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CANONICAL EQUATIONS AND SYMMETRY
TECHNIQUES FOR g-SERIES*

A. K. AGARWALT, E. G. KALNINSY anp WILLARD MILLER, Jr.§

Abstract. The authors introduce symmetry techniques for the classification and derivation of generating
functions for families of basic hypergeometric functions, in analogy with the Lie theory techniques for
ordinary hypergeometric functions. To each family of basic hypergeometric functions there is associated a
canonical system of partial g-difference equations and the symmetries of these equations are used to derive
g-series identities and orthogonality relations for the special functions.
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1. Introduction. In [11], [13], [14] a Lie algebraic method was developed which
associated with each family of multivariable hypergeometric functions a canonical
system of partial differential equations constructed from the differential recurrence
relations obeyed by the family. (The basic idea behind this method followed from the
work of Weisner [16].) The hypergeometric functions arise by partial separation of
variables in the canonical systems and any analytic solution of these equations can be
considered as a generating function for this family. Furthermore the generating func-
tions can be characterized in terms of symmetry operators for the canonical systems.

In this paper we present the foundations of an analogous theory for families of
many-variable basic hypergeometric functions. To each family we associate a canonical
system of partial g-difference equations constructed from the g-difference recurrence
relations obeyed by the family. The basic hypergeometric functions arise by partial
separation of variables in the canonical systems and any analytic solution of these
equations is a generating function for the family. Symmetry operators for the canonical
system can be used to characterize the generating functions. Thus a direct link is
established between symmetries of the canonical system and identities obeyed by
g-series.

In § 2 we show how to derive the canonical system of g-difference equations
associated with a given family of g-series, using as examples the one-variable hyper-
geometric functions ., and the two-variable function f,, a g-analogue of the Appell
function F,. In § 3 we describe how to relate two different families of basic hyper-
geometric functions, that is, the procedures of embedding and augmentation. In the
procedure of embedding the canonical system for one basic hypergeometric family
restricts through a specialization of variables to the canonical system for a second
hypergeometric family, so that the restricted family can be considered as a generating
function for the second family. Augmentation is a process inverse to this. By augmenta-
tion we can write the defining equations for a generating function as the restriction of
a canonical system of higher dimension.

In § 4 we apply our techniques to derive and characterize in terms of symmetries,
a variety of generating functions for the families ,¢,. In § 5 we treat the family »¢, in
somewhat more detail. (This family needs special treatment because its canonical
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system admits symmetries not shared by the systems for general ,¢,.) Furthermore we
show how orthogonality relations for g-series follow from symmetry 1deas.

Our theory provides a simple uniform procedure for derivation and symmetry
classification of a wide variety of g-identities, in analogy with the Lie theoretic
procedures for ordinary hypergeometric series. The full power of the theory becomes
evident in the study of many-variable g-series and in the study of Askey-Wilson
polynomials, as we will show in future papers. However, in distinction to the case of
differential equations we do not have the tools of local Lie transformation group theory
or the relationship between Lie symmetries and separation of variables to help us
obtain the generating functions in the most compact form. Our procedures enable us
to classify and characterize generating functions in terms of symmetry operators,
unaided, they do not enable us to write the generating functions in simplest form, i.e.,
factorized or in terms of a new choice of variables. It will be very interesting to see if
(as is the case for differential equations) factorization and coordinates have symmetry
operator interpretations.

The symmetry techniques presented here apply to formal power series and are
essentially independent of convergence criteria. Hence, we shall ordinarily not specify
the domains of validity for the identities derived in this paper. In most cases they can
be determined easily for one-variable hypergeometric functions by the ratio test. For
multivariable hypergeometric functions the full domain of convergence may be very
difficult to determine (or even unknown). In those cases one can specialize some of
the parameters in the functions (so that infinite series truncate to finite series for
example) to guarantee convergence.

Finally we note that the symbolic method of Burchnall and Chaundy for ordinary
hypergeometric series [4], [S], and some works of Hahn on g-series [7], [8] contain
points of similarity with our method, although these authors did not use symmetry
techniques.

2. The “basic” idea. We begin our study of canonical equations for g-series by
deriving the canonical form associated with the g-hypergeometric functions .¢;:

ﬂl,---,ar_x) = (op e lasig)a

bla"':bﬂ' =E

2 -
(2.1) f‘i"*( n=0(b1; @)n" (b3 4)n(4; q)n

where a; = g%, b;=q" and

_ (a5 9)=
(an§ q}:c

(2.2) (a; q), . (@ ge=11 (1-¢")

Here «;, B;, x are complex variables, (8;#0, —1, -2, -) and we normally require
that 0 < g < 1. Note that for n a nonnegative integer we have

(2.3) (a;gq),=(1—a)(l—qa)---(1—q" 'a).
As is well known [3], [5] ,¢, is a g-analogue of the hypergeometric series
[24} rFS(ﬂrl,..+’Hr; .I)= Z {ﬂl)”. .1[&}}”1:
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and I'( - ) is the gamma function. For n a nonnegative integer
(2.6) (@), = alodel oo Fn=1J.

Here ,¢, and .F; are related by

i . ﬂi X
(2.7) rﬂ(a : x) = lim rqﬂx( ; ,._5_.)-
.‘Bj q-+1 b_.l' (] _'?:]'

Let T, be the g-dilation operator corresponding to the vanable u, 1.e., T, maps
a function f of the variables u, v, w, - - * to the function

(2.8) T.flu,v,w, - )=f{quuv,w,: ")

From the g-series (2.1) one can easily verify the recurrence relations

k
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Note that relations (2.9) imply the fundamental g-difference equation satisfied by the
F@.‘;:

(2.11)

{I{l_ﬂ|];-] — (] _ﬂrT:r:)_{l_ Tx)(l _biq_]Tx} e {l_bsq_in}}r@s(gj; -T) =0.

