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Some Applications of the Representation
Theory of the Euclidean Group in
Three-Space®

WILLARD MILLER, JR.

Introduction

In recent years several authors have studied the theory of certain special
functions through an analysis of the representation theory of the Lie groups and
algebras with which these functions are associated. In particular, the rotation
group and the Euclidean group in the plane have been so studied, [1], [3], [7].
Apparently, however, special functions associated with the representation theory
of the Euclidean group in three-space have not been systematically investigated.
This paper partially fills the gap.

We shall calculate the matrix elements of the unitary irreducible representa-
tions of the Euclidean group and determine complete sets of basis eigenfunctions
for several realizations of these representations. By comparing the representation
theory of the Euclidean group and that of its associated Lie algebra, we shall be
able to derive recursion relations and addition theorems for these functions. In
analogy with the situation for compact groups we shall also show that the matrix
elements of the unitary irreducible representations obey a series of orthogonality
and completeness relations. The special functions considered will be of two kinds:
generalized spherical functions and the so-called spherical waves of definite
energy and helicity, dealt with in scattering theory.

Most of the results concerning special functions presented in this paper are
known in one form or another. However, we derive them here in an elegant and
straight-forward manner and explicitly relate them to group theory. Also, the
generalization of the addition theorem for spherical waves, equation (3.22), 1S new.

Since we are interested primarily in the group and algebraic problems, measure
theoretical and convergence details will ordinarily be left to the reader. However,
the needed rigor can easily be supplied.

Furthermore, we assume that the reader i1s familiar with the representation
theory of the rotation group as given in [3] or [7].

* This paper was written while the author was a Visiting Member of the Courant Institute
of Mathematical Sciences, New York University. This Visiting Membership is supported by the
National Science Foundation, under grant number NSF-GP-1669. Reproduction in whole or in

- part permitted for any purpose of the United States Government.
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1. Resumé of the Representation Theory of &

The Euclidean group in three-space may be defined as the set of pairs {a, R},
where a is a real three-vector and R an element of the real proper orthogonal
group in three dimensions, i.e., a real 3 X 3 matrix such that RR! = I and

det R = 1, [1], [2]. The multiplication law 18

(1.1) {a,, Ri}{a,, Ro} = {a, + Rjay, RiRy} .

In this paper we are primarily concerned with &, the simply connected covering
group of the Euclidean group. &, may be defined as the set of pairs fa, A} where

a is a real three-vector and 4 is an element of SU(2), the group of 2 X 2 unitary
matrices with determinant +1, [2]. The matrices +4 determine the same

rotation R(A) given by

(1.2) Ax - cA* = (R(4)x) * o,
where @ stands for the Pauli matrices

0 1 0 —1 ] 0
(1.3) gt = ; g% = , gd =

1 0 7 0 0 -1

The multiplication law for &5 1s
(1.4) {a,, 4;}{ay, 4o} = {2, + R(A;)ay, 4145} -

In the following we shall usually write da instead of R(4)a.
This paper is concerned with calculations involving the unitary irreducible

representations of &, which act non-trivially on the translation subgroup of &5.
We shall list these representations in a form suitable for computation.

For every vector

p = {:PsinHcﬂsg}}psinﬁsiﬂﬁ,;ﬂﬂ{js E},

I:h
G 0<p,0=20=70=¢<2Zm,

where p, 6, @ are spherical coordinates, we define the matrix A(p) by
cos 02 ¢ —isin 6/2 ¢

(1.6) h(p) = | |
—isin 02 cos B2

From (1.2) it follows that

cos g cos  —sin ¢ cos @ sin G
(1.7) R(k(p)) = sin @ cos 0 cos @ sin @ sin 0
—sin f 0 cos 0

Setting p = (0, 0, p) we have the relation R(h(p))p = p. For 4 € SU(2) the
matrix

(1.8) Q(p, 4) = k7 (p)AR(4A7P)
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has the property R(Q(p, 4)p = p. Thus, Q(p, 4) can be taken to be an element
of 4, the two-sheeted covering group of the group of rotations about the z-axis.
A, is isomorphic to the multiplicative group of the complex numbers ¢/,
0 < % < 47. The unitary irreducible representations of #, are one-dimensional

and of the form
(1.9) Bm:x-—rﬂ_"m", 0=y <4dm,

where m can take the values 0, 413, 41, - .
Recall that every unitary irreducible representation of ¢’y which acts trivially

on the translation subgroup of &, i.e., which maps this subgroup into the identity
operator, is uniquely determined by an irreducible representation D(l) of SU(2).
Here 20 = 0, 1,2, - - and dim D(l) = 2[ + 1.

