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Abstract. There are many physically important linear PDEs that admit Lie sym-
metry groups, but for which the symmetry is destroyed by addition of potentials
or consideration of non-symmetric solutions. For superintegrable systems on con-
stant curvature spaces there is a Cheshire Cat effect: the symmetry disappears
but its influence lingers on and can be used to analyze the solution spaces. We
describe this approach to harmonic analysis and give examples that show how
to obtain properties of Lamé and Heun functions, and insight into the classical
Niven transform. Based on joint work with E. G. Kalnins, J. M. Kress and V. B.
Kuznetsov.

1. Introduction

Most functions commonly called “special” obey symmetry properties best described via group
theory. They arise as solutions of the PDEs of mathematical physics and can be characterized
in terms of transformation properties under the Lie symmetries of the equations. There are,
however, many important PDEs for which the initial symmetry is destroyed by addition of po-
tentials or consideration of non-symmetric solutions. Fortunately, for superintegrable systems
on constant curvature spaces there is a Cheshire Cat effect: the symmetry disappears but its
influence lingers on and can be used to analyze the solution spaces. We consider solutions of
Laplace-Beltrami eigenvalue problems via separation of variables. There is no general connec-
tion between symmetries of a manifold and the separable coordinate systems, but for constant
curvature spaces (among others) a connection exists, at the level of 2nd-order elements in the
universal enveloping algebra of the symmetry Lie algebra, and it persists even when the sym-
metry is completely broken by a potential. We describe these relations and give applications
to Lamé and Heun functions, that directly have no Lie symmetry properties.

1 miller@ima.umn.edu

1



2. Symmetries and variable separation

Let ∆n be a Laplace-Beltrami operator for a Riemannian manifold Vn in n dimensions. The
Laplace-Beltrami eigenvalue equation (with potential) for functions Ψ on Vn is HΨ

�
q ���

EΨ
�
q � The Laplace equation is HΨ

�
q ��� 0. The linear partial differential operator S is a

symmetry operator for
�
∆n � V � Φ � EΦ if S maps local solutions Φ to local solutions SΦ.

Similarly, S̃ is a conformal symmetry operator for
�
∆n � V � Φ � 0 if S̃ maps local solutions

Φ of this equation to local solutions SΦ. The 1st-order symmetry operators for
�
∆n � V � Φ �

EΦ form a Lie algebra, the symmetry algebra of this equation. The associated local Lie
symmetry group maps solutions to solutions. There are similar definitions for conformal
symmetries.

A set of orthogonal coordinates � x �	� is R-separable for the Laplace-Beltrami equation
if this equation admits solutions Ψ � exp

�
R
�
x �
� Πn

i � 1Ψi

�
xi ��� eRΘ, where R

�
x � is a fixed

function, independent of parameters, and the factors Ψi

�
xi � are the solutions of n ODEs

(the separation equations) Ψ �i � gi

�
xi � Ψ i � �

fi

�
xi � � ∑n

j � 1 λ jsi j

�
xi ��� Ψi � 0, i � 1 �
�
����� n and

λ1 � E. The parameters λ j are the separation constants. If R � 0 we have separation, and
if R

�
x ��� ∑n

i � 1 R � i � � xi � we have trivial R-separation. There is a corresponding definition of
R-separation for the Laplace equation with E � 0.

A basic result in the theory is [1] that every orthogonal R-separable coordinate sys-
tem � xi � for

�
∆n � V � Ψ � EΨ corresponds to a linearly independent set � S1 � H �

∆n � V � S2 �
�
�
��� Sn � of commuting 2nd-order partial differential symmetry operators. The R-
separable solutions Ψλ1 ��������� λn

�
x ��� exp

�
R
�
x �
� Πn

i � 1Ψi

�
xi � are characterized as the simultane-

ous eigenfunctions of the commuting symmetry operators Sh: ShΨλ1 ��������� λn
� λhΨλ1 ��������� λn

� h �
1 �
�
����� n.

If � n is a space of constant curvature and V
�
q � � 0 then all higher order symmetries of

this space can be considered as elements of the universal enveloping algebra of the Lie sym-
metry algebra ! n of the manifold. In particular, the operators S j describing variable separation
are 2nd-order elements of the enveloping algebra of ! n.