)

Indeed, for B;#0, —1, =2, - - - the only solution of this equation which is analytic in
x at x=01is ,¢,(3'; x).
Now we define the function ,®, of 2(r+s)+1 variables by

B,

[ e

Hi. ur+‘| RN ur+.‘i+1) —r¥ —x ﬁi—l e

b: §1 g ull-.-”rr”r+1
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{212} r(I)s(ﬂh bj; “p}:rqﬂs(

Let A, be the g-difference operators

Ay=u,'(1-T,),

(2.13) _ i =
A,=u, {l—T“#}, l=p=r+s+1.
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In terms of these operators, relations (2.9) take the simple form

K
Ay r(I)a.':(l'_'ak]r(Ds(E Hr): 15.1(:":::?',

b;
{214) :+frq}3:[l_bfq_]}rq}.~:( % )5 1§I§S&
Efbj
+ _(l_ﬂl)"'(l_ﬂr} (‘3"1:')
Fds41 rEs — i'(I)-'i'
(1-by) - (1-b)" *\gb,
and (2.11) becomes the (canonical) partial g-difference equation
r r+z41
(2.15) ( [T A~ TI a;),cxz-s = ().
k=1 p=r+]

Furthermore ,®. satisfies the eigenvalue equations
T:—Il—.-;+IT.F:IrE1}s=qﬁkr{I)5:- lgkérﬂ

(2.16)
T:—I!.S‘+I Tr+f rtI,:; = q'ﬂl_lr@n 1=1=s.

Indeed, , @, is characterized by (2.15), (2.16): It is (to within a constant multiple) the
only solution of these equations analytic in the u, at u, .., =0.
We can regard an analytic solution ¥(u,) of the canonical equation

(2.17) (AT A=A, A =

as a generating function for basic hypergeometric functions. Indeed, expanding ¥ as
a pOWer series
(2.18) Wu,)= Eﬁ Joca RN 1o I B T

o
where X =u, ;""" U 4oq/ Uy - - u,, we see that if ¥ is analytic at x=0 and if no
nonzero term occurs with some g, =0, —1, =2, - - - then always

i
(2-19) f{r;ﬁﬁ(x) = '::.rl,ﬂl,r' rw.'t(b_; 'r’)

)

for some constants ¢, 5. We shall typically compute such a generating function W by
characterizing it as a simultaneous eigenfunction of a set of r+ s commuting symmetry
operators for (2.17). By a symmetry operator for the canonical equation we mean a
linear operator L which maps any local analytic solution ¥ for (2.17) into another
local analytic solution LW. Clearly the dilation operators T,, ., T, (1=k=r),
Tol T (T ==s)iare commuting symmetries, and the eigenvalue equations (2.16)
characterize the basis solutions ,®, in terms of these symmetries. Furthermore the
g-difference operators A; (1=i=r)and A, (1 =h=s+1)are commuting symmetries.
Note also that any permutation of the variables {u;: 1 =i=r} is a symmetry of (2.17)
as 1s any permutation of the variables {u,.,: 1= h =s+ 1}. (For example, the transposi-

tion symmetry (4, ., #,,,+,) implies that

o ( aby ' q ) I)Ii_ﬂ1
\g’bi, bbi'g’
1s another solution of (2.11).)
The canonical equation (2.17) for g-hypergeometric functions is a clear analogue

of the canonical equation for the hypergeometric functions ,F, [13]. Indeed the basis
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functions

¥ ; O Upgy ” " " Uz} = o 4 i
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satisfy the canonical equation

(2-21) (aul =T ﬂu, _(_ljrau,_-,, et au,.”ﬂ) H
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I
=

and the eigenvalue equations
{_Dr+s+1_Dk}r§¢=ﬂkrEH lékgr

(2.22)
{_Dr+s+l+Dr+!)rgrs=(ﬁf_])r'-{¥51 I‘E::tlgsp

where D, = u,d, . Furthermore +F, is the only solution of (2.21), (2.22) that is analytic
in the u, at u,, ., =0.

Our procedure applies to a family of g-analogues for the ,F.. Let § be a function
with domain {1, 2, - - -, r+s5+ 1} and range contained in the set {+, —}. The canonical
equation

(2.23) (A o KEO KB T e =
and eigenvalue equations
Il =g 5 1=k=r,
(2.24) = I
r+.'.'+]Tr+F1P-_q : 1{;5 IEIES,

have the unique (to within a constant multiple) solution

. a. U o F Lo s
& I, - & 5 r+1 r+x+1 — ¥ X ﬁ -1 ﬂ:—|
{.2*25] rq‘}s( = up) - r‘P#(bI: )ul e u, iE""'.l"—:-] e Fs

b, ; TR T8 &%
where
mﬁ l:I,-_ x) = E (qﬁ’“}cr]; qﬁ*il}t}n oy (qﬁ’[r}ar; qﬁ’tr}])n
e e LT R T
; 5
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and

+ ifé(p)=—
2.27 5’ = :
227} (p) {- if 6(p)=+.

Each of these g-analogues of ,F; can be further treated by the methods presented in
this paper.

Canonical equations for many-variable hypergeometric g-series can be derived
almost as easily as for the one-variable case. Consider for example the Appell function

F:
(223] Fz(ﬂ', _-8-; {3’& I,_]g') = E ('T}m+n(ﬁ}:n(,8"]ﬂxmy”'
ol am=0  (¥)m(¥)am!n!