TueoreM 1. Let p be a real positive number and M the manifold of all 3-vectors p
such that p « p = p2 Denote by H(p, m) the Hilbert space of Lebesgue square-integrable
functions on M with inner product |

(1.10) Pl jﬂ ‘“L"ﬂp)g(w sin. 0/00.dp; # g Hiphd)

where P is given by (1.5) and 2m is an integer. Then, the unitary representation U of &4
defined on H(p, m) by

(1.11) [U(a, 4) f1(p) = ¢**B,, [k (p)Ah(47'p)]1/(47'p)

15 wrreductble.
Every continuous unitary representation of &g which acts non-trivially on the translation

subgroup is unitary equivalent to a representation of the form (1.11) for some choice of the
constants p, m. Two such representations Uy and U, are unitary equivalent if and only if
py = py and m; = my. Thus, the representations are uniquely determined by the pair of

numbers (p, m) where p > 0,2m =0, £1, £2,---.

The proof of this theorem is well known, [2]. The matrices h(p) were chosen
in the form (1.6) to simplify the computations to follow.

Let U be an irreducible unitary representation of &5 on a Hilbert space H
which is unitary equivalent to a representation (p, m) listed in Theorem 1. As 1s
well known, under the restriction of U to the compact subgroup SU(2) of &5, H
breaks up into a direct sum of subspaces R;, 2/ =0,1,2, ---. UISU(2) leaves
each R, invariant and is unitary equivalent in %, to a multiple of the irreducible
representation D(/) of SU(2). Thus,

o0
USU@2) =~ > n,D(l),
21=0
where the 7, are non-negative integers. In Section 4 we shall show that n, = 1
for l = |m| , |m| + 1, - - -, while n, = 0 for all other values of /. Hence,

o

(1.12) UIsSU@Q) =~ 3 D(l).

I=|m]
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2. The Representation Theory of E,

E,, the Lie algebra of &'y, is generated by the six elements &, 7,1 =1,2, 3,
with commutation relations

(£ il = einFre [Fo 2] = e

[Z;, 2] =0, b k=15 2580
where &, is the completely anti-symmetric tensor such that g3 = +1. The
F . generate the Lie algebra of SU(2); the &, generate the commutative Lie
algebra of the translation subgroup of &5 .

Consider a complex Hilbert space H and a representation v of Ej in terms of
linear operators on H, Set

(2.2) WP)=F, " (5 =%, k=1,2,3,
and define the operators P+, P—, P3, J*, J-, J® on H by means of
J* = FJ, + 1]y, JE =1z,

(2.1)

(2.3)
P* = FP, +iP,, P3=iP,, i=v—1.

Then we have
[J3,J%] = +£J=, [J3, P¥] = [P3,J%] = 4£P=,
(2.4) [J+, Pt] = [J, P7] = [J°, P?] =0,
LA T5) =20 [t o= BT =2,
where [4, B] = AB — BA for any two linear operators A and B on H. In general

the operators (2.3) are unbounded and the commutation relations (2.4) are not
everywhere defined on H.

As is well known, a continuous unitary representation U of &5 induces a
representation ¥ of E;. Further, U is irreducible if and only if » is irreducible.
Using these facts we can describe the irreducible representations of E3 which are
induced by the irreducible representations (p, m) of &5 .

Tueorem 2. Let U be an irreducible unitary representation of & on a Hilberl space
H, unitary equivalent to a representation (p, m) listed in Theorem 1. The irreducible
representation v of Ey induced by U acts on H as follows: H has an ortho-normal basts
consisting of the unit z:e?r:mrsf(”, l=|m|,Im|l +1,- ", k=—L—=l4+1,---, +L
In terms of this basis we have the relations

TP = kP, TP = [0+ k+ DU — PG,

Jf =+ B =k + DIV,

v [UEm+ D —m+ ) +k+HE—k+ D]
= P[ U+ 1220 +3)(2 + 1) ] fe'

kpm f— [(f + m)(l — m)(l + k) (I — ‘E)]HE (i—1)
T+ B2+ 1)(2 — 1) :

(2.5)

(2.6)




THEORY OF THE EUCLIDEAN GROUP IN THREE-SPACE 531

PO = 4, [(s + m + 1}({;;:;;;11(33?-(; i 3(: +k + 2)}1#2 a1
(2.7) —[(+ £+ D0 = D s S
LA A,
P = —p h(: +m + n{?;?;é;ﬁ;}; i 2&(: —k + t}]uﬂ )
(2:8) —[(+ R —k+ D] 5{5:1) |
B
(2.9) Pe P =_§ PP fiD = —p2f®
(2.10) P Jfd = Z PJ.f® = mof®.

