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Abstract

A classical (or quantum) superintegrable system of second or-
der is an integrable n-dimensional Hamiltonian system with potential
that admits 2n − 1 functionally independent constants of the motion
quadratic in the momenta, the maximum possible. For n=3 on confor-
mally flat spaces with nondegenerate, i.e., 4-parameter potentials (the
extreme case) we have worked out the structure and classified most
of the possible spaces and potentials. Here we extend the analysis to
a more degenerate class of functionally linearly independent superin-
tegrable systems, the 3-parameter potential case. We show that for
“true” 3-parameter potentials the algebra of constants of the motion
no longer closes at order 6 but still all such systems are Stäckel trans-
forms of systems on complex Euclidean space or the complex 3-sphere.
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This is a significant step toward the complete structure analysis of all
types of second order superintegrable systems.

1 Introduction

This paper is part of a series analyzing the structure of second order super-
integrable systems [1, 2, 3, 4, 5] on conformally flat Riemannian manifolds.
In 2D the structure is well understood and the possible systems have been
classified, [6, 7, 8, 9]. The 3D case is more typical of the general nD problem
and much remains to be done, although the basic outlines are now clear.
To describe the situation we briefly review some important definitions. An
n-dimensional complex Riemannian space is conformally flat if and only if it
admits a set of local coordinates x1, · · · , xn such that the contravariant met-
ric tensor takes the form gij = δij/λ(x). A classical superintegrable system
H =

∑

ij gijpipj +V (x) on the phase space of this manifold is one that admits
2n− 1 functionally independent generalized symmetries (or constants of the
motion) Sk, k = 1, · · · , 2n − 1 with S1 = H where the Sk are polynomials
in the momenta pj. That is, {H,Sk} = 0 where

{f, g} =
n

∑

j=1

(∂xj
f∂pj

g − ∂pj
f∂xj

g)

is the Poisson bracket for functions f(x,p), g(x,p) on phase space [10, 11,
12, 13, 14, 15, 16, 17]. It is easy to see that 2n− 1 is the maximum possible
number of functionally independent symmetries and, locally, such (in general
nonpolynomial) symmetries always exist.

A system is second order superintegrable if the 2n − 1 functionally inde-
pendent symmetries can be chosen to be quadratic in the momenta. Usually
a superintegrable system is also required to be integrable, i.e., it is assumed
that n of the constants of the motion are in involution, although we do not
make that assumption here. Our ultimate goal is to develop tools that will
enable us to study the structure of superintegrable systems of all orders and
to develop a classification theory. We are starting with second order systems
because it is the most tractable case. Thus each of the 2n − 1 symmetries
takes the form S =

∑

aij(x)pipj + W (x), quadratic in the momenta. There
is an analogous definition for second-order quantum superintegrable systems
with Schrödinger operator

H = ∆ + V (x), ∆ =
1√
g

∑

ij

∂xi
(
√

ggij)∂xj
,

2



the Laplace-Beltrami operator plus a potential function, [18]. Here there are
2n − 1 second-order symmetry operators

Sk =
1√
g

∑

ij

∂xi
(
√

gaij
(k))∂xj

+ W (k)(x), k = 1, · · · , 2n − 1

with S1 = H and [H, Sk] ≡ HSk−SkH = 0. A basic motivation for studying
these systems is that they can be solved explicitly and in multiple ways. It is
the information gleaned from comparing the distinct solutions and expressing
one solution set in terms of another that is a primary reason for their interest.

For n = 3 the number of functionally independent second order symme-
tries is 5. The analysis of the corresponding superintegrable systems splits
into two cases depending on whether these symmetries are functionally lin-
early independent (FLI) or not. A set of second order symmetries is func-
tionally linearly independent (or continuously linearly independent) if the
corresponding set of quadratic forms aij(x) is linearly independent at each
regular point x, [1, 3, 5]. Otherwise the set is functionally linearly depen-
dent (FLD). For nondegenerate, i.e., 4-parameter, potentials treated in [3]
and for the 3-parameter potentials treated here we assume that the sys-
tem admits 5 functionally linearly independent second order symmetries.
Second order superintegrable systems for which this is not the case must
necessarily involve potentials that satisfy a 1st order linear PDE [5]. An
example of a system with 5 functionally linearly dependent second order
symmetries is the Calogero potential [19, 20, 21, 5]. Another example is the
second order superintegrable flat space system with 3-parameter potential
V (x, y, z) = α/(x + iy)2 + β/(x + iy) + γ/z2. Though this potential is 3-
parameter we will not analyse it in this paper because the corresponding
system is FLD.

In addition to admitting 5 functionally linearly independent second order
symmetries, a 3-parameter potential must be expressible in the form

V (x, y, z) = αV (1)(x, y, z) + βV (2)(x, y, z) + γV (3)(x, y, z) (1)

where α, β, γ are parameters and the gradients of the V (i), i = 1, 2, 3, are
assumed linearly independent for each (x, y, z) in some open set of C3. Here
we are ignoring a trivial additive parameter to the potential. Differentiating
(1) with respect to x, y, z, respectively, we can solve the resulting 3 equa-
tions for α, β, γ as linear functions of V1, V2, V3. (Here V1 = Vx, V12 = Vxy,
etc.) Now, differentiating (1) twice with respect to x and substituting the
expressions for the parameters as functions of the first derivatives we obtain
the parameter-free equation

V11 = Ã11(x, y, z)V1 + B̃11(x, y, z)V2 + C̃11(x, y, z)V3.
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Similarly, we can derive the canonical system of 6 2nd order PDEs,

Vij = ÃijV1 + B̃ijV2 + C̃ijV3, 1 ≤ i ≤ j ≤ 3, (2)

satisfied by the potential. Note that the integrability conditions for this
system will be satisfied identically. Further, the solution space of this system
is exactly 4-dimensional and a solution is uniquely determined at a regular
point (x0, y0, z0) by specifying the values of V1, V2, V3 and V at the point.
(Here as usual we will ignore the additive constant and the freedom to specify
V .)

Recall that the canonical system of 5 PDEs for a nondegenerate potential
is

V22 = V11 + A22V1 + B22V2 + C22V3,
V33 = V11 + A33V1 + B33V2 + C33V3,
Vij = AijV1 + BijV2 + CijV3,

(3)

where 1 ≤ i < j ≤ 3. Clearly, a 3-parameter potential also satisfies (3) with
the identifications

Ajj = Ãjj − Ã11, Bjj = B̃jj − B̃11, Cjj = C̃jj − C̃11, j = 2, 3, (4)

Aij = Ãij, Bij = B̃ij, Cij = C̃ij , 1 ≤ i < j ≤ 3.