As shown in [11] the canonical differential equations are

{2+29} (a ulﬂuz e au}auq) '-%"-72 s {]: (a:qauj . auﬁau;) FFE =0
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with eigenvalue equations
).+ 1) +D""‘—[I, DE‘I'D"""_ ]
(230) 1+ D+ D 3~ =B
= Dscy—1; D5+D5~—B', B?_ﬂﬁ“”’?r“l-

Here A~ « stands for A%,=a%,, and D, = u;d, . Furthermore,

a, B, B usu, “6”7)

r - n
5 Wyl Uyls

Ui Uz tust ul o ul

Now consider the g-analogue

ﬂ:- b: b’ = H; Fri il b;- Frl br; rtxm 2
fg( ! ;I,y): 5 (a; q) ,( q)m(b’; q)x"y
& mm=o ey q)ml e @)l q)wila: ),

where a=¢®, b= g", etc. The function

f

L'I, b,,b : H3H4 H,:,u-; u_“ SE gy
1

e (T T I T

(2.31) ) =fz(

satisfies the recurrence relations

Arfr=(1—-a)fi(aq), A,f,=(1-b)f(bq),

ﬂ;fz=“-a)_(1.—b)fz(ﬂq’ bq),
(l1="¢) cq
(2.32) Asi=(1—cg Vfileg™"), Asfri=(1-b)f(b'q),
v o (=a)(U=DY) fag bq
‘ﬁ{%fz_ (]_EJ) Jfl( C:q )3

Arfa=(1- ﬂ'q_]}fz{ﬂiq_l)s
hence the canonical equations
(2.33) ATA; —ATA; ~0, ATAS; —A AT ~0.

(Here again A ~ y signifies that f, is an eigenfunction of the operator A with eigenvalue

x.) Furthermore f, satisfies the dilation eigenvalue equations
(2.34) FhTe~ar, SBTA~b=, T.0T5 =g,
1. ToebGe & T, T3 ~iclgs’,

and for v, y'#0, —1, =2, - - - the only solution of equations (2.33), (2.34) analytic in
the u; at u;=ug=0 is (2.31). The standard pair of g-difference equations for the
function f,

[(1_aTme'){l_bTx)_I_l{l_ T‘c}{l_cq_]Tx)]j}_’:Uw
[{1 _aTxTy}(l g b’Ty) _.}’Ll(l p Ty}(l o E c,q_lTy:I]fE =0

is obtained directly from the canonical equations by setting x = us s/ U, Us, ¥ = Uetds/ Uy Us
and factoring out the remaining “ignorable” variables. Note the perfect correspondence
between the differential equations (2.29), (2.30) for the Appell function and the
g-difference equations (2.33), (2.34) for the g-analogue.
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Just as in the single-variable case we can study a family of g-analogues for F,,
one for each function § with domain {1,2, - -,7} and range contained in {+, —}.
The canonical equations are

ASMAIR) _ N3N
(2.35)

ﬁq‘j“}ﬁﬁfﬂ ﬂg{ﬁj&fj(?} 0
and the corresponding g-series is

(e, 81N 8(2)g, _&'(2)1
= (Ef' i ] '13" }m+n[q ﬂa f}' b )m

a, b, b
iﬁ( , ;ay)= Y

(2 36) -ﬂ', e ot (qﬁl:r]":r'; qﬁir]l) (qﬁ{?}*}f’; qﬁﬂ?}ll}n
£ | {qﬂiﬂjﬁ’qﬂijjl}n m n
(qﬁﬁ}; qS{E}l)m(qrﬁfﬁ}; afﬁll}”'

Similar computations can be performed for any two-variable (or many-variable)
g-hypergeometric series g. Corresponding to each parameter a =g“ such that the
symbol (a; q) am+p, appears in the numerator of the expansion

I

_ v @ Pamipn X"y
mn {f.'; Q}(.'m+Dn Ee {Ci', ":?]m(q:- q:}ﬂ

there is a “‘raising operator” E® = A" associated with the recurrence relation
(1-aT;T,)g=(1-a)g(aq).

Similarly, for each denominator parameter ¢ we can construct a “lowering operator”
E_ = A" associated with

(1— ﬂq_lTF )g=0-cqg Ngleg™").

Applicdtinn of x™'(1—-T.), cnrrespnnding to A" , takes each numerator parameter ato
ag” and each denominator parameter ¢ to cq©, whereas apphcatmn of y'(1-T,),
corresponding to A”, takes each numerator parameter a to aq”® and each denominator
parameter ¢ to c:q”.

Hrabowski [9] has discussed the general procedures for associating a system of
canonical differential equations and eigenvalue equations with a given hypergeometric
series and, conversely, for associating one or more hypergeometric series with a given
system of canonical differential equations and eigenvalue equations. His analysis
applies, with minor modifications, to g-hypergeometric series as we will discuss in a
subsequent paper. The principal distinction is that there are two types of g-difference
operators A and only one type of differential operator 3,,.

3. Embeddings and augmentations. If the canonical equations of a g-hyper-
geometric series can be identified with a subset of the canonical equations of a second
g-hypergeometric series, then by a suitable restriction of coordinates we can regard
the second series to be a generating function for the first series. As an illustrative
example we consider the canonical equation

(3.1) ATA; —ATAT=

for the basic hypergeometric function

a, b uu, 4
»P) =5, ) up“ uy |,
T

(3.2) iyl :
Tas Dol esow | Eisds oo o e g
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and the canonical equations (2.33) and eigenvalue equations (2.34) for the g-Appell
function f5. Identifying the variables u,, - - - , u, for ,®@, with the variables u,, - - -, u,
for f, we see from (2.33) and (3.1) that for any choice of us, ug, u; the function f,(u,)
can be regarded as a solution of the canonical equation (3.1) for ,®,. For uniqueness
we require us = us=u;=1 and obtain the solution

(3.3) S =fz({1! b!,b : u3u4, i)uf&uz_ﬁh':{_]

vl e T

of (3.1). Our approach is to characterize the generating function (3.3) in terms of
symmetry operators for (3.1). However the remaining canonical equation for f, and
the eigenvalue equations (2.34) involve the vanables us, u,, u;. We need to evaluate
the operators A, A7, A7 applied to f; for us=u,=u, =1, in terms of operators acting
only on functions of the variables w,, -, u,. From (2.34) we find

T ) e s e [ i e T Bl e AN TR e e s
Thus the solution (3.3) is characterized by the equations

T:T=b"', LT —ecql

b’ 1 .
&[(1 —— T;'T;') —(1 —— T;‘T;l)(l = £ T;'T;l) ~ 0.
a a qga

Note that the operators T,T;, T,T5', A; and T, 'T;' are all symmetries of ATA; —
ATA7, so that we have characterized the solution (3.3) of (3.1) in terms of a set of
(mixed) eigenvalue equations for symmetries of (3.1). (It is not always the case that
the generating function of the restricted canonical system obtained through this process
is characterized in terms of symmetries of the restricted system. An example i1s the
restriction of the canonical system for the Appell function F, to the wave equation
[11]. However, in this case and in all other such examples known to the authors
appropriate functional linear combinations of the mixed eigenvalue equations can be
expressed in terms of symmetry operators and the resulting system still uniquely
characterizes the generating function.) This i1s the process of embedding.