We do not give a detailed proof of this theorem since very similar computations
are carried out for the Lorentz group in [3] and [4]. The modification of these
computations for the Euclidean group is simple. The basic idea of the proof
comes from the remarks immediately following Theorem 1. From formula (1.12)
and a knowledge of the representation theory of SU(2), we can find an ortho-
normal basis f®, [ = |m|, |m| + 1,-++, =l Sk =, for H such that equations
(2.5) hold. Expressions (2.6) are derived by algebraic manipulations from the
commutation relations (2.4).

3. Special Functions Associated with &,

We shall now use the results of Theorem 2 to compute the basis eigenvectors
fi of the irreducible representations of &3 listed in Theorem 1. Given an
irreducible unitary reprﬂsentatmn (p, m) In thc form (1.11), we can easily deter-
mine the operators Jt, J=, J3, P+, P~, P3 corresponding to the induced irreducible
representation of E3, [3] [5]. The results are

: d 0
7 SRR 2
J e (ﬂ:aﬂ+51nﬂ+zcmﬁ3¢)

(3.1) _,'i
J= Eatﬁ’

P* = —psin 0=, P3= —pcosl.
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The operators (3.1) satisty the commutation relations (2.4). The basis eigenvectors
1 will be functions of 6 and ¢. In fact, because of the relation J3{ = kf(") we
can set

P(@) = Qua0)e™,  I=|ml,|m| +1,---, k=—L—l+1,---, 4.
Using equations (2.5)—(2.8) and (3.1) we can determine the functions Q! .(0).

i

From (2.5) we see that J*f{” = 0. Hence, Q! ,(6) satisfies the equation

d m ;
(3.2) (ﬁ 4+ 7 k cot E) mild) =0.

The solution of (3.2) is
o =g el
(3.3 L0 = o [sing | |eosz|

where ¢, 1s a constant. From equations (2.5) it follows that

: 1 .
(34} -fnj—h(ﬂjgﬂ_hw N (J_jh[Qiu,!{ﬂ}Ew] -

IT [¢+ )0 —s+ D]

s=I—h

Using (3.1) and induction on £ we have

[+ B e
ke (0) =2t [(2551 ?; )kj J (1 — cos B) = —MIE(] 4 cos §)—F+mi2

(3.5) ik g
d(cos )"

b= |m|,|m| + 1,°>+, k=—L—=l+1,:2-,+1.

[(1 — cos 0)"="(1 + cos 6)™] ,

The constants ¢; are determined subject to the requirements that

2w
(3.6) j QL (0)[2sin OO dp = 1, S WG S IS
0

0

and that relations (2.6)—(2.8) are satisfied.
Setting £k = [ in (3.6) we have

/2 glzt-2m+1 2142m+1
(3.7) 87 icf»[} [Eil‘i -2‘} I:':DE g} d (g) = 1.
We can evaluate this integral to obtain
20 4+ 1)! s
(3.8 e e O e
dm(l —m)! ({ + m)!

Equation (2.7) yields the relation

L+m+ 1) —m+ 1)(2)]1fﬂ o~
(25 +3](£+ 11} 41

39)  sin0Qhy(0) = -
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Using (3.3) and (3.9) we can calculate the ratio between ¢; and ¢;;. The result is
that we can set

n : (20 + 1)! 1/2
== [41:{5 —m)! (I + m}!] '

Thus
=1y ((+ k) (204 1) < st
k=g | = m U+ M= R Umi™
(3.10) .
. (1 4 cos @) \BTANZ T(cos ) l:(l — cos 0)"(1 + cos 0) E+’”‘].

Note that Q) ,.(6)e = = ¥, ,(0), where the ¥, ;(6) are spherical harmonics, [3].