If V is a nondegenerate, i.e., 4-parameter, potential then the integrability
conditions for (3) are satisfied identically. If V is 3-parameter then the in-
tegrability conditions for (2) are satisfied identically, but the integrability
conditions for (3) may not all be satisfied.

A 3-parameter potential for a superintegrable system can arise in two
distinct ways. First, the potential could be a linear restriction of a nonde-
generate potential. For example, the potential

Ṽ = α
(

(x − iy)3 + 6(x2 + y2 + z2) + (x − iy) + (x − iy)2 + 2(x + iy)
)

+γ(x−iy)+δz,

is the restriction β = α − δ of the nondegenerate potential

V = α
(

(x − iy)3 + 6(x2 + y2 + z2)
)

+ β
(

(x − iy)2 + 2(x + iy)
)

+γ(x − iy) + δ((x − iy)2 + 2(x + iy) + z).

For the nondegenerate potential the canonical equations take the form (3)
and it is not possible to solve for V11 in terms of V1, V2, V3 whereas for the
3-parameter restriction we have a unique solution.

A second way the canonical equations (4) could arise is from the Bertrand-
Darboux (B-D) equations for the 5 second order symmetries. As shown in [3],
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the rank of the second derivative terms in the 12 nontrivial B-D equations
is 5, so the B-D equations must lead to the canonical conditions (3), plus
possibly additional linear conditions involving only the first derivative terms
Vj . However, for a 3-parameter potential no first order linear conditions can
occur, since otherwise the potential would depend on strictly fewer than 3
parameters. Thus the equations must be (3) alone, but the integrability
conditions are not identically satisfied. To obtain a 3-parameter potential
the only possibility is that there is a single integrability condition and it is
equivalent to V11 = A11V1 + B11V2 + C11V3. We call such superintegrable
potentials true 3-parameter potentials.

The best known true 3-parameter system in Euclidean space is the ex-
tended Kepler-Coulomb potential:

V (1) =
α√

x2 + y2 + z2
+

β

x2
+

γ

y2
(5)

The classical Hamilton-Jacobi equation, or the quantum Schrödinger equa-
tion, admits separable solutions in four coordinate systems: spherical, sphero-
conical, prolate spheroidal and parabolic coordinates. The bound states are
degenerate and important special function identities arise by expanding one
basis of separable eigenfunctions in terms of another. However, the space of
second order symmetries is only 5-dimensional (as compared to 6 for non-
degenerate potentials) and, although there are useful identities among the
generators and commutators that enable one to derive spectral properties
algebraically, there is no finite quadratic algebra structure. Two other ex-
amples that can be made real in real Euclidean space are given by Evans:

V (2) =
αx

y2
√

x2 + y2
+

β

y2
+ γz, (6)

V (3) =
αx

y2
√

x2 + y2
+

β

y2
+

γ

z2
. (7)

A complex Euclidean example that is real in Minkowski space is

V (4) =
α

(x + iy)2
+ β(x2 + y2 + z2) + γz. (8)

A complex sphere example, real on the hyperboloid u2
1 − u2

2 + u2
3 − u2

4 = 1, is

V (5) =
a

(s1 + is2)
√

s2
1 + s2

2

+
b

(s1 + is2)2
+

c

(s3 − is4)2
(9)

where s2
1 + s2

2 + s3
3 + s2

4 = 1. For all these cases the space of second order
symmetries is exactly 5-dimensional and the quadratic algebra does not close,
although it has a rich structure.
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In this paper we shall show clearly how to distinguish between restrictions
of systems with nondegenerate potentials and systems with true 3-parameter
potentials just from the structure of their second order symmetry algebras.
Further we will uncover the structure of the higher order symmetries for true
3-parameter potentials and prove multiseparability and lack of closure of the
algebra of symmetries. We treat only the classical case here. Proofs of the
analogous results for quantum systems are straight forward, just as in [5].

2 Conformally flat spaces in three dimensions

We adopt the notation for a classical superintegrable system with 3-parameter
potential on a conformally flat space, as given in the introduction. Thus the
system will admit 5 functionally linearly independent second order symme-
tries (or constants of the motion)

S =
3

∑

k,j=1

akj(x, y, z)pkpj + W (x, y, z) ≡ L + W, ajk = akj

. The symmetry condition {H,S} = 0 where H = (p2
1 + p2

2 + p2
3)/λ(x, y, z) +

V (x, y, z) leads to the second order Killing tensor equations

aii
i = −G1a

1i − G2a
2i − G3a

3i

2aij
i + aii

j = −G1a
1j − G2a

2j − G3a
3j , i 6= j

aij
k + aki

j + ajk
i = 0, i, j, k distinct

(10)

and

Wk = λ
3

∑

s=1

askVs, k = 1, 2, 3. (11)

(Here a subscript j denotes differentiation with respect to xj and λ = exp G.)
The requirement that ∂xℓ

Wj = ∂xj
Wℓ, ℓ 6= j leads from (11) to the second

order B-D partial differential equations for the potential.

3
∑

s=1

[

Vsjλasℓ − Vsℓλasj + Vs

(

(λasℓ)j − (λasj)ℓ

)]

= 0. (12)

We assume five functionally linearly independent constants of the mo-
tion (including the Hamiltonian itself). Thus the Hamilton-Jacobi equation
admits four additional constants of the motion:

Sh =
3

∑

j,k=1

ajk
(h)pkpj + W(h) = Lh + W(h), h = 1, · · · , 4.
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Assuming also that V is 3-parameter, we substitute the requirement for a
3-parameter potential (2) into the B-D equations (12) and obtain three equa-
tions for the derivatives ajk

i , the first of which is

(a11
3 − a31

1 )V1 + (a12
3 − a32

1 )V2 + (a13
3 − a33

1 )V3 (13)

+a12(A23V1 + B23V2 + C23V3) − (a33 − a11)(A13V1 + B13V2 + C13V3)

−a23(A12V1 + B12V2 + C12V3) + a13(A33V1 + B33V2 + C33V3)

= (−G3a
11 + G1a

13)V1 + (−G3a
12 + G1a

23)V2 + (−G3a
13 + G1a

33)V3,

and the other two are obtained in a similar fashion.
The integrability conditions satisfied by the 3-parameter potential equa-

tions can be expressed as follows. We introduce the vector v = (V1, V2, V3)
T,

and the matrices Ã(j), j = 1, 2, 3, where

Ã(1) =







Ã11, B̃11, C̃11,

Ã12, B̃12, C̃12,

Ã13, B̃13, C̃13





 , Ã(2) =







Ã12, B̃12, C̃12,

Ã22, B̃22, C̃22,

Ã23, B̃23, C̃23





 ,

Ã(3) =







Ã13, B̃13, C̃13,

Ã23, B̃23, C̃23,

Ã33, B̃33, C̃33





 .