The process inverse to embedding 1s augmentation. Here we are given a canonical
system of g-difference equations and a characterization of a generating function for
this system by a set of mixed eigenvalue equations expressed in terms of symmetry
operators for the canonical system. Our aim 1s to establish simple rules for determination
of the generating function as an explicit g-hypergeometric series by recasting the
defining equations as a canonical system with dilation eigenvalue equations in a greater
number of variables than the original problem.

To see how this procedure works, consider the generating function, characterized
as the function analytic in u;, - - -, uy at u; =0 and satisfying the canonical equation
(3.1) and the mixed eigenvalue equations (3.4). Since the last equation in (3.4) is
neither a canonical equation or a dilation eigenvalue equation for (3.1), we cannot
determine the power series expression for the generating function by inspection.
However, we can replace the expressions

l_brﬂ_ITI_IT;I, ]_ﬂ_lT]_lTjTl, l_crq_lﬂ_!Tl_iT;I

(3.4)

by A;, A;, A7, respectively, for us=ug=u,=1 where T5'~b'a 'T;'T;', Ts~
a ' Ty'T;' and T,=c¢'q 'a ' T,'T; . Then for general u, the defining equations of
the generating function take the canonical form (2.33), (2.34) with the unique solution
(2.31), analytic at u; = u, = 0. Setting us; = u, = u, =1 we obtain the generating function.
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(Note that the choice As, A¢, A7 is unique. If we had taken AZ for example, we would
have obtained the condition T;T,T;~b’a™ ', but T;T,T; is not a symmetry of the
canonical equations (2.33).) We also note that g-analogues of the Appell function F;
and the Horn function #, correspond to these same canonical equations but have
different analyticity properties [11].

The following sections contain several more examples of augmentation.

4. Generating functions for ;. Here we will present several examples showing
how generating functions for the ,¢., (2.1) are associated with the canonical equation

("‘i-l] (&; =i ﬁ:“ﬁ:-ﬂ e ﬂj+-5+1y‘l’ =10.
Recall that
ﬂi Hr-i- St M:f'+.'5'+l = = - e
]"{I)t —r r 'i'( ; l )H &] " @ W Hr EErI"IE] 1 4 &% @ H'B"i ]
L 'F bj Hl Ty u,. 1 r+1 r+s

is a solution of (4.1) and that A;, (1=i=r), A}, 1=2k=s), T.oo T, and T} ., T,
are symmetries of this equation.

There appears to be no convenient general g-analogue of the local Lie theory
which permits us to compute Lie group symmetries of differential equations from Lie
algebra symmetries through the process of exponentiation. However, in particular cases
the analogy 1s successful. Consider the g-exponential

sl SR 674 1

- o B0 (50

x| <1

satisfying r‘.ﬁeq = e, [15, p. 92]. In a formal sense at least, the operator ¢,(AA;), A€C,
is a symmetry of (4.1). Applying this operator to a basis solution ,®, and making use
of (2.14), (4.2) we obtain

> A(ay; g)n

(4.3) e, (A4)), P (a) = a} G0

To compute the left-hand side of (4.3) we utilize Heines’s (g-binomial) theorem [15,
p‘ 92]! [2]1

“:(aq”).

o (8 @)m . _(at; §)
méa(q;q}mf (15 §)

to derive

MG /X ) X
(A/x9)  (A/%,9)_n

(4.4) e,(AAD)x" = x

From (4.4), (2.1) and (2.12) we find

it 'Il ayu ; (s8] ﬂ!' - TR 2
e (L), @, (e i) rqc',.,-+1( LA @y = u++l)

(AKHI;QJ-:& b_j HI T ur

(4.5)
Tttt

so that

(Ifﬂﬁt}]m = e (al_l; q}n Hut?" da, ", d
(46) . Pt ;xjgﬂ; = IH ; » ’ . .r; .
(%; 9)o \b o .En (@@ 5 b; y
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Another way to understand this result is to note that the right-hand side of (4.3) is an
eigenfunction of the operator T,,,.,T,—Aq 'A; T,,.., T, with eigenvalue a;'. The
method of augmentation can then be employed to derive (4.5). Still another point of
view 1s that since ,®,(q,) is an eigenfunction of the symmetry operator T, .., T, with
eigenvalue a, ' then ¢,(AA} ), D,(a,) must be an eigenfunction of the formal symmetry
operator

(4.7) qu:ﬁ&]_)ﬂ+s+1TlEq(_Aﬁl_}
with the same eigenvalue. Here [15, p. 93]
a0 qﬂfﬂ—l]l.-'rl
Eq[-x}= E .1""=(—J:; fi')-:::-a
n=0 (q; q)n

(438) sl 4
AB.=—q E_ e,(x)E,(—x)=1.

Let X, Y be linear operators.

LEMMA.
(49) F0) = e (AX) YE(-AX) = 3 = [X, Y1,
where
[X: Y]ﬂ=}’; [X5 Y]IZXY_ }/Xa
(4.10)

[X'-' Y]"""l:X[X* Y]ﬂ_'_q”[Xs Y]nX: n= 1;2: iy

Proof. This result is equivalent to the identity A} f(A)= Xf(A)— T, f(A)X and the
identity can be verified by formal power series expansion in the variable A. (The authors
learned of this result from Mourad Ismail and Dennis Stanton.)

