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A NOTE ON WILSON POLYNOMIALS*
WILLARD MILLER, JR.

Abstract. Local symmetry (recurrence relation) techniques are a powerful tool for the efficient derivation
of properties associated with families of hypergeometric and basic hypergeometric functions. Here these
ideas are applied to the Wilson polynomials, a generalization of the classical orthogonal polynomials, to
obtain the orthogonality relations and an elementary evaluation of the norm.
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1. Introduction. In [1] Wilson introduced a family of hypergeometric orthogonal
polynomials that included as special or limiting cases the classical polynomials and
the 6-j symbols of angular momentum. In the Memoir [2] Askey and Wilson introduced
a still more general class of basic hypergeometric orthogonal polynomials, the most
extensive generalization of classical orthogonal polynomials known. The orthogonality
proofs in these papers, while not unmotivated, are quite technical and rely on Mellin-
Barnes contour integrals and several hypergeometric summation formulas that are
unfamiliar to most mathematicians. The Askey-Wilson and Wilson polynomials are
important and useful; they deserve to be more widely known. Furthermore, the
appropriate algebraic and group theoretic setting for these general families is as yet
unclear. The elementary algebraic treatment of Wilson polynomials presented here is
offered in the hope that it will help to increase the “audience” for the polynomials as
well as to shed some light on their structure.

In [3] the author, with Agarwal and Kalnins, introduced symmetry techniques for
the study of families of basic hypergeometric functions, in analogy with the local Lie
theory techniques for ordinary hypergeometric functions. The fundamental objects in
this study are the recurrence relations obeyed by the families, expressed in terms of
difference or g-difference equations. Generating functions and identities for each family
are characterized in terms of the recurrence relations. These ideas were applied in [4]
to obtain a strikingly simple derivation of the orthogonality relations for the Askey-
Wilson g-polyomials. The treatment of the Wilson (ordinary hypergeometric) poly-
nomials presented here is very similar to that in [4]. However several minor complica-
tions arise, due to the fact that whereas the first order g-difference equation f(gz) = f(z)
has only the solution f(z) = constant, the first order difference equation f(z+1) =f(z)
is satisfied by any periodic function f with period 1. Thus the treatment presented here
is not entirely algebraic: a few simple facts about Fourier series and the gamma function
are required.

2. The results. The (unnormalized) Wilson polynomials are:
-m,ntatb+ct+d-1,a+za-z 1)
a+ba+ca+d ’

where n=0,1,2,--- and a, b, ¢, d > 0. The hypergeometric function ,F; is given by
the series

(2.1) @, (2%) = 4F3(
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where

(a) _*{1 ifm=0,
" la(a+1) -+ (a+m—1) ifm=1,2,-"-.

The functions (2.1) are polynomials of order n in z”. (In [1] the parameters a, b, ¢, d
are also permitted to become complex, an important extension, but we shall not

consider that case here.)
Two fundamental recurrence relations for the Wilson polynomials are:

n(n+a+btctd—1) _i12b41/2.041/2,d+1/2)

(222)  FebedPpEbed) = e i ,
(2.2b) H“’"*"-‘“‘@Efwbrﬂrd“—' — —(a+b— 1)q,li:z—!fz,bm1;z,c+u:e,d+u1}
where

Labed) =i(Eifz_E;[;z}’
(2.3) 2z

1 1 1 1 1
L 23[ (ﬂ z 2)(!} z 2) S a—z 5 z 5

and E*f(z) =f(z+a). Here (2.2a) follows from
ra+z)(a—z)=—k(a+3+z)i(a+3—2)
and (2.2b) follows from
p{a-#:—:}k{a‘z)k:—(a—f-b—k—l)(a—%+z)k{a—%~—z)k.

The first relation was discussed by Askey and Wilson [2]; T have not found (2.2b) in

the literature.
Relation (2.2b) suggests the existence of an operator w* mapping
l:I)IE;r.':—l.,-"l,h---1,.-"2.-:+l,-"E,.le:1'+l,.-"2]| to (DE,ﬂ'b'c‘d}* We find thﬂt

(2.4)

—(n+c+d){n+a+b-—1){bmb_f‘d}
(a+b—1) 1 :

l{c+lf2.,d+]r"I.EI—1,.!"2,!!—lfz}tb{n—1,-"2,b"l,-f2,l:+lf2,d+1f2} '

which follows from
#(cﬂu,dﬂﬂ.a—lﬁ.b*1#’2?{{1 1+ 2)(a—3—2)
=—(k+c+d)a+z)(a—z)+k(at+c+tk—1)(a+d+k— 1)(a+2)g-1(a—2)k-1.