Then
∂xj

v = Ã(j)v j = 1, 2, 3. (14)

The integrability conditions for this system are

Ã
(j)
i − Ã

(i)
j = Ã(i)Ã(j) − Ã(j)Ã(i) ≡ [Ã(i), Ã(j)]. (15)

The integrability conditions (15) are analytic expressions in x1, x2, x3 and
must hold identically. For convenience in the computation to follow we define

U1 = Ã
(3)
2 − Ã

(2)
3 = Ã(i)Ã(j) − [Ã(2), Ã(3)] (16)

plus cyclic permutations, so that the conditions are U1 = U2 = U3 = 0
There are 6×3 = 18 first partial derivatives ajk

i of a quadratic symmetry.
There are 10 Killing tensor conditions (10) for these derivatives and 3×3 = 9
conditions from the 3 B-D equations (13) and its companions. (Since each
derivative Vj can be prescribed arbitrarily at a point, each B-D equation
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yields 3 conditions.) Thus we can use 18 conditions to solve for all of the ajk
i

of and obtain

a11
1 = −G1a

11 − G2a
12 − G3a

13 (17)

a22
2 = −G1a

12 − G2a
22 − G3a

23,

a33
3 = −G1a

13 − G2a
23 − G3a

33,

3a12
1 = a12A22 − (a22 − a11)A12 − a23A13 + a13A23

+ G2a
11 − 2G1a

12 − G2a
22 − G3a

23,

3a11
2 = −2a12A22 + 2(a22 − a11)A12 + 2a23A13 − 2a13A23

− 2G2a
11 + G1a

12 − G2a
22 − G3a

23,

3a13
3 = −a12C23 + (a33 − a11)C13 + a23C12 − a13C33

− G1a
11 − G2a

12 − 2G3a
13 + G1a

33,

3a33
1 = 2a12C23 − 2(a33 − a11)C13 − 2a23C12 + 2a13C33

− G1a
11 − G2a

12 + G3a
13 − 2G1a

33,

3a23
2 = a23(B33 − B22) − (a33 − a22)B23 − a13B12 + a12B13

− G1a
13 − 2G2a

23 − G3a
33 + G3a

22,

3a22
3 = −2a23(B33 − B22) + 2(a33 − a22)B23 + 2a13B12 − 2a12B13

− G1a
13 + G2a

23 − G3a
33 − 2G3a

22,

3a13
1 = −a23A12 + (a11 − a33)A13 + a13A33 + a12A23

− 2G1a
13 − G2a

23 − G3a
33 + G3a

11,

3a11
3 = 2a23A12 + 2(a33 − a11)A13 − 2a13A33 − 2a12A23

+ G1a
13 − G2a

23 − G3a
33 − 2G3a

11,

3a33
2 = −2a13C12 + 2(a22 − a33)C23 + 2a12C13 − 2a23(C22 − C33)

− G1a
12 − G2a

22 + G3a
23 − 2G2a

33,

3a23
3 = a13C12 − (a22 − a33)C23 − a12C13 − a23(C33 − C22)

− G1a
12 − G2a

22 − 2G3a
23 + G2a

33,

3a12
2 = −a13B23 + (a22 − a11)B12 − a12B22 + a23B13

− G1a
11 − 2G2a

12 − G3a
13 + G1a

22,

3a22
1 = 2a13B23 − 2(a22 − a11)B12 + 2a12B22 − 2a23B13

− G1a
11 + G2a

12 − G3a
13 − 2G1a

22,

3a23
1 = a12(B23 + C22) + a11(B13 + C12) − a22C12 − a33B13

+ a13(B33 + C23) − a23(C13 + B12)

− 2G1a
23 + G2a

13 + G3a
12.

3a12
3 = a12(−2B23 + C22) + a11(C12 − 2B13) − a22C12 + 2a33B13

+ a13(−2B33 + C23) + a23(−C13 + 2B12)

8



− 2G3a
12 + G2a

13 + G1a
23.

3a13
2 = a12(B23 − 2C22) + a11(B13 − 2C12) + 2a22C12 − a33B13

+ a13(B33 − 2C23) + a23(2C13 − B12)

− 2G2a
13 + G1a

23 + G3a
12.

The remaining condition is

a11(C̃12− B̃13)+a22(Ã23− C̃12)+a33(B̃13− Ã23)+a12(Ã13 + C̃22− C̃11− B̃23)
(18)

+a13(C̃23 + B̃11 − B̃33 − Ã12) + a23(B̃12 + Ã33 − Ã22 − C̃13) = 0,

which we can regard as an obstruction to extending the assumed 5-dimensional
space of second order symmetries to the full 6-dimensional space of quadratic
forms. (Note that the analogous obstruction equation appears for the non-
degenerate potential case in [3], but there the linear integrability conditions
for the nondegenerate potential cause the obstruction to vanish identically.)

Since the system (17) is in involution, a second order symmetry is de-
termined up to a trivial added constant by the value of the quadratic form
aij(x0) at a single regular point. Thus the dimension of the space of second
order symmetries ( ≥ 5 by assumption) cannot exceed 6. We will show that
the dimension is 6 if and only if the 3-parameter potential is a restriction of
a nondegenerate potential. Further, the obstruction (18) vanishes identically
if and only if the dimension is 6. This is a satisfying solution of our first
structure problem. Unfortunately, the proof is lengthy.

3 No obstruction implies nondegenerate po-

tential

Suppose the obstruction (18) vanishes identically. Then the conditions

C̃12 = B̃13 = Ã23, Ã13 + C̃22 − C̃11 − B̃23 = 0, (19)

C̃23 + B̃11 − B̃33 − Ã12 = 0, B̃12 + Ã33 − Ã22 − C̃13 = 0

must hold identically.
To determine the dimension of the solution space of second order sym-

metries we need to study the integrability conditions for equations (17). For
the integrability conditions we define the vector-valued function

h(x, y, z) =
(

a11, a12, a13, a22, a23, a33
)T

9



and directly compute the 6 × 6 matrix functions A(j) to get the first-order
system

∂xj
h = A(j)h j = 1, 2, 3, (20)

under the assumptions (19). The integrability conditions for this system are

A(j)
i h −A(i)

j h = A(i)A(j)h−A(j)A(i)h ≡ [A(i),A(j)]h. (21)

In terms of the 6 × 6 matrices

S(1) = A(3)
2 −A(2)

3 − [A(2),A(3)], S(2) = A(1)
3 −A(3)

1 − [A(3),A(1)],

S(3) = A(2)
1 −A(1)

2 − [A(1),A(2)],

the integrability conditions are

S(1)h = S(2)h = S(3)h = 0 (22)

We can proceed in analogy with the proof in [3] of the 5 =⇒ 6 Theorem
for nondegenerate potentials.