For X =A7], Y=T,,,.,T, it is easily verified that [ X, Y],=(1—¢ DA T, T},
[ X, Y],=0 so, by the lemma:

E{i("\ﬁl_:] Tr+,:.'+I T] Eq(_)"&;) = Tr+s+1 Tl e q_l'&"‘&;Tr+s+] Tl :
Using the g-binomial theorem we can verify that

o (A% @)oo
(Aq"/x%; q)w

(4.11) E,(—AA7)x" =

From (2.14) we have

E‘-’I{_'Aﬁ'j+l}r{bs(b1}= E {bAKI?)H{bHIq; q}n

n0 (q; q),

='s) { )LJR nin=1)/2
) HZ'—"U' (Q: q")n

. [ﬂ]; q}rt' & ('ﬂr; Q)u fb (ﬂq")
(b]: q)n (b“ q}n ;‘-’I

Applying (4.11) we obtain the generating functions

(9x/b; 4)= (ﬂ”x y) _ 5 4/bi; 9. CP( a, 'y)x"
e i\ vmo (g3 @)~ Nbig ", by b,

(4.12) ] 0 g D2 (g ), - (a, q), q
r+l¢'3( b , ) Z‘=’ ( f}')n (bl;an (bn q} ( q”!y){ xy}

i

rdjs(blq‘")s

E ( )‘-ﬂr+w+l} q} (b

I
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Now we consider some examples where the generating functions are directly
characterized in terms of symmetry operators for the canonical equation (4.1). Let A,
B, C be nonnegative integers with B=1, A+ B=r, C+ B = 5. We look for an eigenfunc-
tion of (4.1) characterized by the following conditions:

&1_&; e &;_'ﬂjﬂﬁl:ﬁz i Eogs '&j—+(’.,'ﬂ:-+s+l "'"*ﬂa

- - = + + +
ApriBasg -4, B o WP S G ok
Tl iy T L e —
1 4 ppsy Ty, rl A ppe1 T 01
(4.13) Vs = =
e [ ST da, e B Ccd

T ~big, TricnT.'~dy,

i ST e bﬂ—lq_ls TricesT; ' ~dg.

Choosing u, and u, ., as the distinguished variables such that the generating function
is analytic at u, =u,. .., =0, we see that equations (4.13) are in canonical form with
solution

[I] g by HA il"!r'+] ") ur+'l: o ¥ e |

B B . - . N 4 = L L] - T _l

A'Pf-"( ) Uppsiy JUp ! Ua UL U.5c
C]_j_ # 8 ® - CL__- “1 & uﬂ

dy ;2% dp \ gby:: bg_ Uas WA p
" B¥PR-—1 U,

X
bl:, LI T | - bﬂ_] d] Ll dH‘”r+C+1 [ T ur+s
» 1'31_] iat s an— —d L. _55
W UaTB-1Yr+Ch U, s

[
= E Xn A+BPC+B
=1

(ﬂl: A P [ q]“”:’!bh Ay ql_"ffbﬂ—]' Uepq © " “r+s-+1)
Gase it o fd it S RS i et

,Bli-n—‘l h ,Bﬂ_l+n—1HJ:“Tl—‘l = HTC.'—I —5]—11 s — &, —n

- _ﬂl L n L] _r-'.:.':i L} H
Uy Ua U4 I""..1‘|.+E’—] r+1 riC Yric+1 U ps

Setting u,.,,, =0, we find that

X =(‘?bl"‘bﬂ—l)” (di: g)n- - (dg; q),
y dl g d.E' {bl; {?}?T i {bﬁ—l; Q)n({;"5 Q)n

and the generating function simplifies to

(ﬂ“"',,ﬂ_q dl"'dﬂ T) (dlra":dﬁ' :)
AL 3 » 12 | pPR— :
TR S i, bl“'bﬂ—] I bl:'+';bﬂ—1

o . S flfiss
(4‘14) = E {dlr q:ln { B q:}ﬂ'
n=i (bls Q)n o {:bB—l;q}rr
ll!"’-'l’l: R T Hﬂ; q_na ql_ﬂf{bl wr Ty ql_ﬂfbﬂ—l , z) I”
B g T RS g )

'A+s¢c+ﬂ(
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Finally we derive a generating function for the g-series

A ﬂlsli':ﬂp‘*l, —1
p+1¥p+r T b 4 X
Yari o ptr

i (ﬂh _I]H '{ﬂp+l;q-1)n In
4.15
1) =L . R .

— E (ﬂl_ ;' q}h I::Hp+l'.l q] ( 1:}”! min=1)/2 (Iﬂi i ap+l)"
n=0 (bl_ls ‘i')n (bp+r, q),,(q1 q:}" bl T bp-.‘-—,-q .

Consider the equations

{4.16) fﬂ;_ T ;r--iul_ ;+2 Pl '&Ep+r+2~{]}
o T T;,,‘+,+,,~ g“'=a;", - 1=i=p+1,
‘ LT . g =g S ==y

in canonical form. The solution of these equations, analytic at Uy pppia =0 is:

A (‘115 TS pi g Hpio* " " “2p+r+2)

ptil "Ppﬂl—r

¥ s
(4 18) bl:"':bp+r ul'-.uﬁ+1
. ' I,.f__ﬂl = . ” +luJE =4 AT u'ﬂp+r_l
1 Ir.|-+l p+2 2p+r+1*

We search for a generating function satisfying (4.16) and the following conditions:
(a) Ay +cT, i1,
(b): Liflvmn—ar, — 2=i=p+i,
TTopira~bi'q”!, p+2=j=2p+r+1.