We try to introduce a pre-Hilbert space structure such that wp*™=
p (CHY2A+1/2,a-1/2.071/2) 5 the adjoint operator to u = w'e?ed) et w,, a(z) be analytic
as a function of the complex variable z in a neighborhood of the imaginary axis z = iy,
—o0 < y<oo, real analytic in the variables a, b, ¢, d, of exponential decrease as ly| >0
and such that w,, . 4(iy) =0. Define an inner product:

1 oo
(g, gi}n,b,r:,d T J 31(32}31{32) wn,h,c,d{z) dz
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where the contour is a deformation of the imaginary axis and g, , g, are real polynomials
in z*. Let Se.bca b€ the space of such polynomials with this inner product. We have

e e S e Ay ey R
*
B8 a1/28-1/2,c41/2,d+1/2~> Sapbed
and seek a weight function w,, ., such that

(2.5) (f ;u-'g)a—I;’E,b—lji,c+1£2.d+1£2 =(pn*f, g}a,b,c,d

forall polynomials f€ S,_1/25-1/2.c41/2.4+1/2and g € Sabe.a- Astraightforward computa-
tion yields the necessary and sufficient condition

Wapea(z+1) (z+1)(a+z)(b+z)(c+2z)(d+2)
Wabeal(2) _z(a—z—lj{b—z—l)(c—z—l}(d—z—l)

with general solution

I'a+z)I'(a—z)'(b+z)I'(b—z)[(c+2)['(c—2z)
I'(2z)I'(—2z)

I'(d+2z)I'(d—z)h(a, b, ¢, d, z)

= ﬁa.b,c‘d(z)h[ﬂ, b, & d, EJ

wn,h,c,d {3) =

where h satisfies the periodicity properties
h(a—3,b—3,¢c+3,d+3, z+3)=h(a—3,b—3,c+3,d+},2—3)
=h(a, b, ¢, d, z).

Here I'(z) is the gamma function [5, Chap. XII]. From Stirling’s series for the gamma
function, W,,.4(z) =(2)?¢T?7TI30(e ") as |¥| >0, where z=x+iy. Thus we
must require that h(z)=o(e*™) as |y|> in order that Wwh be a suitable weight
function. Furthermore, the “integration by parts™ formula (2.5) will not be valid unless
h(z) is analytic in an open set containing the strip —3=x=3. Since h(z)=h(z+1) it
follows that h can be analytically continued to an entire periodic function of z:

h(z)= E G () e, fm(y}ﬂ*L.th{z)e‘z"‘“dx.

Using the Cauchy-Riemann conditions for analytic functions we find that c,,(y) =
a,e ™™ where a, is independent of z Since h(iy)=o0(e*™"*) we have that
@, ™| = 0(e*™") as l¥| =0, so a,, =0 for m #0. Thus h is independent of z and,
without loss of generality, we can set h=1;

I'a+z)I'(a—2)I'(b+2z)['(b—z)[(c+z)T(c—2)['(d+2)'(d —z)
I'(2z)I'(-22) '

{2*6} wﬂ,b,{-’,d{z) e

Since (2.5) holds, u*u is formally selfadjoint:

(Z*T) (.uu'*”g] ) gﬁ)a,b‘c.d = (gl 3 ﬁ*ﬁgija,b,u_d-

From recurrence relations (2.2b) and (2.4) it follows that the Wilson polynomials are
eigenfunctions of uw™u:

(2.8) p*u@Bhet =) plabed) A =(a+b+n=1)(c+d+n).
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Note that A, = A, iff n=m. Since the eigenfunctions corresponding to distinct eigen-
values are orthogonal, we have

L b,e,d .
(OZEAEL PBNGEN. o =0, A nZEm.