Assume first that the system of equations (17) admits a 6-parameter
family of solutions ajk. Thus at any regular point we can prescribe the
values of the ajk arbitrarily. This means that (21) or (22) holds identically
in h. Thus S(1) = S(2) = S(3) = 0. Using these expressions, we can perform
a tedious but straightforward Maple-assisted computation that yields

1. An expression for each of the first partial derivatives ∂ℓÃ
ij , ∂ℓB̃

ij , ∂ℓC̃
ij,

for the 18 functions as homogeneous polynomials of order at most two
in the Ãi′j′, B̃i′j′, C̃i′j′. There are 54 = 3 × 18 such expressions in all.
An example is

B̃12
2 =

2

3
Ã12B̃12 − 1

6
B̃12G2 −

5

6
G1Ã

12 − 1

6
G1G2

+
1

3
(B̃22 − B̃11)B̃12 +

1

3
(B̃22 − B̃11)G1 +

1

3
Ã23B̃23 − 7

6
G3Ã

23 +
1

2
G12.

2. Exactly 5 quadratic identities for the independent functions (in addition
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to the linear identities (19)):

(a) −A23B33 − A12A23 + A13B12 + B22A23 + B23A33

+1
2
A22G3 − 1

2
A33G3 − 1

2
B12G3 − 1

2
G1G3

−1
2
A13G1 + 3

2
G13 − 1

2
A23G2 − A22B23 = 0,

(b) (A33)
2
+ B12A33 − A33A22 − B33A12 − C33A13 + B22A12

−B12A22 + A13B23 − (A12)
2
+

3
2
G22 − 1

2
G2

y − 3
2
G33 + 1

2
A13G3 + 1

2
B33G2+

−1
2
A22G1 + 1

2
A33G1 − 1

2
B23G3 − 1

2
B22G2 + 1

2
C33G3 + 1

2
(G3)

2 = 0,

(c) − (B33)
2 − B33A12 + B33B22 + B12A33 + B23C33 − (B23)

2

+ (B12)
2
+ 1

2
(G1)

2 − 3
2
G11 + 3

2
G33

−1
2
B33G2 − 1

2
A33G1 − 1

2
(G3)

2 − 1
2
C33G3 = 0,

(d) −B12A23 − A33A23 + A13B33 + A12B23

+3
2
G23 − 1

2
A23G1 − 1

2
A12G3

−1
2
B23G2 − 1

2
G2G3 − 1

2
B33G3 = 0,

(e) A12B12 + C33A23 − A23B23 + B33A22 − B33A33

+3
2
G12 − 1

2
G1G2 − 1

2
A12G1

−1
2
B12G2 − 1

2
A23G3 = 0

(23)

There are no nontrivial conditions in which some derivative of G is involved
as a factor in each term and no conditions other than those described here..

Theorem 1 (5 =⇒ 6) Let V be a 3-parameter potential corresponding to a
conformally flat space in 3 dimensions that is superintegrable, i.e., suppose V
satisfies the equations (2), where conditions (19,15,4) hold, and there are 5
functionally linearly independent constants of the motion. Then the space of
second order symmetries for the Hamiltonian H = (p2

x + p2
y + p2

z)/λ(x, y, z)+
V (x, y, z) (excluding multiplication by a constant) is of dimension D = 6. At
any regular point (x0, y0, z0) and given constants αkj = αjk there is exactly
one symmetry S (up to an additive constant) such that akj(x0, y0, z0) = αkj.

PROOF OF THEOREM: The proof takes many steps, most of which have
to be carried out with computer algebra software. We give the logic behind
the proof and describe the steps in order.

If there is only a 5-parameter family of solutions then (22) holds only for
the h that lie in a 5-dimensional space. By appropriate Euclidean transfor-
mation of coordinates, if necessary, we can use Gauss-Jordan elimination and
show that there is a basis for the space of the form h̃j , j = 1, · · · 5 where

(

h̃1, h̃2, h̃3, h̃4, h̃5
)

=

11























1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
α1(x, y, z) α2(x, y, z) α3(x, y, z) α4(x, y, z) α5(x, y, z)





















.

Here we mean that if h belongs to the solution space then there are unique
differentiable functions gj(x, y, z) such that h =

∑5
j=1 gjh̃

j . It follows that
the integrability conditions become

S(ℓ)
kj + αjS(ℓ)

k6 = 0, ℓ = 1, · · · , 3, k = 1, · · · , 6, j = 1, · · · , 5. (24)

Further, the conditions (22) must hold. The question that we need to decide
is whether the conditions (22) and (24) imply

S(1) = S(2) = S(3) = 0.

Some of the elements of the matrices S(i) vanish identically. Indeed

S(1)
16 = S(1)

26 = S(1)
46 = S(2)

14 = S(2)
34 = S(2)

64 = S(3)
41 = S(3)

51 = S(3)
61 ≡ 0

Also
S(2)

16 ≡ S(1)
15 , S(2)

66 ≡ −S(2)
61 ,S(3)

46 ≡ −S(1)
43 ,

This implies that the following conditions must hold no matter what are
the values of the αj :

S(1)
ij = 0, i = 1, 2, 4 1 ≤ j ≤ 6, S(2)

1j = S(3)
4j = 0, 1 ≤ j ≤ 6. (25)

Our strategy is to use these identities and the potential integrability condi-
tions (15) step by step to solve for as many of the 54 independent partial
derivatives

∂kD
ij , 1 ≤ i ≤ j ≤ 3, D = A, B, C,

as we can. In each case we will obtain an expression for the derivative as
a polynomial in the 18 variables Dij with coefficients in the linear and zero
order terms that involve derivatives of G. Then to substitute these results
back into the potential equations to obtain new results.

