There is a basis {w: 1< j<n} of simultaneous eigenforms for
the {A,l. If conditions (1)—(3) are satisfied then there exist functions g'(x)
such that w; = g’ dx’, T=1H,

Proof. Suppose conditions (1)-(3) are satisfied. Comparing coefficients
of third derivative terms in condition (1) we find {4,,4;} =0, where by
condition (2) 4, is the quadratic form (4.2) uniquely associated with the
operator A, (4.1). It follows easily from condition (3) that the hypotheses of
Theorem 2 are satisfied. Hence, there exists an orthogonal local coordinate
system |x'}, such that dx’ is a simultaneous eigenform for each operator A,

and a Stdckel matrix (S;(x")) which defines a separation of variables for the

Hamiltonian—Jacobi equation (1.3). Denoting the roots of 4, by p},

j=1,.., n, we see from the discussion in Section 2 that in the {x'} local coor-
dinates

A=Y o H; 7] (43

J
where H; * is given by (2.9) and
8,0 = (p — p¥) &, Log H; 2, (4.4)
Thus

A.R :E F}HHJ-_ 2({% o= f_} 3; =+ ﬁj) (4;5)
J

where

fi(x)= ¢, Log (HI S . ) . (4.6)
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(Since the set {4,} is linearly independent det(p}“}% 0 and we can express
the zeroth-order term ¢, of A, in the form ¢, = Zp}“Hj‘zij for some
functions ¢;.) Here

2 Hi=0 4.7)
J
since A, = 4.
We have not yet fully utilized condition (1): |A,,A,]=0 for all /, k.
Comparing coefficients of &; on both sides of this relation we obtain

¢if;=2¢6,[;» a requirement which is already satisfied on account of (4.6).
Equating coefficients of ¢, in condition (1) we find

205"Hy * 8, (: ﬂ}“Hfl@‘) + X P H @+ 16y Hyy * )
J

J

= (ke ) (4.8)

where the right-hand side of this equation is obtained from the left-hand side
by interchanging the indices k and /. Utilizing (4.4) and equating coefficients
of pPpP. a + b, in (4.8) we find

3#(6{; - %J"::.!ﬂ = %fﬁ) =1} a b

or

§a=31(fant2La) £ R, @=L, (4.9)

(The equating of the zeroth-order terms in condition (1) yields a relation
which 1s already satisfied.) Substituting (4.9) into (4.7) we see that
Y H ([, +3/2:) is a Stackel multiplier. Thus the conditions of Theorem |
are satisfied and the local coordinates {x'} R-separate the Helmholtz
equation.

Conversely, if the orthogonal coordinates {x'} R-separate the Helmholtz
equation it 1s easy to show, using (2.21) and (4.9), that conditions (1)}-(3)
are satisfied. {().E.D.

5. EXAMPLES OF R-SEPARATION

The phenomenon of R-separation for the Helmholtz equation has received
very little notice. Indeed the only previous reference we have located to date
is [7], in which Moon and Spencer define orthogonal R-separation for
Euclidean space. However, since for Euclidean space (even all Einstein
spaces) the Robertson condition R; =0, i+ j, is automatically satisfied it
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follows from (2.18), (2.19) that |8]: An orthogonal R-separable system in an
Einstein space is trivially R-separable. The fact that nontrivial orthogonal R-
separation does not occur in flat space and spaces of constant curvature
undoubtedly accounts for the lack of notice given to this phenomenon.

To our knowledge the first published example is contained in the note |9|.
The space is three dimensional and conformally flat. The metric in the R-
separable coordinates is

ds* = (x+ y+2)[(x — ¥)(x —2)dx* + (y — z)(y — x) dy’
+(z—x)(z — y) dz?]. (5.1)

The multiplier 1s
R=(x+y+z)~", (5.2)

An even simpler example, however, is provided by the coordinates
{x, ¥, z} on the space with metric

ds* =—dx® +dy* + (y —x) ' dz’. (5.3)
Here

R=(x— _}J}”J‘, (5.4)

Both of these examples have the feature that the corresponding symmetry:-
operators contain nonvanishing zeroth-order terms, i.e., the operators are not
reduced. It is of interest to determine if nontrivial R-separation is possible in
which the symmetry operators are reduced. We see from (2.21) that
necessary and sufficient conditions for the symmetry operators to be
obtainable in reduced form are

Ej‘f.jj} -i-j}&_;j}:{], Li=lvanmi+#] (5.5)
where
Ji=3;log(H, --- H,/[S). (5.6)

