Homework Problem Set #3 ## Willard Miller ## February 25, 2002 **Exercise 1** If the continuous-time band-limited signal is $x(t) = \cos t$, what is the period T that gives sampling exactly at the Nyquist rate? What samples $\mathbf{x}(nT)$ do you get at this rate? What samples do you get from $\mathbf{x}(t) = \sin t$? **Exercise 2** Suppose the only nonzero components of the input vector \mathbf{x} and the impulse response vector \mathbf{h} are $\mathbf{x}(0) = 1$, $\mathbf{x}(1) = 3$, and $\mathbf{h}(0) = \frac{1}{2}$, $\mathbf{h}(1) = \frac{1}{2}$,. Compute the outputs $\mathbf{y}(n)$. Verify in the frequency domain that $Y(\omega) = H(\omega)X(\omega)$. **Exercise 3** Iterate the averaging filter **H** of Exercise 2 four times to get $\mathbf{K} = \mathbf{H}^4$. What is $K(\omega)$ and what is the impulse response $\mathbf{k}(n)$? **Exercise 4** A direct approach to the convolution rule Y = HX. What is the coefficient of z^{-n} in $\left(\sum \mathbf{h}(k)z^{-k}\right)\left(\mathbf{x}(\ell)z^{-\ell}\right)$? Show that your answer agrees with $\sum \mathbf{h}(k)\mathbf{x}(n-k)$. ## Exercise 5 - Write down the infinite matrix $(\downarrow 2)$ that executes downsampling: $(\downarrow 2)\mathbf{x}(n) = \mathbf{x}(2n)$. - Write down the transpose matrix $(\uparrow 2) = (\downarrow 2)^{tr}$. Multiply the matrices $(\uparrow 2)(\downarrow 2)$ and $(\downarrow 2)(\uparrow 2)$. Describe the output from $(\uparrow 2)\mathbf{y}(n)$. Exercise 6 Supose a real infinite matrix has the property $\mathbf{Q}^{\mathrm{tr}}\mathbf{Q} = \mathbf{I}$. Show that the columns of \mathbf{Q} are mutually orthogonal unit vectors. Does it follow that $\mathbf{Q}\mathbf{Q}^{\mathrm{tr}} = \mathbf{I}$? Exercise 7 An $n \times n$ matrix A is called a circulant if all of its diagonals (main, sub and super) are constant and the indices are interpreted mod n. EXAMPLE: $$\left(\begin{array}{cccc} 1 & 5 & 3 & 2 \\ 2 & 1 & 5 & 3 \\ 3 & 2 & 1 & 5 \\ 5 & 3 & 2 & 1 \end{array}\right).$$ - Look at the n-periodic sequence a where $a_{\ell} = A_{\ell+1,1}$, $\ell = 0, 1 \cdots, n-1$. Write the entries of A in terms of the sequence a. - Let X be an $n \times 1$ column vector. Show that Y = AX is equivalent to y = a * x if x, y are n-periodic sequences for which $x_{\ell} = X_{\ell+1,1}$ and similarly for $y_{\ell} = Y_{\ell+1,1}$, $\ell = 0, \dots, n-1$. - Prove that the DFT diagonalizes all circulant matrices. That is, that $\frac{1}{n}\overline{\mathcal{F}}^{tr}A\mathcal{F} = D$, where D is diagonal. What are the diagonal entries of D? (i.e., what are the eigenvalues of A)? Exercise 8 Let C, H be real low pass filters, each satisfying the double-shift row orthogonality condition. Does the product CH satisfy the double-shift row orthogonality condition?