For the first step, our initial results imply that the quadratic identity (d)
holds, further by substitution the identity U3

12 = 0 implies that the quadratic

identity (a) holds. However, (a) is equivalent to S(3)
2,6 = 0 which in turn

implies S(3)
2j = 0, 1 ≤ j ≤ 6. The fact that S(3)

46 = 0 implies by substitution

that S(3)
16 = 0, so S(3)

1j = 0, 1 ≤ j ≤ 6. Then quadratic identity (e) is implied

12



by S(3)
13 = 0. The potential identities U1

33 = 0, U2
23 = 0 and substitution

imply S(3)
36 = S(2)

56 = 0, so S(3)
3j = S(2)

5j = 0, 1 ≤ j ≤ 6. Similarly, the result

S(3)
46 = 0, and substitution implies S(2)

66 = 0, so S(2)
6j = 0, 1 ≤ j ≤ 6. The

result S(1)
43 = 0, and substitution implies S(1)

36 = 0, so S(1)
3j = 0, 1 ≤ j ≤ 6,

and and substitution implies S(2)
26 = 0, so S(2)

2j = 0, 1 ≤ j ≤ 6. From this we
can obtain the remaining quadratic identities (b) and (c). The process finally
ends with the result

S(1) = S(2) = S(3) = 0,

hence that the integrability conditions are satisfied identically and there is
a 6-parameter family of symmetries. Further, each of the 54 independent
partial derivatives

∂kD
ij , 1 ≤ i ≤ j ≤ 3, D = A, B, C,

is expressed explicitly as a polynomial in the 18 variables. Q.E.D.
Suppose we have a superintegrable 3-parameter potential with no ob-

struction. Is it a restriction of a nondegenerate (4-parameter) potential or
is it truly 3-parameter? To help answer this question we call call on some
of the results of papers [3] and [4]. The results from [3] on the structure of
the third order constants of the motion for nondegenerate superintegrable
systems needed only the assumption of a 3-parameter potential with no ob-
structions for their proof.

Theorem 2 Let K be a third order constant of the motion for a conformally
flat superintegrable system with 3-parameter potential V and no obstructions:

K =
3

∑

k,j,i=1

akji(x, y, z)pkpjpi +
3

∑

ℓ=1

bℓ(x, y, z)pℓ.

Then

bℓ(x, y, z) =
3

∑

j=1

f ℓ,j(x, y, z)Vj(x, y, z)

with f ℓ,j + f j,ℓ = 0, 1 ≤ ℓ, j ≤ 3. The aijk, bℓ are uniquely determined by
the four numbers

f 1,2(x0, y0, z0), f 1,3(x0, y0, z0), f 2,3(x0, y0, z0), f 1,2
3 (x0, y0, z0)

at any regular point (x0, y0, z0) of V .

Corollary 1 For a system satisfying the assumptions of the theorem, the
space of truly third order constants of the motion is 4-dimensional and is
spanned by Poisson brackets of the second order constants of the motion.
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Correspondingly, the proofs of the following results from [4] need only the
assumptions of 3-parameter superintegrability with no obstructions:

Theorem 3 Let V be a superintegrable 3-parameter potential with no ob-
struction in a 3D conformally flat space. Then V defines a multiseparable
system.

Corollary 2 For a system satisfying the assumptions of the theorem, there
is a continuous 1-parameter (or multi-parameter) family of separable systems
for V , spanning at least a 5-dimensional subspace of symmetries.

4 The 3D Stäckel transform

The Stäckel transform [22] or coupling constant metamorphosis [23] plays a
fundamental role in relating superintegrable systems on different manifolds.
Suppose we have a superintegrable system

H =
p2

1 + p2
2 + p2

3

λ(x, y, z)
+ V (x, y, z) (26)

in local orthogonal coordinates, with 3-parameter potential V (x, y, z):

Vij = AijV1 + BijV2 + CijV3, V22 = V11 + A22V1 + B22V2 + C22V3, (27)

1 ≤ i ≤ j ≤ 3, and suppose U(x, y, z) is a particular solution of equations
(27), nonzero in an open set. Then the transformed system H̃ = (p2

1 + p2
2 +

p2
3)/λ̃ + Ṽ with nondegenerate potential Ṽ (x, y, z):

Ṽij = ÃijṼ1 + B̃ijṼ2 + C̃ijṼ3 (28)

is also superintegrable, where

λ̃ = λU, Ṽ =
V

U
, Ã11 = A11 − 2

U1

U
, B̃22 = A11 − 2

U2

U
, C̃33 = C33 − 2

U3

U
,

B̃11 = B11, C̃11 = C11, Ã22 = A22, C̃22 = C22,

Ã33 = A33, B̃33 = B33, Ã13 = A13 − U3

U
, C̃13 = C13 − U1

U
,

Ã12 = A12 − U2

U
, B̃12 = B12 − U1

U
,

B̃23 = B23 − U3

U
, C̃23 = C23 − U2

U
,
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and Ã23 = A23, B̃13 = B13, C̃12 = C12. Let S =
∑

aijpipj + W = S0 + W
be a second order symmetry of H and SU =

∑

aijpipj + WU = S0 + WU

be the special case that is in involution with (p2
1 + p2

2 + p2
3)/λ + U . Then

S̃ = S0 − WU

U
H + 1

U
H is the corresponding symmetry of H̃ . Since one can

always add a constant to a nondegenerate potential, it follows that 1/U
defines an inverse Stäckel transform of H̃ to H . See [22] for many examples
of this transform.

The next result follows immediately from the proof of the corresponding
theorem in [4].

Theorem 4 Every superintegrable system with 3-parameter potential and no
obstruction on a 3D conformally flat space is Stäckel equivalent to a super-
integrable system on either 3D flat space or the 3-sphere.

Using Theorem 4 we can show that a 3-parameter superintegrable poten-
tial with no obstruction is a restriction of a nondegenerate potential. In [3]
we derived the integrability conditions for the nondegenerate potential equa-
tions (3). We recall the form of these equations (the details are in [3]). We
introduce the vector w = (V1, V2, V3, V11)

T, and the matrices A(j), j = 1, 2, 3,
such that

∂xj
w = A(j)w j = 1, 2, 3. (29)

The integrability conditions for this system are

A
(j)
i −A

(i)
j = [A(i),A(j)]. (30)

What we must show is that the 5 no obstruction equations (19), the 108
integrability conditions

S(1) = S(2) = S(3) = 0

for the 6-dimensional family of symmetries and the 27 integrability conditions
(15) for the 3-parameter potential imply the integrability conditions (30) for
a nondegenerate potential.

First we assume that we are in complex Euclidean space, so that G(x, y, z) ≡
0. Then, from the proof of Theorem 1 we can express each of the 54 inde-
pendent partial derivatives

∂kD̃
ij, 1 ≤ i ≤ j ≤ 3, D = Ã, B̃, C̃,

explicitly as a quadratic polynomial in the 18 variables D̃ℓm, and we can
obtain the 5 fundamental quadratic identities (23). Finally, from the inte-
grability conditions ∂ℓ∂kD̃

ij = ∂k∂ℓD̃
ij we obtain 54 cubic polynomial iden-

tities. These second and third order identities generate a polynomial ideal Σ
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in the 18 variables D̃ℓm. Substituting the quadratic expressions for the ∂kD̃
ij

into the integrability conditions (30) we can show that these conditions are
equivalent to 7 quadratic and cubic identities Ij = 0, j = 1, · · · , 7 in the
variables D̃ℓm. Making use of the Gröbner basis package in the symbol ma-
nipulation program MAPLE, we have verified that Ij ∈ Σ for j = 1, · · · , 7.
Thus conditions (30) must hold for Euclidean space potentials.

