Homework Problem Set #1

Willard Miller

January 30, 2002

Exercise 1 For n > 0, let

$$f_n(t) = \begin{cases} 1, & \text{for } 0 \le t \le \frac{1}{n} \\ 0, & \text{otherwise.} \end{cases}$$

Show that $f_n \to 0$ in the norm of $L^2[0,1]$ as $n \to \infty$. Show that f_n does not converge to 0 pointwise uniformly on [0,1].

Exercise 2 For n > 0, let

$$f_n(t) = \begin{cases} \sqrt{n}, & \text{for } 0 \le t \le \frac{1}{n^2} \\ 0, & \text{otherwise.} \end{cases}$$

Show that $f_n \to 0$ in the norm of $L^2[0,1]$ as $n \to \infty$, but $f_n(0) \to \infty$ as $n \to \infty$.

Exercise 3 For n > 0, let

$$f_n(t) = \begin{cases} \frac{1}{n}, & \text{for } 0 \le t \le n \\ 0, & \text{otherwise.} \end{cases}$$

Show that $f_n(t) \to 0$ pointwise uniformly on $[0,\infty]$, as $n \to \infty$ but that f_n doesn't converge to 0 in the norm of $L^1[0,\infty]$.

Exercise 4 Suppose the function $w(t) \in L^2[-\infty, \infty]$ has unit norm. Show that the functions $w_{jk}(t) = 2^{j/2}w(2^jt-k)$, $(j, k = 0, \pm 1, \pm 2, \cdots)$ also have unit norm.

Exercise 5 Project the function f(t) = t onto the subspace of $L^2[0,1]$ spanned by the functions $\phi(t)$, $\psi(t)$, $\psi(2t)$, $\psi(2t-1)$, where

$$\phi(t) = \begin{cases} 1, & \text{for } 0 \le t \le 1 \\ 0, & \text{otherwise} \end{cases} \qquad \psi(t) = \begin{cases} 1, & \text{for } 0 \le t \le \frac{1}{2} \\ -1, & \text{for } \frac{1}{2} \le t < 1 \\ 0, & \text{otherwise.} \end{cases}$$

(This is related to the Haar wavelet expansion for f.)

Exercise 6 The Legendre polynomials $P_n(t)$, $n = 0, 1, \cdots$ are the ON set of polynomials on $L^2[-1, 1]$, obtained by applying the Gram-Schmidt process to the monomials $1, t, t^2, t^3, \cdots$ and defined uniquely by the requirement that the coefficient of t^n in $P_n(t)$ is positive. (In fact they form an ON basis for $L^2[-1, 1]$.) Compute the first 4 of these polynomials.

Exercise 7 Using the facts from the preceding exercise, show that the Legendre polynomials must satisfy a three-term recurrence relation

$$tP_n(t) = a_n P_{n+1}(t) + b_n P_n(t) + c_n P_{n-1}(t), \qquad n = 0, 1, 2, \cdots$$

where we take $P_{-1}(t) \equiv 0$. (Note: If you had a general sequence of polynomials $\{p_n(t)\}$, where the highest order term on $p_n(t)$ was a nonzero multiple of t^n , then the best you could say was that

$$tp_n(t) = \sum_{j=0}^{n+1} \alpha_j p_j(t).$$

What is special about orthogonal polynomials that leads to three-term relations?) What can you say about a_n, b_n, c_n without doing any detailed computations?

Exercise 8 Find the $L^2[-\pi, \pi]$ projection of the function $f_1(t) = t^2$ onto the (2n+1)-dimensional subspace spanned by the ON set

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos kt}{\sqrt{\pi}}, \frac{\sin kt}{\sqrt{\pi}} : k = 1, \dots, n\right\}$$

for n = 1. Repeat for n = 2,3. Plot these projections along with f_1 . (You can use MATLAB, a computer algebra system, a calculator, etc.) repeat the whole exercise for $f_2(t) = t^3$. Do you see any marked differences between the graphs in the two cases?

Exercise 9 Prove the Fredholm alternative for finite dimensional inner product spaces: Let $\mathbf{T}: U \to V$ be a linear map from the space U to the space V. Then either

- ullet for any $v\in V$ we can solve the equation $\mathbf{T}u=v$ for some $u\in U,$ or
- there is a nonzero $v_0 \in V$ such that $\mathbf{T}^*v_0 = \Theta$.

Exercise 10 Use least squares to fit an exponential equation of the form $y = ae^{bx}$ to the data

$$x = 0.6 \quad 1.0 \quad 2.3 \quad 3.1 \quad 4.4 \quad 5.8 \quad 7.2$$

 $y = 3.6 \quad 2.5 \quad 2.2 \quad 1.5 \quad 1.1 \quad 1.3 \quad 0.9$

in order to estimate the value of y when x = 2.0. Hint: Write the equation in linear form.