The functions @', (0) are closely related to the generalized spherical functions,

[3]. Itis shown in [3] that the matrix elements of the irreducible unitary repre-

sentation D(l) of SU(2), parametrized by the Euler angles ¢,, fl, @,, are given by
—imyy pl

Tin.k(qjli ﬂ-'f ?JE) = m,l'[:g:lg_fws 2
(3.11) mk=—0 —l+1,-,1,
0<g¢g; <41, 00 <7, 0=, < 27.

From the fact that these T matrices are unitary and form an irreducible repre-
sentation of SU(2), one can derive the following familiar relations:

(3.12)  PL(0) = Pp,(0) = P, 4(0)
Pf:ii.klﬂﬂ}Pf:rfg,kE(E} = E (Jrjamams | J, My + my) (J12kakes |J‘=- ky + k)
j :
X anl+m3,k1+l:3(6} 5

where the quantities (j; jsmms | j, my + my) are Clebsch-Gordon coeflicients, [1].
The P and Q functions are related by the simple formula

(3.13)

4o : (6).

(3.14) Proall) = m s o T

Returning to the problem of calculating the basis eigenvector of the represen-
tation (p, m) given in Theorem 1, we have

(3.15) SO Rl i m ke oo
: p) = Q. :(0)e
; e } ‘EC:FE:_E'I'I:.“}-I"{:
where Q! .(0) is given by (3.10). By substituting (3.15) and (3.1) into equations
(2.5)—(2.8) the reader can derive a series of recursion relations satisfied by the
functions @', (0). We omit this simple exercise.
By definition of the eigenvector £}, the relation

!
(3.16) U, AfP1R) = 3 The(ASP@



534 WILLARD MILLER, JR.

holds, where the T" matrices are given by (3.11) when SU(2) 1s parametrized by
the Eulerian angles. Thus, the matrix elements of U(0, A) are

(3.17) S, U0, A fP) = Tiw(4) du s
where (., .) is the inner product on H(p, m).
From (1.11) it follows that the matrix elements of U(r, I) are given by

(A U(x, DfH =,k p,ml L k](x)

(3'18} i E* ik ip.e )l ke o
=5 R (0" TP Qumr(0)e sin 0 d0 dp .

Writing r in spherical coordinates,
r = (rsin 0, cos g,, r sin 0, sin @,, 7 COS Bl
we make use of the well-known formula

- e E - —_—
(3‘19] et = 4"712 2 JI{PT) YJ.N(H:‘: *F‘,-) Y.!,r(ﬁ: ‘P) ?

=0 v=—I

where the j, are spherical Bessel functions. Substituting (3.19) mto the last
equation in (3.18), applying (3.13) and simplifying, we obtain

(2h + 1)(20" + 1}}”3

20 4+ 1
x ™2}, (pr) Yy 1w (0, @r) (B U,0,m|l, m)(h, ' k — K,k |LE) .
The fact that the U operators form a unitary representation of & allows us to
derive a number of relations satisfied by the functions (3.20). Thus, U*(r, I) =
U(—r, I) implies
(3.21) W,k |p,m L, K1(—x) = [I, k |p, m| I', K'](r) -
Further, the group property
U{I‘I,IJU(I'E, I) = U(ry + rEII)

U K |pym|l k =
i) oL |p, m| 1, K1(x) ,Zﬂ[

leads to
[, k" |p, m| L, k] (ry + r3)

3.22 = <
(3.22) = 3 S WK |pmln w2 ps m| L, k](xy) .

n=|m|v=—n

When m = ! = k' =0, (3.22) reduces to the addition theorem for spherical
waves

o n o0 9 1 1/2
7 (pr) Y, (6, @) = 2 Z z N (1-)114-.& —1 (2R + 1)(2n + 1)
y n=0r=-—n k=0 21 4+ 1

(3.23) % 7. (prain(pre) Yus(Orp @r) Yoz —(0r,s @1,)
poe {h,n,ﬂ,ﬁ]f,ﬁl}(h,n,k — T,w|£,k)

which was first derived by Friedman and Russek, [6]. Here, r =1; + ¥y .
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The group property
Ur, A) = U0, AH)U(Ax, I) = U(xr, 1) U(0, 4)
leads to the relations

l 7
324) 3 TLADL lpymljiod( A7) = 3 (L klpml, w1(E) The(4)

]
Fix [ and consider the 2/ + 1 component quantity

(3.25) i (x) = ([ s |p, mlJ, ¥](¥)); s=—l,—l+ 1,7, 4+,
for some j, ». Define the action W of &5 on y(r) by (in matrix notation)
(3.26) [W(a, 4) 751 (x) = T'(4)u50 (47 (x + a)) .