We cannot use the same reasoning for metrics with general G because
we do not know the explicit form of G. However, from Theorem 4 the only
remaining case we need study is the 3-sphere. As was argued in Section 4.5
of [4], at any regular point on the sphere we can always choose Cartesian-like
local coordinates such that

G(x, y, z) = −2 ln(1 +
x2 + y2 + z2

4
)

and the regular point is (0, 0, 0). Thus at this point

G = Gj = 0, Gij = −δij , 1 ≤ i, j ≤ 3.

With this choice we can carry out the exact analog of the Euclidean space
demonstration and use the Gröbner basis package in MAPLE to verify that
Ij ∈ Σ for j = 1, · · · , 7, so that conditions (30) hold for 3-sphere potentials.

Thus, by exploitation of the integrability conditions for the potential and
for equations (17) we obtain the following results:

Theorem 5 A 3-parameter potential for a 3D second order superintegrable
FLI system is a restriction of a nondegenerate potential if and only if the
obstruction (18) vanishes identically. If the obstruction doesn’t vanish then
the space of second order symmetries is 5-dimensional and the system is
uniquely determined by the values of D̃ij , i ≤ j, D = A, B, C at a single
regular point.

5 Structure theory for true 3-parameter po-

tentials

For a superintegrable FLI system with true 3-parameter potential there is a
nontrivial obstruction (18) which we can express in the form

trace (AJ ) = 0 (31)
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where A = (aij) and

J =







−B̃13 + C̃12 1
2
(Ã13 + C̃22 − C̃11 − B̃23) 1

2
(C̃23 − B̃33 + B̃11 − Ã12)

1
2
(Ã13 + C̃22 − C̃11 − B̃23) Ã23 − C̃12 1

2
(B̃12 + Ã33 − Ã22 − C̃13)

1
2
(Ã13 + C̃22 − C̃11 − B̃23) 1

2
(B̃12 + Ã33 − Ã22 − C̃13) B̃13 − Ã23







(32)

=







X1 Y1 Y2

Y1 X2 Y3

Y2 Y3 −X1 − X2







where the Xj , Yk have obvious definitions. Under a complex rotation of coor-
dinates with 3× 3 orthogonal matrix O the quadratic form of the symmetry
transforms as O → OAOtr, so J → OJOtr. Thus the traceless symmetric
obstruction J transforms as the 5-dimensional irreducible representation of
the complex rotation group. It follows that about any regular point x0 we
can always find a rotation that fixes this point and such that all the matrix
elements of J are nonzero. In this section we can always assume that we
have determined a regular point and a coordinate system centered at this
point for which all the elements of J are nonvanishing.

At a regular point x0 we can use our knowledge of the obstruction to
determine an explicit basis for the second order symmetries. The five basis
elements take the form S(ℓ,m) =

∑

ij A(ℓ,m)
ij pipj +W (ℓ,m) where W (ℓ,m)(x0) ≡ 0

and

A(1,1) =







1 0 0
0 0 0

0 0 C12−B13

A23−B13





 , A(2,2) =







0 0 0
0 1 0

0 0 A23−C12

A23−B13





 , (33)

A(1,2) =
1

2







0 1 0
1 0 0

0 0 A13+C22−C11−B23

A23−B13





 , A(1,3) =
1

2







0 0 1
0 0 0

1 0 C23+B11−B33−A12

A23−B13





 ,

A(2,3) =
1

2







0 0 0
0 0 1

0 1 B12+A33−A22−C13

A23−B13





 .

Next we investigate the space of third order constants of the motion,
assuming a true 3-parameter potential V . We have

K =
3

∑

k,j,i=1

akji(x, y, z)pkpjpi + bℓ(x, y, z)pℓ, (34)

which must satisfy {H,K} = 0. Here akji is symmetric in the indices k, j, i.
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The required conditions are

aiii
i = −3

2

∑

s

asii(ln λ)s, (35)

3ajii
i + aiii

j = −3
∑

s

asij(ln λ)s, i 6= j

aijj
i + aiij

j = −1

2

∑

s

asjj(lnλ)s −
1

2

∑

s

asii(ln λ)s, i 6= j

2aijk
i + akii

j + ajii
k = −

∑

s

asjk(ln λ)s, i, j, k distinct

bj
k + bk

j = 3λ
∑

s

askjVs, j 6= k, j, k = 1, 2, 3, (36)

bj
j =

3

2
λ

∑

s

asjjVs −
1

2

∑

s

bs(ln λ)s, , j = 1, 2, 3,

and
∑

s

bsVs = 0. (37)

The akji is just a third order Killing tensor. As usual, we require that the
highest order terms, the akji in the constant of the motion, be independent
of the three independent parameters in V . However, the bℓ must depend on
these parameters. We set

bℓ(x, y, z) =
3

∑

j=1

f ℓ,j(x, y, z)Vj(x, y, z).

Substituting this expression into (37) we see that

f ℓ,j + f j,ℓ = 0, 1 ≤ ℓ, j ≤ 3.

Further
bi
j =

∑

ℓ 6=i

(f i,ℓ
j Vℓ + f i,ℓVjℓ),

where the subscript j denotes the partial derivative with respect to xj . Sub-
stituting these results and expressions (3) into the defining equations (36)
and equating coefficients of V1, V2, V3, respectively, we obtain the indepen-
dent conditions (Gs ≡ (ln λ)s):

λa111 =
2

3
(f 1,2Ã12 + f 1,3Ã13) +

1

3

3
∑

s=1

f s,1Gs, (38)

λa222 =
2

3
(−f 1,2B̃12 + f 2,3B̃23) +

1

3

3
∑

s=1

f s,2Gs,
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λa333 =
2

3
(−f 1,3C̃13 − f 2,3C̃23) +

1

3

3
∑

s=1

f s,3Gs,

λa112 =
2

9

(

f 1,2(Ã22 − Ã11 + B̃12) + f 1,3(Ã23 + B̃13) + f 2,3Ã13
)

+
1

9

3
∑

s=1

f s,2Gs,

λa113 =
2

9

(

f 1,2(Ã23 + C̃12) + f 1,3(Ã33 − Ã11 + C̃13) − f 2,3Ã12
)

