Homework Problem Set #4

Willard Miller

March 25, 2002

Exercise 1 What is the frequency response for the maxflat Daubechies filter with p = 2? Graph $H(\omega)$. What are its symmetries?

Exercise 2 Compute $\mathbf{h}(n)$ for the half band Daubechies filter with p=5. Verify that $H(e^{i\omega})$ has four zero derivatives at $\omega=0$ and $\omega=\pi$.

Exercise 3 Find $H_1(z)$, $F_0(z)$ and $F_1(z)$ for the biorthogonal filter bank with

$$P_0(z) = \frac{1}{16} \left(-1 + 9z^{-2} + 16z^{-3} + 9z^{-4} - z^{-6} \right), \qquad H_0(z) = \left(\frac{1 + z^{-1}}{2} \right)^3.$$

Exercise 4 Let $\phi(t)$ and w(t) be the Haar scaling and wavelet functions. Let V_j and W_j be the spaces generated by $\phi_{j,k}(t) = 2^{j/2}\phi(2^jt-k)$ and $w_{j,k}(t) = 2^{j/2}w(2^jt-k)$, $k = 0, \pm 1, \cdots$, respectively. Let f(t) be defined on $0 \le t < 1$ and given by

$$f(t) = \begin{cases} -1 & 0 \le t < 1/4 \\ 4 & 1/4 \le t < 1/2 \\ 2 & 1/2 \le t < 3/4 \\ -3 & 3/4 \le t < 1. \end{cases}$$

- 1. Express f in terms of the basis for V_2 .
- 2. Decompose f into its component parts in W_1 , W_0 , and V_0 . In other words, find the Haar wavelet decomposition for f.
- 3. Sketch each of the four decompositions.

Exercise 5 Suppose that $\{V_j : j = 0, \pm 1, \cdots\}$ is a multiresolution analysis with scaling function $\phi(t)$ and that ϕ is continuous and compactly supported.

1. Find $\Pi_j(t)$, the orthogonal projection onto V_j of the step function

$$\Pi(t) = \begin{cases} 1 & 0 \le t \le 1 \\ 0 & t < 0 \text{ or } t > 1. \end{cases}$$

- 2. If $\int_{-\infty}^{\infty} \phi(x) dx = 0$, show that for all j sufficiently large, $||\Pi \Pi_j|| \ge \frac{1}{2}$.
- 3. Explain why the preceding result implies that $\int_{-\infty}^{\infty} \phi(x) dx \neq 0$,