If � n is a space of constant curvature and V
�
q �#"� 0 then the symmetry operators (or

conformal symmetry operators) describing variable separation take the form S j �%$ j � Wj
where $ j is a 2nd-order element in the enveloping algebra of ! n and Wj is a scalar (potential)
function. Thus even though the 1st order symmetry may be destroyed by the potential, the$ j retain their connection with the original symmetry algebra, e.g. [2]. This is the grin of
the Cheshire Cat and is discussed by Kalnins [3] in his proceedings paper on superintegrable
systems.

Finding all orthogonal separable coordinate systems q for a given space � n is difficult.
However, for real n-dimensional Euclidean space, the n-sphere, and the n-hyperboloid of two
sheets, we have a graphical procedure to classify and construct all possibilities, [4, 5].

Here I discuss examples of special functions that arise through variable separation, but
that have no simple transformation properties under the Lie symmetry algebra. (The Cheshire
Cat is fading, but has not yet disappeared.) For the Euclidean space Laplace equation�

∂ 2
X � ∂ 2

Y � ∂ 2
Z � Ψ � 0

orthogonal separation is possible in the 11 Helmholtz separable systems [6] and nontrivial R-
separation in 6 additional systems [7]. Each system is characterized by a pair of commuting
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2nd-order conformal symmetry operators for the Laplacian. The conformal symmetry algebra
of this equation is 10-dimensional, with basis

PX � ∂X � MYX � � MXY � Y ∂X � X∂Y � D � � � 12 � X∂X � Y ∂Y � Z∂Z � � KX � � 2XD � R2∂X

etc., where R2 � X2 � Y 2 � Z2. The 55 2nd-order operators formed from this Lie algebra of
differential operators satisfy 20 relations on the solution space, among which are

P � P � P2
X � P2

Y � P2
Z � 0 � M � M � M2

YX � M2
XZ � M2

ZY � 1
4 � D2 �

Every R-separable solution set is characterized by a pair of 2nd-order commuting conformal
symmetries. For ellipsoidal coordinates (R � 0) the operators can be chosen as M � M � �

a �
1 � P2

Y � aP2
Z , M2

XZ � aM2
YZ � aP2

Z , whereas for conical coordinates (R � 0 � they are M � M,
M2

XZ � aM2
YZ . The complicated characterizations suggest what is true, that the Lamé functions

associated with these separable systems have no simple tranformation properties under the
symmetry algebra, [8].

Computations involving separable solutions of the Laplace equation are simplified by
making use of a 2-variable model for the solution space: we represent solutions Ψ

�
X � Y � Z � in

an integral form

Ψ
�
X � Y � Z � � �

C1

dβ
�

C̃2

dϕh � β � ϕ � exp � β � iX cosϕ � iY sinϕ � Z ��� � I
�
h � �

where h is analytic on a complex domain that contains the integration contours C1 � C2 and is
chosen such that I

�
h � converges absolutely, and arbitrary differentiation with respect to X � Y � Z

is permitted under the integral sign. For each h, Ψ � I
�
h � is a solution of the Laplace equation

and the action of the conformal symmetries on the solution space corresponds to the operators

�
X � iβw1 � � Y � iβw2 � � Z � � β � D � β∂β � 1

2
�	� XY � � w2∂w1

�
� ZX � iw1β∂β � iw2

2∂w1
�
� ZY � iw2β∂β � iw1w2∂w1

where w2
1 � w2

2 � 1. (Indeed, w1 � cosϕ � w2 � sinϕ .) We shall not make use of the symmetries
K.

Let us find an integral representation for solutions Ψ that are eigenfunctions of the di-
lation operator D with eigenvalue ����� 1

2 . We choose C1 and C2 as unit circles in the β
and t � eiϕ complex planes, respectively, and require � to be a non-negative integer. Setting

h � � ����� 1
2 � h we find h

�
β � t � � β � � � 1 j

�
t � , j

�
t � � ∑

�
m � � � amtm. Then we evaluate the β

integral by residues to obtain

Ψ
�
X � Y � Z � � I

�
h � � � 2π

0
� X cosϕ � Y sinϕ � iZ � � j

�
eiϕ � dϕ �

Since M � M � 1
4 � D2 we have M � MΨ � ��� � � � 1 � Ψ. For j

�
t � � tm, ����� m ��� we have

M0Ψ � mΨ so Ψ must be a multiple of the solid harmonic R
�
Y m� � θ � φ � , expressed in spherical

coordinates. This model has an obvious extension to the Laplace equation in n dimensions.
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3. Niven operators