The operator u*u and the weight function are symmetric with respect to the
interchange a < b. Thus the polynomials {®}>*““'(z*)} are also orthogonal in S, 4
and are eigenfunctions of p*u. This means that there exists a constant K, such that

{I)(b.ﬂ.f.ﬂ‘}{zi) =K q}{a.b.c_ﬂ}{zl]_
Equating coefficients of z°” on both sides of this expression to obtain K, we find that

-mn+b+a+c+d—-1,b+z,b—z
4F3 3
b+a b+c b+d
_(a+c¢),(at+d), (—n,n+ﬂ+b+c+d—1,a+z,a—zl 1)
" (b+e),(b+d), "’ a+b,a+ca+d M

(2.9)

This is a transformation formula due to Bailey [6, p. 56] and, as Wilson pointed out
[1], it essentially contains the symmetries of the 6-j symbols. It follows from this result

that the renormalized polynomials
(a+b).(a+c),(a+d), 7> (2%)

are symmetric in all four parameters a, b, ¢, d.
Setting f(z%) = g(z®) =1in (2.5) and using (2.2b) and (2.1), we obtain the following
relationship between the norms on S, /2 5—1/2.c+1/2.a+172 @nd S, 4 ca:

c+d
(2.10) "1 "i—lfﬂ,b—~1f2,c+lf2,d+!,i’2 = = “”tzn,,b,c,d*

The symmetry of the weight function in a, b, ¢, d yields 5 more such relations.
Now consider the recurrence (2.2a):

[ﬂ:l'b'llc'rd} L]
T ' S-::,b,r_d = Sa+1;z.b+sfz,c+1;z,d+uz+

We seek the adjoint 7* to 7= 7'*>s%);

(2.11) (f, TE}a+:;2,h+uz,¢+lf1,d+u: = (’r*f; g}u.b,c.d

for all f€S,41/2.--.a+1/2, 8 € Sa... 4 A simple computation using (2.11) yields

% *(a+1/2,b+1/2,c+1/2,d+1/2)

=7

T

(2.12)
=;—z[(a+ z)(b+z)(c+z)(d+2)EY*~(a—z)(b—2)(c—2z)(d —2)EL"?].

From (2.11) and the orthogonality relations it follows that
(2,13} r¥Pplatl/2,b+1/2,e+1/2,d+1/2) an,flmhc,d}_

n—1
Comparing coefficients of z*" on both sides of this expression we find that
H,=(a+b)(a+c)(at+d).
Thus v*7 is selfadjoint on S,, .. and the eigenvalue equation is:

(2.14) @t = n(nta+b+c+d—1)pEbe?),
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We also have the Rodrigues formula
@Lﬂ,b,c,d} =JHT*““_I-”:’".’d+”2}f*{ﬂ+l'm’d+ﬂ 2y Te T*{a+nf2,-",d+nf2}(1}’

(2.15)
J.=(a+b),(a+ec),(a+d),.

Substituting f=®\*HV/Z 4TV o - @D jh (2.11), we obtain the recurrence

= ﬂ(ﬂ+ﬂ+b+€+d—l} @[ﬂ'l"la"l:."'-d"'"lfz] -
_{ﬂ+b}2(ﬂ+ﬂ)z{ﬂ+d)2” n—1 ||a+1f2,"',.d+1;'r2
which enables us to compute the norm of any Wilson polynomial once the norm
I1]|2.... 4 is determined for all a, - - -, d > 0. We now turn to this last task.

From the orthogonality relation (®{* "%, (IJ{.}"‘"“‘”)H_...j =0 and the explicit
expression (2.1) for Wilson polynomials we find that
__datbtctd) e

(a+b)(a+c)(atd)" "

Here we have used the evident relation

{gfm l}a.---,d =5 || 1 ||i+m.b.c,d: gf"(zzj = (H % z}m{ﬂ v z),,,.
From (2.10) and (2.17) and the obvious invariance of ||1||,...; with respect to a
permutation of a, b, ¢, d we find:
_ T(a+b)I(a+e)T(a+d)I(b+c)I(b+d)(c+d)
(2.18) |11]Gpea=
I'(la+b+c+d)

(2.16) @i 02 vy

(2.17) 1%

M(a, b, c, d)

where M satisfies the periodicity properties
M(a,b,c,d)=M(a+3,b+3,c+3,d+3)=M(a+1,b,¢ d)

and is invariant under any permutation of a,---,d. Now replace a by a+k, k a
positive integer, in (2.18) and write this expression in the following form:

_1"[“’ (I‘(a+k+iy}f‘(a+k—iy)[‘(a+k+b+r:+d})
'a+k+b)l(a+k+e)'(a+k+d)

2

dy

27 ) s

@i19) _ ’I‘(b+iy)r(c+iy)r(d+iy)

I'(2iy)
='(b+e)l'(b +d)['(c+d)M(a, b, c, d).

