0.1 Applications of the Alternating Series Es-
timation Theorem

An alternating series is one that can be written in the form

o0
S:Z(—l)"*lanzal—a2—|—a3—a4+---

n=1

where a,, > 0 for all n. In your textbook and in class the Alternating Series
Convergence Theorem was proved:

Theorem 1 The alternating series Y o> (—1)"'a, converges provided

1. a, >0 for alln
2. any1 < ay, for alln, and
3. lim,,_,s an = 0.

Indeed, if we denote the Nth partial sum of the series by Sy = XN, (—1)""'a,,
the proof consists in showing that the sequence of even partial sums is in-
creasing:

So <S5y <5< < Soy<-e

the sequence of odd partial sums is decreasing:
5128328522 8n_1 > Sang1 > -0,

and that each odd partial sum is greater than each even partial sum. In
particular SQN+1 — SQN = A2N+1 > 0, and since oN+1 — 0 as N — oo the
difference between Soni1 and Sen (or the difference between Son and Soy—;
goes to zero as N — oo. This implies that the limit S exists and that it lies
between Son and Syy—q for any N:

Sy <8 < S <o < Sng < Son <5 < Soni1 < Sonog- <55 < 55 <55

This proof yields an estimate for the error made in approximating S by
Sn-



Theorem 2 (Alternating Series Estimation Theorem) If the alternating se-
ries 300, (—1)""ta, satisfies the conditions of the Alternating Series Con-
vergence Theorem, then the error Eyy = S — Sy made by approximating S
by the partial sum Sy is bounded in absolute value by apryq, i-e.,

1S — Sul = |Em| < ana.

Note: If the conditions for the Alternating Series Convergence Theorem hold
only for n > ng then the Alternating Series Estimation Theorem still holds,
but only for partial sums Sy with M > ny

Example 1
> (-~ 1 1 1 1
S = e
7;1 n? 1 22_|_i’>2 42+

It is easy to verify that this series satisfies the conditions of the Alternating
Series Convergence Theorem. Thus we have

1

S—Sul < = .
If we want to approzimate S to an accuracy of 10~* then we need to choose
M such that ﬁ <107, or (M + 1) > 10*. Thus M + 1 > 100 and
the smallest M that will suffice is M = 99. If we sum the first 99 terms of
this series we will obtain an estimate of the sum that is accurate to within 4

decimal places.

Example 2
> (=)~ 11 1 1
S = I I
ngl n? 1 22—1_32 42+

This is the same convergence alternating series as our first ezample. What s
the mazimum error in approximating S by Sipe ¢ According to the Estimation

Theorem !
S — Sl < =——~107°%
| 1000| < @100041 (1001)?



Example 3
[e'9) (_1)n—1xn
S(x) = —
@=L )
This is an alternating series for x > 0 and it satisfies the conditions of the
Alternating Series Convergence Theorem Convergence Theorem for 0 < x <
1. (Note that for x > 1 the series diverges.) For any x in the interval [0, 1]

the error in approzimating S(x) by Sy (x) has the bound
pM+1 1

$@) = Su@)l < awrl@) = GENGIve) < T D+ 9

Thus, if we want an approrimation of S(x) by Sy (x) with mazimum error
1078 for all z € [0,1] then we must require

1
(M +1)(M + 3)

or 1000000 < (M + 1)(M + 3). Using a calculator, one can verify that the
smallest integer M that will work is M = 999.

<1078

Example 4

n

S(z) = i# =e "

For any positive x and for n + 1 > x this satisfies the conditions of the
Alternating Series Convergence Theorem. In particular, for 0 < x < 1 the
conditions are satisfied for all n. For any x in the interval [0, 1] the error in
approzimating S(x) by Sy (x) has the bound

aM+1 1

Thus, if we want an approrimation of S(x) by Sy (x) with mazimum error
1078 for all z € [0,1] then we must require
1

— _<10°°

(M+1)! —
or 108 < (M +1)!. Using a calculator, one can verify that the smallest integer
M that will work is M = 9. Note that we could also have solved this problem
using Taylor’s Theorem with remainder.



Example 5

o (_1 n—1,.n
S(x)zz()szln(l—i—x), 1<z <1,
n=1

For any x such that 0 < x <1 this satisfies the conditions of the Alternating
Series Convergence Theorem. Thus for any x in the interval [0,1] the error
in approzimating S(z) by Sa(z) has the bound

M+ 1

= < )
M+1~ M+1

15(2) = Sm(@)] < anra ()

Thus, if we want an approzimation of S(x) by Sy (x) with mazimum error
1078 for all z € [0,1] then we must require

<1078
M+1—

or 108 < M +1. Thus the smallest integer M that will work is M = 999, 999.
Note that we could also have solved this problem using Taylor’s Theorem with
intergral or deriwative remainder, but the computation would have been more
involved because of the need to compute the M + 1st derivative of In(1 +
x). On the other hand, Taylor’s Theorem applies to series that may not be
alternating.