(4.19)

Introducing a new variable u,,,,.; and conditions
(4.20) I, I_"p+r+2 T:?p+r+3 s 'fnla ‘i+ _'&E_p+r+3 =)

we see that (4.20) reduces to (4.19) (a) when u,,,,,5=1 and conditions (4.16), (4.19)
(b), (4.20) are in canonical form. It is straightforward to write down the generating
function analytic at u, = u,,,,., =0 and, with simplification, to obtain the identity

: = —1
(ct; q}m oo iy, Ay
ptH1 ¥ ptr+l

(2D) (t; @)oo e byt v, bk, 2

s e o [q‘,az‘,“-,a;ill qxq"]fk

=l R e e

where

@ i

p+1¢p+r|: : F-H; {;: I:|

lJJII:I Wil bp+r

(4.22)

rn(n—1)}/2 I.|'1

= E (a1, @)~ - (85415 9)a(=1)"q
(bi; q)n: (b5 q)s (25a),

The generating functions derived above are not ““deep.” Indeed each can be proven
by equating coeflicients of powers of appropriate variables and using the g-binomial
theorem. Furthermore, more general generating functions hold when some of the
q-shifted factorials are replaced by arbitrary sequences; see [6]. Our point is that
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generating functions in their totality can be classified and derived using symmetry
methods. In the following section we consider cases where the g-series have a richer
symmetry structure and the generating functions are more interesting.

5. Generating functions for ,¢,. The canonical equations for the g-hypergeometric
functions -¢; and ¢, admit certain simple symmetry operators which do not extend
to symmetries of the equations for general ,¢,. This is closely related to the fact that
¢, and @, obey g-difference recurrence relations not shared by general ,¢,. We shall
examine the case -, in some detail. Here the canonical equation 1is

(5.1) Q=A7A; —AfA;~0

and the eigenvalue equations for the basis

ab uwuy\ _,
2(D1=1‘F“|( ; : 4)“1 ﬁ“? :
C iU,
arc
(5.2) AU (e SN L 2 IR [ e

In addition to the dilation operators T,T,, T,T,, T,T5', their products and inverses,
we have as symmetries of (5.1) the operators

B =i B =0, Bs= A EX AL,
E,=—q 'usu, T2 T°05 +uyu, T T AL — quy T, T+ uy Ty T TS,
EE=—u3u4q_1T'1'2Tfﬁ,_+u2u3T§'T;'£ﬁ Qi B Brs bbsilia s e

{5.3‘:} ET=“3[qT3T¢ Tl_thlT;2+ T‘J_,ﬁ,q, :|3l

Uy
E.op==—uiT5 X5 +q. T =gy Ty,
E* =u,T7 AT+ quoAy, E‘B"”=u3 T:'As+qu,Az,
E.,=—wmdi+q 'u,T; T, A;, Eg,=—tw,A;+q 'u,T; Ty Ay

These symmetry operators correspond to recurrence relations for the ,¢; since, when
applied to the standard basis ,®,(%"), they yield

EﬂE(I)I:(l_H)E(I}l(HQ)s E,. ., =(a- ﬂ)ztbl(ﬂq_l):
Eﬂz¢|=(1_b}z¢l(bQ): Eﬁ2¢1={b_szq)1{bq_l),
c—al{c—Db C 2
E”,®, = ( )E‘I’l‘:cﬁ']s ET2¢1=(1__)2¢}1(H¥ p
C—1 _ q
1—a)(1-0b ag, b c ag_ ', bg’
(54)Eﬂﬁ"’r:q}t [ ) )2¢1( i q)a EHETEq}l:(——]-)I(I}I( : —aq ):-
=1 cq q Cy

b—c)(1= &
E-:TTEII, ( E)( H}Efp ( ) Euyztblz(l_E)E@I(aq_l),
I=¢C cq q cq

a—c)(1—b) c bg '
EETE ( ( 2(1)( ) EETE(I}I:(]-__)E(I)I( q_|)+
1—¢ cq q cq

There appear to be no simple standardized expressions for these symmetries as g-
difference operators applied to the null space of Q. Indeed one can always multiply
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each such symmetry by a dilation symmetry and obtain a recurrence relation (5.4)
equivalent to the original relation. Second, given any g-difference operator D we can
add DQ to any symmetry operator, since DQ acts as the zero operator on the null
space of Q. One can use the above modifications to simplify considerably some of the
expressions for the operators (5.3), but at the expense of complicating relations (5.4).

From the raising and lowering operators E we can form the following equations,
each equivalent to the canonical equation (5.1):

BB+ T7 (9= T )(12g5 gt T5h) 0,
EPE,+ T, (qT:— T2 )(1—q ' T T3 1) ~0,
E7E, + T4 T,— T =T =0,
o B E bl g 505 =g T A1) =0,
E“'E,,— T; (15" = T5)(1 - ¢ ' T3 T ~0,
EP'Ee = LT = T A= T ) =0,

The operators E and the dilation symmetries T,T;, T, T>, T, T; ' form a g-analogue
of the 15-dimensional conformal symmetry algebra of the wave equation in four-
dimensional space-time. Although these g-symmetry operators do not generate a
finite-dimensional Lie algebra under operator commutation they still permit us to
construct the invariants (5.5).

The method of augmentation can be used to obtain explicit expressions for many
generating functions characterized by E symmetry operators. For example, while the
conditions

(5.6) E,~—¢ T,T,~b"', T,T;i'~cq™

would be difficult to solve directly, due to the complicated expression for E.,, we note
that the first of these conditions implies E“E, ~—cE“ so from the first expression
(5:5) for EYE.

AT=(1=c 'T;'T7 10—~ " T T72)~0.

Setting Ts~c 'T,'T,', Ty~q 'T;'T;', we see that the desired generating functions
are the restrictions to us=us =1 of certain solutions of the canonical system

ATA; —ATA; ~0, AT —AZA; ~0,
(5.7) T Ty—=bt" T, T ~eges

T1T4T5"”{:_! T|T4Tﬁ"”q_l.