From Stirling’s series

[(z+k)=v2a (k) e—‘f(1 + o(i))

as k- -+00, so

o ['(a+k+iy)'(a+k—iy)l'(a+k+b+c+d)
toico Tla+k+b)(a+k+c)(a+k+d)

and

(2.20)

_1_J‘““' C(b+iy)I(c+iy)l'(d+iy)|*

.4 ) e I'(2iy)
(The passage to the limit under the integral sign is easily justified since [['(a+iy)|| =T'(a)
for a>0.) It is evident from (2.20) that M is independent of a. By symmetry, M is

dy=T(b+c)[(b+d)[(c+d)M(a,b,ec,d).
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constant. To evaluate the constant we set b=0, ¢ =d =3 in (2.20). Using the multiplica-
tion and reflection theorems for the gamma function, we reduce (2.20) to

2J’ Wi ey

_w cosh (my)
or M =2. Thus
e _lr T(a+iy)L(b+iy)T(e+iy)L(d+iy) ?d
(2.21) Tl Ped y
' _2T(a+b)l(a+c)T(a+d)T(b+c)I(b+d)[(c+d)
is [(a+b+c+d) '

Note that this integral, and special cases of it, were originally derived by contour
integration, evaluation of the residues at the poles of the integrand in the right half
plane and use of known summation theorems to sum the resulting infinite series. Wilson
[1] used Bailey’s Theorem [6, p. 27]

( 2a,a+1,atbatca+td )
i a,a-b+1l,a—c+l,a—d+1’
T(a—=b+1)F(a—c+1)(a—d+1)[(—a—b—c—d+1)
T I'Qa+1)I(=b—c+D)I(=b—d+1)(-c—d+1)

to compute (2.21). Since we have independently obtained the value of this integral we
can consider the usual contour integral technique as a derivation of Bailey’s sF,

summation.
For the Racah polynomials (discrete orthogonality), [1], the recurrence relation

methods of this paper yield a purely algebraic derivation of the orthogonality, including
as a byproduct the terminating version of Bailey’s Theorem: a+b=—N.

Note added in proof. Recurrence techniques similar to those used in this paper
have been employed by Nikiforov, Suslov and Uvarov [7] and Nikiforov and Suslov
[8], but these authors have apparently not applied them to the computation of contour
integrals and summation formulas.

Acknowledgments. The author thanks Dick Askey, Mourad Ismail and Dennis
Stanton for several helpful conversations.

REFERENCES

[1] J. A. WILSON, Some hypergeometric orthogonal polynomials, this Journal, 11 (1980), pp. 690-701.

[2] R.A. ASKEY AND J. A. WILSON, Some basic hypergeometric polynomials that generalize Jacobi polynomials,
Mem. American Mathematical Society, 319, Providence, RI, 19835.

[3] A. K. AGARwWAL, E. G. KALNINS AND W. MILLER, Canonical equations and symmetry techniques for
g-series, this Journal, 18 (1987), to appear.

[4] E. G. KALNINS AND W. MILLER, Symmetry techniques for g-series: Askey- Wilson pelynemials, Proc.
Constructive Function Theory, Univ. Alberta, Edmonton, Alberta, Canada, 1986, to appear.

[5] E. T. WHITTAKER AND G. N. WATsON, A Course in Modern Analysis, Cambridge University Press,
London, 1958.

[6] W. N. BAILEY, Generalized Hypergeometric Series, Cambridge University Press, London, 1935.

[7] A. F. NikiForov, S. K. SusLov AND V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete
Variable, Nauka, Moscow, 1985. (In Russian.)

[8] A. F. NikiForov AND S. K. SusLov, Classical orthogonal polynomials of a discrete variable on
nonuniform lattices, Lett. Math. Phys., 11 (1986}, pp. 27-34.