Indeed, this follows directly from

LEmMA 2. Let (S,(x")) be a Stdickel matrix with cofactors SV and deter-
minant S, respectively, and such that each S'' # 0. Further, let (x) be an
n-tuple of functions such that 3, 8" (x)=0. Then Y (SY/S) &(x) is a
constant for each j=2,..,n if and only if &= &(x') for each i = 1,...,n.
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Progf: Since }7; S"¢,(x) =0 there must exist functions Ci(x) such that

Gi(x) = 31 C)(x) Sj(x"). (5:7)

Now

. S:H Sik
‘s. e =N
i)=Y =

J { -|_|"

S;i(x") Cj(x) = Cy(x)

s if C,(x) is always constant we have & =&(x'). On the other hand, if
= &(x') it follows from (5.7) that

= l (Ci(x) §(x"). i

J=1

Since "' # 0 we have 8,C; =0. Thus C, is a constant. Q.E.D.

System (5.5) can be readily solved. If we assume d; /i 0 for all i # j then
these equations can be integrated to give

5Uf=A€_f

where 04/éx' =0, [ =i, j. If we write S =—g+logA+in then g satisfies
Liouville’s equation [10]

! — pof
Gy &=¢€

which has the general solution

al(x) af(x’)
(e;(x") + a;(x'))

e’ = (5.8)

For this to hold for all combinations of 7, j (with d; f; #0) we must have

- (2oi=1 ﬂi(xi?)l
[[Fiai(x)

(5.9)

This is the multidimensional analogue of the relationship between the
equation d;,h'=0 and &,h' =e" (Liouville’s equation). The system of
equations d;h=0, &;h+#0, i j=1,.,n  with general  solution
h =) 7_, a(x') gives rise to the solution (5.9) of the nonlinear system (5.5).
For the general solution of (5.5), when &, f; may vanish for some choices of
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i, j, we must divide the set {l...,n} into mutually disjoint subsets 7,,
dimn, > 2 (a= l,.., N) such that

X
U 7, = {1, n}. (5.10)

=1

The general solution of the system (5.5) is

{Zmﬂ a,(x))?
i “ (<) H e, @100)

(5.11)

where ¢/ = (], S"')/S"~? and we have written the metric in Stdckel form.

In fact by suitably redefining variables x' we can always choose restriction
(5.5) as

ﬂ;j'_f“— ]Li[ (m )d. (5.12)

This expression makes it particularly straightforward to find a metric which
satisfies (5.5). One such example is the metric

ds® = (x' + x?) lf (dx"f‘. (5.13)

i=1
The Helmholtz equation becomes

ﬁ

e 4 2
Ay = = [’5’11“"311"{‘ T 7 (9, +8,)+ >

] w=FEy. (5.14)

]

=3
If we write v = (x' + x*) '@ then @ satisfies

ﬁ

0u@=(x' +x")EQ (5.15)

=1

which is clearly separable in these coordinates. The symmetry operators
describing the R-separation are A,, /= 3...., 6, and B where

szans
| ' 2 2 '
B= X! 12 lxz (3“4— SVt o2 ’fjl)_-?‘:j (ﬁzz"‘ N 32)
1 L
1=3

and these operators are in reduced self-adjoint form.
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6. DISCUSSION OF RESULTS

The results of this paper lead to several important conclusions concerning
(orthogonal) variable separation and R-separation for the Helmholtz
equation. First, one must recognize the intrinsic geometrical nature of R-
separation. From Theorem 1 it appears that the conditions for R-separation
are highly technical and nongeometric. However, Theorem 3 shows that
these conditions are equivalent to the existence of an n-dimensional family of
commuting self-adjoint symmetry operators which can be simultaneously
diagonalized.

Second, comparing Theorem 2 and 3, it is obvious that orthogonal R-
separation, not ordinary separation, for the Helmholtz equation is the natural
analogy of additive orthogonal separation for the Hamilton—Jacobi equation.
Furthermore, with the more powerful tool of R-separation we expect to find
new useful solutions of Schrédinger equations with potentials.

Finally, a comparison of Theorems 2 and 3 shows the close relationship
between variable separation and quantization theory. Corresponding to a
separable system (x'| for the Hamilton-Jacobi equation we have an
involutive family {4,} of quadratic constants of the motion

L N
A;=2 ag, pip;.

The Helmholtz equation R-separates in these same coordinates if and only if
functions ¢; can be found such that the operators

b ch s g
Aj=—pnr 1_ d;[\/g agy ;) + ¢
Ve
pairwise commute. The requirement that SH ([ +41f) is a Stackel
multiplier is the precise condition that this construction can be carried out.
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