+
1

9

3
∑

s=1

f s,3Gs,

λa122 =
2

9

(

f 1,2(−Ã12 + B̃22 − B̃11) + f 1,3B̃23 + f 2,3(Ã23 + B̃13)
)

+
1

9

3
∑

s=1

f s,1Gs,

λa223 =
2

9

(

−f 1,2(B̃13 + C̃12) − f 1,3B̃12 + f 2,3(−B̃22 + B̃33 + C̃23)
)

+
1

9

3
∑

s=1

f s,3Gs,

λa133 =
2

9

(

f 1,2C̃23 + f 1,3(−Ã13 + C̃33 − C̃11) − f 2,3(Ã23 + C̃12)
)

+
1

9

3
∑

s=1

f s,1Gs,

λa233 =
2

9

(

−f 1,2C̃13 − f 1,3(B̃13 + C̃12) + f 2,3(−B̃23 − C̃22 + C̃33)
)

+
1

9

3
∑

s=1

f s,2Gs,

λa123 =
2

9

(

f 1,2(C̃22 − C̃11) + f 1,3(B̃33 − B̃11) + f 2,3(−B̃12 + C̃13)
)

,

f 1,2
1 =

1

3

(

f 1,2(Ã22 − Ã11 − 2B̃12) + f 1,3(Ã23 − 2B̃13) + f 2,3Ã13
)

− 1

3

3
∑

s=1

f s,2Gs, (39)

f 1,2
2 =

1

3

(

f 1,2(−2Ã12 − B̃22 + B̃11) − f 1,3B̃23 + f 2,3(2Ã23 − B̃13)
)

+
1

3

3
∑

s=1

f s,1Gs,

f 1,3
1 =

1

3

(

f 1,2(Ã23 − 2C̃12) + f 1,3(Ã33 − Ã11 − 2C̃13) − f 2,3Ã12
)

− 1

3

3
∑

s=1

f s,3Gs,

f 1,3
3 =

1

3

(

−f 1,2C̃23 + f 1,3(−2Ã13 − C̃33 + C̃11) + f 2,3(−2Ã23 + C̃12)
)

+
1

3

3
∑

s=1

f s,1Gs,

f 2,3
2 =

1

3

(

f 1,2(2C̃12 − B̃13) − f 1,3B̃12 + f 2,3(−B̃22 + B̃33 − 2C̃23)
)

− 1

3

3
∑

s=1

f s,3Gs,

f 2,3
3 =

1

3

(

f 1,2C̃13 + f 1,3(C̃12 − 2B̃13) + f 2,3(−2B̃23 + C̃22 − C̃33)
)

+
1

3

3
∑

s=1

f s,2Gs,

and

f 2,3
1 + f 1,3

2 =
1

3

(

−f 1,2(C̃22 − C̃11) (40)

+ f 1,3(2B̃33 − 2B̃11 − 3C̃23) − f 2,3(2B̃12 + C̃13) ) ,
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−f 2,3
1 + f 1,2

3 =
1

3

(

−f 1,2(2Ã13 + B̃23)

− f 1,3(B̃33 − B̃11) + f 2,3(B̃12 + 2C̃13) ) ,

Now, we substitute expressions (39) and (40) into the condition (36) for
2a123

3 +a133
2 +a233

1 = · · · and solve for the derivative f 1,2
3 as a linear combination

of the undifferentiated terms f ℓ,j. The result takes the form

(C̃22 − C̃11 + Ã13 − B̃23)f 1,2
3 = · · ·

where, by assumption, the coefficient of f 1,2
3 is nonzero. Thus we have 9

equations for the 9 derivatives f i,j
k and the system closes. A solution is

determined uniquely by 3 parameters f i,j(x0) at a regular point. and these
parameters are constrained by at least 8 linearly independent conditions.
Thus the solution space must be of dimension ≤ 3. We have still to apply
the remaining conditions that the aijk are third order Killing tensors.

Theorem 6 For a true 3-parameter system the aijk, bℓ are uniquely deter-
mined by the three numbers f 1,2, f 1,3, f 2,3, at any regular point (x0, y0, z0)
of V .

Let
S1 =

∑

akj
(1)pkpj + W(1), S2 =

∑

akj
(2)pkpj + W(2)

be second order constants of the the motion for a superintegrable system
with 3-parameter potential and let A(i)(x, y, z) = {akj

(i)(x, y, z)}, i = 1, 2 be
the corresponding 3× 3 matrix functions. Then the Poisson bracket of these
symmetries is given by

{S1,S2} =
3

∑

k,j,i=1

akji(x, y, z)pkpjpi + bℓ(x, y, z)pℓ

where
fk,ℓ = 2λ

∑

j

(akj
(2)a

jℓ
(1) − akj

(1)a
jℓ
(2)). (41)

Clearly, {S1,S2} is uniquely determined by the skew-symmetric matrix
[A(2),A(1)] ≡ A(2)A(1) − A(1)A(2), hence by the constant matrix
[A(2)(x)),A(1)(x)] evaluated at the regular point. Thus S1,S2 are in invo-
lution if and only if matrices A(1)(x0),A(2)(x0) commute. It is a straight-
forward computation to show that the space spanned by all commutators
[A(ℓ,m),A(ℓ′,m′)] of the second order basis symmetries is 3-dimensional. Thus
every constant skew-symmetric matrix can be expressed as a linear combi-
nation of commutators of second order basis symmetries.
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Corollary 3 Let V be a superintegrable true 3-parameter potential for an
FLI superintegrable system on a conformally flat space. Then the space of
third order constants of the motion is 3-dimensional and is spanned by Pois-
son brackets of the second order constants of the motion. The Poisson bracket
of two second order constants of the motion is uniquely determined by the
matrix commutator of the second order constants at a regular point.

Theorem 7 Let V be a superintegrable true 3-parameter potential in a 3D
conformally flat space. Then V defines a multiseparable system.

PROOF: At a regular point the obstruction is determined by the condition
trace (AJ) = 0 where J is the traceless symmetric matrix (32). According
to Theorem 3 of [24], if we can find two commuting matrices A0,B0 at the
regular point such that they each satisfy the obstruction condition and A0

has 3 distinct roots, then the space spanned by H0,A0,B0 determines a
separable coordinate system for the superintegrable system. (here H0 is the
evaluation of the Hamiltonian at the point, a multiple of the identity matrix.)
In this case we can prove more: there exists a 1-parameter family of distinct
subspaces satisfying the separability condition. This means that there is a
1-parameter family of distinct separable coordinates, a condition stronger
than multiseparability. By performing a suitable complex rotation about the
regular point, we can require that the obstruction matrix take exactly one of
the canonical forms [25]







a 0 0
0 −a − c 0
0 0 c





 ,







−2a 0 0
0 a + i/2 1/2
0 1/2 a − i/2





 , (42)

1

2







0 1 + i 0
1 + i 0 1 − i

0 1 − i 0





 .