Then, (3.24) shows that x(r) is a spinor field of weight / and that in fact under
the action of SU(2) it transforms like the eigenvector ' of the irreducible repre-
sentation D(j). Further, (3.22) shows that

(327)  [W(a, Dylem](r) = E S (5 lp, ml g, ¥l@)7m (x) -

n=|m| e=—n
Let M(p, m,!l) be the complex linear manifold generated by the /-spinor
functions xﬁgfﬂ*:’, j=mly |m} + 1, ;= —=j—f 41,2, +). We can
uniquely define an inner product (. , .) on M(p, m, [), linear in the second argu-
ment, conjugate linear in the first, by requiring that

(328} {KESTT:;’?I: IE§:3=> = ailjaé"l"z
for all admissible j;, js, 71, #5. Completing M(p, m, [) with respect to (.,.) we
obtain the Hilbert space H(p, m,[). Denote again by W the action of &3 on
H(p, m, l) induced by (3.26). Then, it follows easily from (3.21)—(3.24) that W'is
a unitary irreducible representation of €5 on H(p, m, [), unitary equivalent to the
representation (p, m). In fact, the unitary equivalence maps the basis vector f,”
of (p, m) irito the'[-spinor IE;;,T}(I').

Note that we can construct a representation of &g unitary equivalent to
(p, m) for each value of [ = |m|, |m| + 1, ---.

Fixing [ again, we observe that the action of &3 on H(p, m, () induces an
irreducible representation of E;. The infinitesimal operators corresponding to
this representation are

. d i 3]
= i R e | PRt s =+
JEA=e [:I; aﬁwl—-;cutﬂaq? + 8=,
il i,

og

3-4) 0 6 o L

= e = {4 o= e o ]
P 3 l:islnﬂar+i r 33:Frsinﬁaqr 3
P5=icusﬂi—fsmgi

or r 06’
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where ¥ = (r sin 0 cos @, r sin 6 sin @, r cos /) and
gap S Tklpmli A ST RO k4 DI'R[LEF Lp, mlj, o],
Sk |p,mly, v] = k(L k [ps m|g, 7] .

By replacing the eigenvectors f,” with the lspinors 742 and substituting the
expressions (3.29) into equations (2.5)—(2.8) the reader can easily obtain a series
of recursion relations for the matrix elements [/, k |p, m| j, ](x). Note also that
(2.9) yields the equation

(3'31} (vz i PE)[‘!J k\p, m| J, P](r) =0,

where V2 is the Laplacian.

4. Completeness and Orthogonality Relations

Because of the group relation U(r, 4) = U(r, I)U(0, 4) it follows easily that
the general matrix element (3", U(r, 4) f ()y corresponding to the representation
(p, m), is given by

(fP, Ulx, 4)fL) = {h; 5 |p, mlJ, kj(x; 4)

j 3
— 2_ [.'II,JF [P;, mij:— fi'II]I::I-:I Tff,l‘.(A} ]

p—=

(4.1)

It is well known that the matrix elements T{",Jk{i—':[j defined forj=3,1,3, -+, %
k= —j, —j+ 1, -, +jsatisly the orthogonality relations

j i ﬁjl-faé"l”zﬁkll’z
(4.2) TT 4 (A) The  (4) dA = 22 :
ST &l 2j; + 1

where dA is the Haar measure on SU(2), normalized so that the volume of SU(2)
is 1, [7]. We shall give a similar set of orthogonality relations for the matrix

elements (4.1).
The Haar measure on & is given by d4 d®r, where d°r is the Haar measure on

the translation subgroup of £%. The following orthogonality relations hold:

fjfdﬂr j dA{hy 5 51 1Py my| jrk } (x5 A) ka5 S22 s Myl Jg » ka}(x; 4)
{4__'3) ek SU(2)

o(p1 — Ps)

P

WhEI'E k-i.’rji. = tmfl:r Imfl + 1:' 11 R R '“h-;':r "_h-;' + 1: ey 'I"hz': ki = _jf:
—+ 1, s pe > 0= 1, 9. One obtains this result by substituting the
expressions (4.1) and (3.18) for the matrix elements in (4.3) and by making use
of (4.2) and the Fourier integral theorem.

