Appendix B: Completely Continuous Symmetric Operators

Let T be a bounded operator on the Hilbert space \mathcal{H}. We say that $\lambda \in \mathbb{C}$ is an eigenvalue of T in case there exists a nonzero $u \in \mathcal{H}$ such that $Tu = \lambda u$. Each such nonzero u is an eigenvector of T corresponding to eigenvalue λ. If \mathcal{H} is n-dimensional and T is self-adjoint it is well-known that there exists an ON basis $\{e_j\}$ for \mathcal{H} consisting of eigenvectors of T:

$$Tu_j = \lambda_j u_j, \quad j = 1, \ldots, n.$$

The matrix of T with respect to this basis is diagonal:

$$T = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

However, if \mathcal{H} is infinite-dimensional and T is self-adjoint it is usually not possible to find an ON basis for \mathcal{H} consisting of eigenvectors. There is a sense in which T can be diagonalized (the spectral theorem for self-adjoint operators) but this is not a straightforward extension of the procedure for diagonalizing self-adjoint operators on finite-dimensional spaces.

Nevertheless, there is a class of operators T of great importance in mathematical physics for which the eigenvectors do form an ON basis in \mathcal{H}: the completely continuous self-adjoint operators.

A subset \mathcal{B} of \mathcal{H} is bounded if there exists a constant $C > 0$ such that $\|v\| < C$ for all $v \in \mathcal{B}$.

Definition: An operator T on \mathcal{H} is completely continuous if for every bounded sequence $\{v_j\}$ in \mathcal{H}, there is a subsequence $\{v_{j_k}\}$, $j_k < j_{k+1} < \cdots < j_k < \cdots$, such that $\{Tv_{j_k}\}$ is convergent.
Note: It is easy to show that a completely continuous operator is bounded.

Example 1: Every linear operator on a finite-dimensional space is completely continuous.

Example 2: The identity operator \mathbf{E} on an infinite dimensional space is not completely continuous. (Hint: Look at the action of \mathbf{E} on an ON basis of \mathcal{H}.)

Example 3: Let $\mathcal{H}=L_2(\mathbb{R}_m)$, (appendix A), and let $h_\gamma(x), g_\gamma(x) \in C(\mathbb{R}_m)$, $\gamma = 1, \ldots, m$. Let K be the operator on $L_2(\mathbb{R}_m)$ defined by

$$Kf(x) = \sum_{\gamma=1}^{m} K(x,\gamma) f(\gamma) w(\gamma) \, \, \, \, f \in L_2(\mathbb{R}_m)$$

where

$$K(x,\gamma) = \sum_{\gamma=1}^{m} h_\gamma(x) g_\gamma(\gamma)$$

is the kernel of the integral operator K and $w(\gamma)$ is the weight function on $L_2(\mathbb{R}_m)$. Then K is completely continuous. This follows from the fact that R_K is finite-dimensional.

Example 4: Let $\mathcal{H}=L_2(\mathbb{R}_m)$ and let K be an integral operator (B.1) where now we require only that the kernel $K(x,\gamma)$ be continuous in x and γ. Then K is completely continuous. Moreover, if $K(x,\gamma)=\overline{K(\gamma,x)}$ then K is self-adjoint.

Note: We give no proofs in this appendix. For detailed proofs the reader can consult [Helwig, 1] or [Stakgold, 1]. However, the reader should be able to supply the elementary proof of

Lemma B.1: Let \mathcal{T} be a bounded self-adjoint operator on \mathcal{H}. Then the eigenvalues of \mathcal{T} are real and eigenvectors corresponding to distinct
eigenvalues are orthogonal.

Theorem 2.14: Let \mathbf{T} be a nonzero completely continuous self-adjoint operator on the separable Hilbert space \mathcal{H}. Let $C_\lambda = \{ u \in \mathcal{H} : \mathbf{T}u = \lambda u \}$ be the eigenspace corresponding to the eigenvalue λ. Then

a) \mathbf{T} has at least one nonzero eigenvalue λ_1 and at most countably many, $\lambda_1 \geq \lambda_2 \geq \cdots$. Each eigenspace C_{λ_i} for $\lambda_i \neq 0$ is finite-dimensional. If there are an infinite number of eigenvalues then $\lim_{i \to \infty} \lambda_i = 0$.

b) Let $\lambda_1, \lambda_2, \cdots$ be the eigenvalues of \mathbf{T}, possibly including $\lambda = 0$, and let $\{ u_{ij}^\dagger, j = 1, 2, \cdots, \dim C_{\lambda_i} \}$ be an ON basis for C_{λ_i}. Then $\{ u_{ij}^\dagger, j = 1, 2, \cdots, \dim C_{\lambda_i}, i=1,2,\cdots \}$ is an ON basis for \mathcal{H}.

c) If $u \in R_T$, $u = \sum u_i^\dagger \psi_i$, then

$$u = \sum_{i,j} (T \psi_i, u_i^\dagger) u_j^\dagger = \sum_{i,j} (\psi_i, T u_i^\dagger) u_j^\dagger = \sum_{i,j} \lambda_i (\psi_i, u_i^\dagger) u_j^\dagger.$$

Note: Part c) follows immediately from a) and b). The sum in the expansion of u goes only over those eigenvectors corresponding to nonzero eigenvalues.

Consider the completely continuous self-adjoint integral operator \mathbf{K} on $L_2(\mathcal{M})$, (example 4). The kernel $K(x,y)$ of \mathbf{K} is continuous in all its arguments and satisfies $K(x,y) = K(y,x)$. The preceding theorem clearly applies to \mathbf{K}. Moreover, by making use of the special structure of \mathbf{K} we can obtain more information about the expansion a). The eigenvectors $u_i^\dagger(x)$ are now functions in $L_2(\mathcal{M})$.

Theorem 2.15: 1) Let λ be a nonzero eigenvalue of \mathbf{K} and $z(x)$ a corresponding eigenfunction. Then $z(x) \in C(\mathcal{M})$. 2) More generally,
if \(u(x) \in R_\lambda \) then \(u(x) \in C(\partial M) \). 3) If \(u(x) \in R_\lambda \), \(u(x) = \sum u(x) \)
then
\[
 u(x) = \sum_{l,j} (u_l, u_j) u_l^j(x) = \sum_{l,j} \gamma_l^j (\tau, u_l^j) u_l^j(x)
\]
where the series converges uniformly to \(u(x) \) (pointwise) for all \(x \in \partial M \).

The point of statement 3) is that the expansion of \(u \in R_\lambda \) in terms of the eigenfunctions \(u_l^j(x) \), converges not only in the norm but also pointwise uniformly.