Niven constructed an operator that maps harmonic functions, i.e., solutions of the n � 3
Laplace equation that are homogeneous of degree � in X � Y � Z, into ellipsoidal solutions. In-
deed, it maps a conical coordinate solution to an ellipsoidal solution, and is an infinite-order
differential operator. A detailed technical construction is given in [9]. Here we give a much
simpler treatment. Our theory extends to cover Niven operators in n dimensions and for many
new coordinate systems.

Let H� be the space of solutions of the Laplace equation, homogeneous of degree � .
There is an operator F� , the Niven operator, such that relations�

M � M � �
a � 1 � P2

Y � aP2
Z � F� � F� � M � M ��

M2
XZ � aM2

YZ � aP2
Z � F� � F� � M2

XZ � aM2
YZ � � (1)

F� � 0F1

� ���� � 1 � 2 ;
1
4

�
�
a � 1 � P2

Y � aP2
Z ���

hold on H� . Thus F� is an intertwining operator on H � beween the spaces of separated conical
solutions and of separated ellipsoidal solutions, each expressible in terms of Lamé functions
[9, 8]. We verify (1) using the model, on the space � � of functions h

�
β � t ��� β � � � 1 j

�
t � .

Setting t � eiϕ we have �
a � 1 � � 2

Y � a
� 2

Z � β 2 � asin2 ϕ � cos2 ϕ � �
Set � ����� � � x � , where x � β 2 � asin2 ϕ � cos2 ϕ � . Thus on � � the Niven operator is just
multiplication by an ordinary analytic function of x. The first equation (1) on � � then reduces
to a second-order ODE for � � :

4x � �� � � � 4 � � 2 ��� � � � � � 0 �
The solution bounded at 0 is � � � 0F1

� ��� � 1 � 2;x � 4 � . Transferring this operator over to the
solution space via F� Ψ � I

� � � h � we obtain the required result. Note that a solution of the
intertwining equations is given by ΨE � I

�
h � where h �	� � β � � � 1 j

�
t � . Here, j

�
t � satisfies the

eigenvalue equation for Lamé functions, [8],
� � 2

XZ � a � 2
YZ � j � λ1 j for operators � on the

space of functions corresponding to homogeneity of degree � , exactly the same equation as
satisfied by the conical coordinate eigenfunctions. Thus we obtain the classical result [9] that
if Lm� � α � are Lamé polynomials then

Lm� � α � Lm� � β � Lm� � γ � � c
� 2K

� 2K
P� � µ � Lm� � δ � dδ �

µ � k2snα snβ snγ snδ � �
k2 � k  2 � cnα cnβ cnγ cnδ � �

1 � k  2 � dnα dnβ dnγ dnδ
where P� � z � is a Legendre polynomial.

To clarify the mechanism behind the Niven operator construction we consider the case of
general ellipsoidal coordinates for the N � 4 Laplace equation. General ellipsoidal separable
solutions for the Laplace equaton are characterized by the commuting operators

Γ 1 � M � M � � � a � b � ab � P2
X � �

a � b � P2
Y � �

1 � b � P2
Z � �

1 � a � P2
T � �

Γ 2 � �
a � b � M2

XY � �
1 � b � M2

XZ � �
1 � a � M2

XT � bM2
YZ � aM2

YT � M2
ZT� � �

1 � a � b � P2
X � abP2

Y � bP2
Z � aP2

T � �
Γ 3 � 1

2

�
abM2

XY � bM2
XZ � aM2

XT � � 1
6

�
abP2

X � � (2)
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Here, we have chosen the parameters for the ellipsoidal coordinates as�
e1 � e2 � e3 � e4 � � �

0 � 1 � a � b � �
where 1 � a � b. The associated conical cordinates are characterized by the commuting oper-
ators

Γ1 � M � M
Γ2 � �

a � b � M2
XY � �

1 � b � M2
XZ � �

1 � a � M2
XT � bM2

YZ � aM2
YT � M2

ZT �
Γ3 � 1

2

�
abM2

XY � bM2
XZ � aM2

XT � � (3)