We can immediately write down a series solution:

C:b:-{]_ ”3“# Uslg —y =B y=1_ v—1
GRe: ity U :

(5.8) : =f2(

where f, 1s defined by (2.31). Setting us=u,=1 we find the (not very interesting)
generating function

¢, b, 0 2 1 cq”, b :
(5'9] fE( 3 E: I) = 2, Eﬁﬂl( ;E)I g
G n=0(q; q)n c
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We shall return to this example after introducing the g-Kummer transformation
symmetry.
The g-Kummer transformation

(ﬂ, b I) _(ax; g) 5 (& )a(c/b; g),g"" ™" (~bn)"
A2 G R (X79) % nzo (¢;9).(q;q), (ax; q),

(5.10)

[1] and the g-Euler transform

(5.11) :EGI(H’ b; I) = a0/ E}]mzqﬂl(ﬂ/ﬂ, o Lﬁm’)

¢ (X} 3)ws ’

& C

[15, p. 971, [2] can be related to symmetries of (5.1). For this we consider the restriction
of the operator @, (5.1), to the space of convergent Laurent series in the monomials

ke
: Uz U = I B
(5.12) fﬁ=(——) uy “uyPuy!

Hlu__'g

where k is a nonnegative integer and «, B, 'y are complex numbers such that y 0,
—1,=2,---. (That is, we do not consider the complication of logarithmic solutions.)
We define the operator R, on this space as the unique linear operator such that

: (azq"*; q)w 2 —cz\* B i
Rl{fk,cr,ﬁ.r)= = q}q k(k—1)/2 _b_ e ub Yy
=0\ e lag'lg) |
(5.13) :(_b_) PCSIE E:-ﬂ 5 ;) e e
usU
z:;:, a=q%, b=gq" c=¢q"
| U3

(This is a g-analogy of the inversion in a cone conformal symmetry of 3,5 —3;,~0.)
Similarly we define R, by

—cz\* (bzq"; q)
(5.14) R;(ﬁc,a,ﬁ,#(—a—) . W i
¥ =¥]

and linearity, and S by linearity and

(cz/ab; )« ( cz)k e

y
¥
(i) \ab) = & %

(5.15) S(feey) =

It 1s not difficult to show that (5.10), (5.11) are equivalent to the assertion that Ry, <R5
and S are symmetries of (5.1). (The direct proofs of (5.10), (5.11) involve nothing
more complicated than the g-Vandermonde theorem [3].)

Note that a basis for the solution space of Q~0 and the eigenvalue equations
Tl =g F 1 ~b TT, ~ cq ' consists of the functions

b
z‘I’](a’b)%w.(a’c ;E)HF“HEEH%"—' and
C

a, b ¢, gb/c I = e
EcI:’I( ):29‘:’1(?{”2{? / ;E)EI T Pl
c q°/c
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Furthermore the operators R,, R,, § satisfy

a, b a,c/b
R12¢|( r: ):E(I}i( c! ):

R, ztb:(“’ b) = (—c”%)‘—w(”’ = b),
[ (4

b b
(5.16) R, ﬁn(“’ )=2¢»1(” 2 )

C c
b
Rasti(%) = e ay (7 b),

Ri=RE=i82=] '  R:R5=R:R: =S,
where I is the identity operator. Other easily derived properties of R, are as follows:

R.E°R{'=E®, RE°R;'=E,T.T,,

RE R B RIBSR —=F
RiE:R'"=qE"T.T,, " RE'R;'=—gE”T.T.,
Sl RiERI=F, . RESRI'SEYT,T;;
Rl TR R =T Rl T R =g,

R|T3T;IRI_I = TjT;I.

Similar results for R, follow from (5.17) and the interchanges 1< 2, a < 83, and the
corresponding results for S follow from S=R,R,= R;R,.
As an example of the use of these symmetries we consider a generating function

¥ characterized by
(513] EEEﬁ"“:\., T;IT3"““)I., TiTlTE’“"'].f)l.'l.Lq

Due to the occurrence of the operator Eg, it is not easy to find a simple form for the
generating function by direct computation from W. However, we can transform this
problem into a simpler one. Indeed, W' = R, satisfies

(5.19) Bl 2 Ll I P B e S i e e e v

Although these equations are not in canonical form they are easy to solve by substituting
a formal power series for ¥'. The solution analytic at u; = u, =0 is

o0 Eik—1)2—=1k—1(I+1) /2 Kk ke 1A u+1

Uy, “uy (g “4}“
» q)i(q; g)e(q; q)

A+1

k=0 (4" @)i(g
From (5.13) we then find easily that

= e S g

5200 =R = > 73 u
( ) 1 k-E_—n {q“ I;Q)k(q;qj'khﬂ(qﬁ I;q}f{q;q}f ’ 3

where z = uyu,/ U, t = u,/u,. (The factorization in this expression is not surprising,
based on variable separation for the corresponding differential equation problem and
the fact that the operators E”, E; commute.) The generating relation is

a0 qrr[n—ljfz q—n lE.[,r..-.+ﬂl.+n+l -
— - 5 no—p—Ah—
i) T_E(y{q; 4647 q), Em'( o e E)"r ot
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where the coefficient of ,¢, has been determined by setting z=0 in (5.20). This is the
generating function for little g-Jacobi polynomials [10]; set z = gx.

For our final example we return to (5.6) and note that the function ¥'= R, ¥
satisfies the conditions

E*T T, ~—1, TTi~b"', T,05'7cq"

which are easily solved by power series substitution to yield

P 3 g = gt ) s u
k=0 (g7 9)(q; q)i(g; q);
Then from (5.14) we find
(aizng)e " 20 g gz e, Pl

W=RY =
27 (25 @ult; @)oo k20 (6°2; 9):(q7; 0)i(q; 9)i

o 1 g h
=%, z‘fPl(Lq g E)FHJr?”Eﬁ“;_I
n=f (q:q}n C

where z = usu,/u iy, t=u; .