— 2 )
= 4m 5F¢1h2'§31#3{1}j1j2 kkg Y My ’
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Another well known property of the matrix elements 77,(4) is that they

form a complete orthogonal basis for the Hilbert space of functions defined on

SU(2) and square integrable with respect to the Haar measure dA4, [7]. The
completeness relations satisfied by the functions {4, s | p, m| §, k}(x, A) are somewhat

more complicated.

Let H be the Hilbert space of complex functions f(r, 4) defined on &, and
square integrable with respect to the Haar measure d4 d®r. The inner product is
given by

(4:4) (f;8) = ! Sz, 4) g(r, 4) d4 d°r, fgeH.

TraEOREM 3. Let fe H Then

L PE d.ﬂ 'ﬁ;im;l,rfp)

x {j,m|p, n| L, iu}{r,fi},

IAm p i

(4.5) -

where the coefficients b(p) are given by

(4.6) b5 mi (P _,_}—I ” {Js m |p, nl L, vj(x, 4) f(x, 4)d4 d°r
&y

Furthermore,

I ;
— ”] flr, A)[2 dA d3r
= _Z

(4.7) :

2 z z E{fplhjm“(.p”ﬂ{m_

li| h=in| v==1 m=—j

Ma

The convergence in expressions (4.5) and (4.6) is in the mean.

Proof: We give an outline of the proof, leaving the measure theoretic and
convergence details to the reader. We define a representation U of &'; on H, the
left-regular representation, by means of the formula

[U(a, 4) f](x, B) = f(47(x + a), 47 B),

(4.8)
feH, A, BeSU?2).

From the definition of the inner product (4.4) it is easily checked that U is unitary.
Now consider the Hilbert space H', an exact copy of H. On H' we define the
unitary representation U’ of &,:

(U’ (a, 4)g](p, B) = e %g(4-1p, 41B) ,

(4.9)
geH', A, BeSU?),
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The representations U and U’ are unitary equivalent. In fact, the mapping

V:H—H’
defined by
1 :
(4.10) (VF} (p, B) = (2'”}3;2 IJ.J.E-'W-:J"[:I', B)d3r , feH,

is a unitary transformation of H onto H’ such that U(a, 4) = VU’ (a, A)V for
all (a, 4) € &5. Recall that V-1 is given by

(4.11) (V-] (r, B) = {2;}3,2 fffﬁ“*g(p, B)dp, geH"

Under the restriction of U’ to the compact subgroup SU(2), H" splits mto a
direct sum of invariant subspaces, each subspace transforming according to an
irreducible representation D(j) of SU(2). We shall exhibit this decomposition
explicitly.

Let R be a subspace of H’ transforming according to the representation D(j).
Then, there is a (2j 4 1)-dimensional basis X(p, B), m = —j, —j + 1, * "],
for R such that the action of SU(2) on this basis is given by

[U(0, 4)XP)(p, B) = XP(4'p, 47B)

(4.12) :

= 5 T4 XP(p, B) .

n=—j

As in Section 1, given p we define the positive number p by p.p = p® and set
p = (0,0, p). (From now on we assume p 7 0 since the set of points for which
p = 0 is of measure zero.) We recall that the matrix k(p) € SU(2) defined by
(1.6) has the property that h(p)p = p. Using these facts, we see that (4.12) can
be written in the form

. J : ﬂ
(4.13) XP(p,B) = Y Tha(h(@)X7(®: 7 (P)B), BesSUQ2) .

n=—j

Thus, the functions X{) are completely determined by their values on the mani-
fold consisting of the points (p, B), B € SU(2). Since the functions 17, ,, form a
complete orthogonal basis for functions on SU(2) square integrable with respect
to Haar measure, we have the expansion

o0 [ [
(4.14) Q@B =3 3 2 od(pTh(B)

where the o} , are functions of p. Choose €€ SU(2) such that Cp=p. Itis
easily shown that T%,.(C) = 8,,¢ ™% for some @ such that 0 = ¢ < 47, [3].
From (4.12) we obtain the relation

(4.15) X9(p,C1B) = e+ XY (B, B) -
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Comparing (4.15) with (4.14) we conclude that of,(p) =0 unless k = m.
Furthermore, [ 4+ j must be an integer.

