Homework Problem Set #2

Willard Miller

February 7, 2002

Exercise 1 Expand $f(t) = t^2$ in a Fourier series on the interval $-\pi \le t \le \pi$. Plot both f and the partial sums

$$S_k(t) = \frac{a_0}{2} + \sum_{n=0}^{k} (a_n \cos nt + b_n \sin nt)$$

for k = 1, 2, 5, 7. Observe how the partial sums approximate f.

Exercise 2 Expand

$$f(t) = \begin{cases} 0 & -\pi < t \le -\frac{\pi}{2} \\ 1 & -\frac{\pi}{2} < t \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < t \le \pi \end{cases}$$

in a Fourier series on the interval $-\pi \le t \le \pi$. Plot both f and the partial sums S_k for k = 5, 10, 20, 40. Observe how the partial sums approximate f. What accounts for the slow rate of convergence?

Exercise 3 Let a > 0. Use the Fourier transforms of $\operatorname{sinc}(x)$ and $\operatorname{sinc}^2(x)$ derived in the notes, together with the basic tools of Fourier transform theory, such as Parseval's equation, substitution, \cdots to show the following. (Use only rules from Fourier transform theory. You shouldn't do any detailed computation such as integration by parts.)

$$\bullet \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^3 dx = \frac{3a^2\pi}{4}$$

$$\bullet \int_{-\infty}^{\infty} \left(\frac{\sin ax}{x}\right)^4 dx = \frac{2a^3\pi}{3}$$

Exercise 4 Show that the n-translates of sinc are orthonormal:

$$\int_{-\infty}^{\infty} \operatorname{sinc}(x-n) \cdot \operatorname{sinc}(x-m) \ dx = \begin{cases} 1 & \text{for } n=m \\ 0 & \text{otherwise,} \end{cases} \ n, m = 0, \pm, 1, \cdots$$

Exercise 5 Let

$$f(x) = \begin{cases} 1 & -2 \le t \le -1\\ 1 & 1 \le t \le 2\\ 0 & \text{otherwise,} \end{cases}$$

- Compute the Fourier transform $\hat{f}(\lambda)$ and sketch the graphs of f and \hat{f} .
- Compute and sketch the graph of the function with Fourier transform $\hat{f}(-\lambda)$
- Compute and sketch the graph of the function with Fourier transform $\hat{f}'(\lambda)$
- Compute and sketch the graph of the function with Fourier transform $\hat{f} * \hat{f}(\lambda)$
- Compute and sketch the graph of the function with Fourier transform $\hat{f}(\frac{\lambda}{2})$

Exercise 6 Deduce what you can about the Fourier transform $\hat{f}(\lambda)$ if you know that f(t) satisfies the dilation equation

$$f(t) = f(2t) + f(2t - 1).$$

Exercise 7 Let $f(t) = \frac{a}{t^2 + a^2}$ for a > 0.

- Show that $\hat{f}(t) = \pi e^{-a|\lambda|}$. Hint: It is easier to work backwards.
- Use the Poisson summation formula to derive the identity

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \frac{1 + e^{-2\pi a}}{1 - e^{-2\pi a}}.$$

What happens as $a \to 0+$? Can you obtain the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$ from this?

Exercise 8 The Butterworth filter is a causal filter, used for noise reduction. It is defined by

$$h(t) = \begin{cases} Ae^{-\alpha t} & \text{for } t \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where A, α are positive parameters.

- Compute the Fourier transform $\hat{h}(\lambda)$ and verify that it decays as $\lambda \to \infty$ thus diminishing the high-frequency components of the filered signal $\hat{h}(\lambda)\hat{f}(\lambda)$
- Consider the signal

$$f(t) = e^{-t}(\sin 5t + \sin 3t + \sin t + \sin 40t), \text{ for } 0 \le t \le \pi,$$

and zero elsewhere. Filter this signal with the Butterworth filter: compute (f*h)(t) for $0 \le t \le \pi$. Starting with A=a=10, try various values of A=a. Compare the original signal with the filtered signal.