Our symmetry approach has profound relationships with the theory of orthogonal
polynomials. We shall illustrate these relationships by presenting a new derivation of
the orthogonality for little g-Jacobi polynomials which we normalize in the form
: q"-i-lﬂb

aq
with —1<g <1, 0<ag <1, bg <1 [10]. The symmetries E“*” and E.zy, (5.3), induce
recurrences for these polynomaials:

q[]_—-q_ﬂj{l __q.rtl-lab}
(1-aq)
},(aq hq]{p{ﬂq bq}(x —{I—Q}‘-I’Lﬂ'b](x]

(5.22) @i (x) =2‘P|(q : qx), n=0,1,2, -

T[“-h}@iﬂ‘b](x) = (I)Elﬂjfiﬂ}q}{xjj

(5.23)

where

Hab) AT ~E(ag,bq) _ (I—UT;[-I—[aq—abqlx}-

X a

The existence of this pair of “raising” and “lowering’ operators suggests that there
might exist a Hilbert space structure with respect to which 7* and 7 are mutually
adjoint, so that 77 would be selfadjoint.

To be more explicit, let w,;(x) be a (complex-valued) weight function and S,
the indefinite inner-product space of polynomials f(x) with respect to the inner product

{5-24} [:.ﬁlafz]u,b_;J‘ .fl(x}.fﬁ{x}wﬂ b{-x

where the contour C is a deformation of the circle [x|=1+¢, £>0 in the complex
x-plane. Consider 7'“”’ and 7#'“%"% a5 mappings:

(a,b) . ¥(agbg),
T . Sﬂ,h = cxeg, bg S::rq bq a,b

and determine w,,(x) so that

(525) (Tf g}aqhq f'T g)ab
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for all f€ Sap, 8 € Sagpq- A straightforward “integration by parts” yields the following
conditions:

—{] wﬂq.hq{qu) 1 Wag h-:gr{-x}
=x—1, e = —b
X Wap(x) Y o) =)
with the solution
(x/a; g)olga/x; g)
T /a; q)o(ga/x; q)

(xbq; q)o(1/x; q)s5(a, q)
(5.26) 4 :
s(a, q) = (aq; q)(1/a; q)=(—aq; q)(—1/a; q).
It follows immediately that r*7 is selfadjoint on S, , and from the recurrence relations
(5.23) we have

(5.27) TP = A 5P A =—g(1—qg "I =g"ab).

Clearly A, # A,,, if n # m and since eigenfunctions corresponding to distinct eigenvalues
are orthogonal we have

(5.28) (D27 ). =0 forn=m.
From (5.23) and (5.25) with f=®{**), g = ®!%%"? we obtain the following recurrence:

— =l ] e ot
(5_29} ”'I'E:ﬂ'b}”i,b: ‘}'{:1 q :l{l Eq gb}
(1—aq)

From (5.29) we can compute ||®;*”||Z, once we know |[1]|2,= (P, P, , for
all admissible a, b.

We now turn to the task of computing ||1] 7 ,. We know that (®{*? D=y =
and, substituting the explicit expression (5.22) for the orthogonal polynomial ®!*?(x),
we can write this relation in the form

“ I:I} Lﬂ_ﬁ'f}q] " iq, Freg -

(1-bq)
(1—abg?)

(Here we have used the evident fact that (1 — xbg, 1)..=|1] i,bq-} To obtain an addi-
tional condition on the norm we consider the symmetries E”, E_ in the form:

b e —1
#Ea. }q}i o {] __H)q}iﬂq .f:hr?]'=I

(5.30) 11|50 = I111%-

(5.31)

“#:{ﬂt?".hf.rllcpiaq“.bq} -+ q_"(] '-Hq"}(l i qu'-l} q)ir:!,b.‘l
a(l—a)

where

(a,0) 1 (a,b)
M = _'{IT.T'J M 'Sﬂ,b_}sﬂq_tkhq=

= x=1 1 — bgx >
= T : U IR

fr b
ax ax /i SN

i

It 1s easily verified that

{5+32} (“ﬁ g)aq_',bq = {f; Ju“*g.]a,b

for all f__g Soby 8 € Sag ' pg 50 that u and u™* are mutually adjoint. Setting f =@,
g =" " in this relation, we see immediately that

_(1-bq)
a(l—a)

(5.33) G2 11|75
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The recurrences (5.30), (5.33) have the solution

(abg*; q)K(q)
(bg; q)=(ag; q)u(—1/a: 9)(—aq; q)

”1”2,5—_'

Thus

(5.34) e (x/a; 4)o(ga/x; g)wdx  (abg?®; 9)-K(q)

27t Je (1/a; q)(1/%; q)eo(xbg; q)ux  (bg: 9)o(ag; q)u
(Here we are assuming g=>1+g>1> ga.) With the choice bg=1/a the integral
becomes trivial to evaluate and we find that K(q)=1/(q; q)«- The complex orthogonal-
ity relations just determined can be recast as real discrete orthogonality through
evaluation of the contour integral by residues at the poles x =g" k=0, 1, 2, . The
final result is

k41

o lag)ig " a).
;En {bi}'h.l;"i"}m

(qun(abq”-'_l; q.]m{q: q}riam_n
(69"""; q)x(aq; q)x(aq; q), (1 — abg®"*)

ORISR
(5.35)

—

Note that the proof of this result follows entirely from the symmetries; no special
function identities are needed.

The ideas behind this derivation of orthogonality relations can be generalized
substantially. In particular in [12] it is shown how to derive the orthogonality relations
for the Askey-Wilson polynomials (the most general extension of the classical
orthogonal polynomials known) using this symmetry method. A simple corollary of
the derivation is an identity for ,¢; polynomials (Sears’ transformation) that includes
the g-Kummer and g-Euler transforms as special cases.

The fundamental symmetry concepts introduced in this paper extend to the very
Important g-series of the form

a;, X a;, ax, a/x
r+1%r b » ff aﬂd r+ 1% b 3 fi" ¥

g F)

They will be the subject of future papers by the authors.
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