Substituting (4.14) into (4.13) and using the fact that the 7" matrices form a
representation of SU(2), we see that the functions X’ have the form

w (s B) = z z z z smite(P) Tonn(B(D))
(4'16) n=—gr=—ls=—1I

X Lo 2ol T (B).
ﬁqnv:rscl}r, it is easy to show that the quantity on the right side of (4.15) trans-

forms properly under SU(2). From the parametrization of i(p) by Euler angles
and equations (3.12), (3.15), the 7" matrices can be expressed in terms of the @
functions, with the result

47
V(2 + D2+ 1)
0=S0=2m0=p< 2.

T3, (h(p)) T, (i (p)) = ¢ ~™(—1)
(4.17)

1 (0)Q5,4(6) ,

If f € H, the preceding considerations show that Vfe H' can be expanded in
the form

(4.18) (V) B) = 2" * 2 oz o(P) T u(h(P)) T, s(h7' () T, (B) -

HHL L8

Application of the transformation V! to ¥Vf and comparison with equations (3.18)
and (4.17) yield the expansion (4.5), where

9 1/2 _
.Tm.h(P} |:'1'T|:2j+ lj(2£+ lj:l ("_‘I)ﬂ af.m;»!,v(f;') .

Equation (4.6) follows from the orthogonality relations (4.3).

It is now convenient to derive equation (1.12). We follow the notation of
Section 1. Suppose the functions f/) e H(p, m), » = —j, —j + 1, "+, +J, form
a basis for the representation D(j) of SU(2). Thus,

B, [ 1(x)Ah(Ar)] f9(41r) = Z? T*”{A}f‘-”{r}

=
forallre M, A eSU(2) .
Set A1 = k(p), r = p to obtain

(4.19)

(4.20) fPp) = Z T (7 (P)) S () ; PEM,

p=—]

where the quantitiﬁsf”}(“} are constants. Choose C € SU(2) such that Cp = p.
Then, Ti,(C) =¢ ”“’& for some @, 0 = ¢ < 4w. In (4.19) we set 4 = C,
r = p to derive

(4.21) e~ fP(P) = e Mf (D) -
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We conclude that 9 (p) = 0 for » # m and that
(4.22) f9)(p) = ¢Th,,(k(P)) »

where ¢ is a constant. Conversely, the quantity on the right side of (4.22)
transforms correctly under SU(2). This proves (1.12).

5. Concluding Remarks

The [-spinor functions 735" (r) defined by (3.25) are of special importance in

mathematical physics. It is known that an [-spinor 6(r) satisfying the wave
equation (V2 + p?)0(r) = 0 can be expanded as a countable linear combination
of the spinors 7&™(x) where v = —j, —j + 1, +> i = Imly [ml + 1,7
ARy ey s ) B Gl 2 P Such an expansion 1s useful because of the
simple transformation properties of the y’s under the action of &4 . Thus, the
results obtained in Section 3 yield recursion relations and addition theorems for
spinor-valued solutions of the wave equation.

Bibliography

[1] Lyubarskii, G. Ya., The Application of Group Theory in Physics, Pergamon Press, New York, 1960.

[2] Wightman, A. 5., On the localizability of quantum mechanical systems, Rev. Mod. Phys., Vol. 34,
1962, pp. 845-872.

[3] Gelfand, I. M., Minlos, R. A., and Shapiro, Z. Ya., Representations of the Rotation and Lorentz
Groups and Their Applications, Pergamon Press, New York, 1963.

[4] Naimark, M. A., Les Representations Lineaires du Groupe de Lorentz, Dunod, Paris, 1962.

(5] Halmermesh, M., Group Theory and its Application to Physical Problems, Addison-Wesley, Reading,
Mass., 1962,

[6] Friedman, B., and Russek, J., Addition theorems for spherical waves, Quart. Appl. Math.,
Vol. 12, 1954, pp. 13-23.

[7] Wigner, E. P., The Application of Group Theory to the Special Functions of Mathematical Physics,
Lecture Notes, Princeton University, 1935.

(8] Wickmann, E. H., Quantum Field Theory, Mimeographed Notes, Unv. California, Berkeley,
1960, see Chap. 7.

Received May, 1964.