For the first canonical form and most instances of the second we have X1 +
X2 6= 0 in (32) so we can use the basis (33) to represent the matrices. We
look for commuting matrices of the form

A0 = A(11) + a13A(13) + a23A(23), B0 = b12A(12) + b13A(13) + b23A(23).

The requirement {A0,B0} = 0 leads to a system of three linear homogeneous
equations for b12, b13, b23, and that system has a nonzero solution if and only
if the condition

(X2
2+X1X2)a

2
13−([X1Y1+X2Y1]a23+X2Y2)a13+([X2

1+X1X2]a
2
23+X1Y3a23−X1X2) = 0.
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This is a quadratic equation for a13, in terms of the parameter µ = a23, and
(to be definite) we choose the solution a13(µ) with the positive sign in front
of the square root term. At this point we have shown the existence of a 1-
parameter family of commuting symmetries with µ as the parameter. Each
such pair will necessarily define a separable coordinate system if the eigen-
values of the matrix A0 are pairwise distinct. The characteristic equation for
the eigenvalues is

−ξ3 + M1ξ
2 + M2ξ + M3 = 0 (43)

where M3 = −µ2 and

M1 =
a13Y2 + µY3 + 2X1 + X2

X1 + X2
, M2 = a2

13 + µ2 − a13Y2 + µY3 + X1

X1 + X2
.

This equation will have a repeated root if and only if (43) and the derivative
equation

−3ξ2 + 2M1ξ + M2 = 0 (44)

have a common solution, which works out to be ξ0 = −1
2
(9M3+M1M2)/(3M3+

M2
1 ). If we require that ξ = ξ0 be a solution of (43) for all µ we find that

there is no solution. Thus the eigenvalues of the matrix A0(µ) are pairwise
distinct for a continuum range of values of µ.

An analogous computation for the remaining cases of the canonical forms
(42), where there are fewer parameters and we assume that Y3 6= 0 rather
than X1+X2 6= 0, leads to the same conclusion: the eigenvalues of the matrix
A0(µ) are pairwise distinct for a continuum range of values of µ. Q.E.D.

Using the result of the preceding theorem we can mimic the corresponding
proof in [4] to obtain the following.

Theorem 8 Every FLI superintegrable system with true 3-parameter poten-
tial on a 3D conformally flat space is Stäckel equivalent to a superintegrable
system on either 3D flat space or the 3-sphere.

Although the spaces of higher order symmetries for true 3-parameter
systems have an interesting structure, the algebra generated by the second
order symmetries and their commutators doesn’t close at level six.

Theorem 9 For an FLI superintegrable system with true 3-parameter poten-
tial on a 3D conformally flat space there exist two second order constants of
the motion S1,S2 such that {S1,S2}2 is not expressible as a cubic polynomial
in the second order constants of the motion.

PROOF: According to Corollary 3 the space of third order constants of the
motion is spanned by commutators of second order constants of the motion.
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Thus it is sufficient to show that there exists a third order constant of the
motion

K =
3

∑

k,j,i=1

akjipkpjpi + bℓ(x, y, z)pℓ, bℓ =
3

∑

j=1

f ℓ,jVj

such that, at a regular point x0, K2 is not expressible as a cubic polynomial
in the basis symmetries

S(ℓ,m) =
∑

ij

A(ℓ,m)
ij pipj + W (ℓ,m).

Recall that W (ℓ,m)(x0) ≡ 0. We will also choose the orientation of the
Cartesian-like coordinates around x0 such that the elements of J are all
nonvanishing. Thus a basis for the matrices A is given by (33). Since the
space of third order symmetries is 3-dimensional we can find a symmetry K
for any choice of the skew-symmetric elements f ℓ,j at x0. The sixth order
symmetry K2 contains terms of order 6, 4 and 2 in the pj . The terms of
order 2 are k =

∑

ℓ,m,i,j f ℓ,jfm,iVjVipℓpm. Now suppose that we could expand
K2 as a polynomial of order 3 in the basis symmetries. The contribution of
a third order monomial S(ℓ1,m1)S(ℓ2,m2)S(ℓ3,m2) and a second order monomial
S(ℓ1,m1)S(ℓ2,m2) to the quadratic terms pipj will vanish at the regular point be-
cause each contribution will contain at least one factor W (ℓ,m) that vanishes
at the point. The only way that we can match a nonvanishing quadratic ex-
pression in the momenta is via a parameter-dependent linear combination of
second order symmetries S(ℓ,m), and we must be able to do so for all choices
of the Vj. Now choose V1 = 1, V2 = V3 = 0, f 1,3 = 1, f 1,2 = f 2,3 = 0. Then k
reduces to the quadratic form with matrix







0 0 0
0 0 0
0 0 1





 .

However, it is not possible to expand this matrix as a linear combination of
the standard basis elements (33). Q.E.D.

6 Outlook

The basic structure and classification problems for 2D second order super-
integrable systems systems have been solved, and the methods of this paper
provide tools to complete the more difficult fine structure analysis for 3D
systems. The theory for nondegenerate (4-parameter) potentials is nearly
complete and this paper makes major progress for 3-parameter potentials.
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More details about the dimensions and structure of the spaces of higher order
symmetries, and classification of the possible systems still remain to do.

The 3D fine structure analysis can be extended to analyze 2-parameter
and 1-parameter potentials with 5 functionally linearly independent second
order symmetries. Here first order PDEs for the potential appear, as well as
second order, and Killing vectors may occur. A separate class of 3D superin-
tegrable systems is that for which the 5 functionally independent symmetries
are functionally linearly dependent. This class contains the Calogero poten-
tial [19, 20, 21] and necessarily leads to first order PDEs for the potential,
as well as second order [5]. However, the integrability condition methods
discussed here should be able to handle this class with no special difficulties.

Whereas 2D superintegrable systems are very special, the 3D systems
seem to be good guides to the structure of general nD systems, and we intend
to proceed with this analysis. Finally, our ultimate goal is to understand
the structure of superintegrable systems in general. We have started with
second order systems because of their historical connection to the Kepler-
Coulomb problem and to separation of variables. However, since most of the
methods that we have developed make use of integrability conditions alone,
not separation of variables (a purely second order phenomenon) they show
promise of being extendable to higher order superintegrable systems.
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