Note that Γ  j � Γ j � Φ j, j � 1 � 2 � 3 where the Φ j are linear combinations of squares of linear
momentum operators. Thus,

� Γ i � Γ  j � � � Γi � Γ j � � �Φi � Φ j � � 0 � i � j � 1 � 2 � 3 �
It follows that the commutivity of the Γ  j implies the important commutation relations

� Γi � Φ j � � �Φi � Γ j � � 0 � 1 � i � j � 3 � (4)

Theorem: Let H� be the space of solutions of the 4D Laplace equation that are homogeneous
of degree � . There exists a Niven operator F� , such that the identities

Γ  jF� � F� Γ j � j � 1 � 2 � 3 �
hold on H� . The operator can be chosen in the form

F� � 0F1

�
��� � 1;

1
4

���
1 � a � b � P2

X � �
a � b � P2

Y � �
1 � b � P2

Z � �
1 � a � P2

T ��� �
The theorem is proved by employing the 3 variable model. These results extend to all

dimensions and to other separable systems.

4. Product formulas

Product formulas for Lamé and Heun functions are obtained by comparing the expression of an
ellipsoidal or conical coordinate separable solution as a product of Lamé (or Heun) functions
to the integral transform of a reduced product of such functions obtained from a lower variable
model. Here is a typical example. Consider solutions of the 4D Laplace equation in the
variables X � Y � Z, and T . We choose new coordinates

X � iY � R

�
uv
a

eiϕ � Z � R

� �
u � 1 � � v � 1 �

1 � a
� T � R

�
u � a � � v � a �

a
�
a � 1 � �

In these coordinates the Laplace equation becomes

�
∂ 2

R � 3
R

∂R � 1
R2 � � 4

u � v
�
�

P
�
u �

u
∂u
���

uP
�
u � ∂u � �

�
P
�
v �

v
∂v
���

vP
�
v � ∂v �
� � a

uv
∂ 2

ϕ � � � Ψ � 0 �
5



We look for separable solutions Ψ � R
�
U
�
u � V � v � epϕ with u � sn2 � µ � k � and take a � 1

k2 , and
with U

�
u � � �

sn
�
µ � k �
� � 1 � 2Û

�
µ � . The ODE satisfied by Û is the Heun equation [8]

�
∂ 2

µ � 1
4 � p2

sn2
�
µ � k � � k2 � � � 1

2
� � � � 3

2
� sn2 � µ � k � � 1

4

�
1 � k2 � � k2λ � Û �

µ � � 0 � (5)

An identical equation is satisfied by V̂
�
ν � The operator characterising separation is [5]

Λ � �
a � 1 � M2

XY � a
�
M2

XZ � M2
YZ � � M2

XT � M2
YT �

We can realise any homogeneous solution of degree � as an integral transform from the model:

Ψ � � � �
T � iX sinθ cosϕ  � iY sinθ sinϕ  � iZ cosθ � � f

�
θ � ϕ  � dθdϕ  �

We now seek eigenfunctions of Λ with eigenvalue λ in the model. If we look
for solutions of the form f

�
θ � ϕ � � W

�
w � epϕ where sinθ � sn

�
w � k � then with W

�
w � �

dn
�
w � k � � � � 3 � 2cn

�
w � k � 1 � 2Ω

�
ω � where w � ω � K, we see that Ω

�
ω � satisfies the (Heun) differ-

ential equation (5) with µ � ω , which is the exact same equation that arises from the separation
of the Laplace equation. The product formula takes the form

�
sn
�
µ � k � sn

�
ν � k �
� � 1 � 2M

�
µ � k � M �

ν � k � epϕ � c
� �

� � ik  sn
�
µ � k � sn

�
ν � k � cn

�
ω  � k � cos

�
ϕ � ϕ  �

� kcn
�
µ � k � cn

�
ν � k � sn

�
ω  � k � � i

k  dn
�
µ � k � dn

�
ν � k � dn

�
ω  � k ��� � sn

�
ω  � k � 1 � 2M

�
ω  � k � epϕ � dω  dϕ  �

Where the Heun function M
�
z � k � is a solution of the ODE above. The ϕ  integration of this

product formula could in principle be calculated. More results and detailed proofs will appear
in forthcoming papers.
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