Homework Problem Set #7

Math 5467

May 7, 2002

Exercise 1 Problem 4 in Section 6.4 (page 208) of your text: If $H(\omega)$ has p zeros at $\omega = \pi$ show that $\hat{\phi}(\omega)$ has p zeros at $\omega = 2\pi n$ for each $n \neq 0$.

Exercise 2 Problem 4 in Section 6.5 (page 218) of your text: What wavelets come from the biorthogonal filters with $H_0 = 1$, $F_0 = \frac{1}{2}z + 1 + \frac{1}{2}z^{-1}$, $H_1 = \frac{1}{2}z - 1 + \frac{1}{2}z^{-1}$, $F_1 = -1$? Recognize the delta (see example 6.2 on page 184) and hat:

$$\tilde{\phi}(t) = 2\tilde{\phi}(2t)$$
 and $\phi(t) = \frac{1}{2}\phi(2t+1) + \phi(2t) + \frac{1}{2}\phi(2t-1)$.

Then construct wavelets from $\tilde{w}(t) = -\frac{1}{2}\tilde{\phi}(2t+1) + \tilde{\phi}(2t) - \frac{1}{2}\tilde{\phi}(2t-1)$ and $w(t) = 2\phi(2t-1)$. Check the biorthogonality conditions

$$\int \phi(t)\tilde{\phi}(t-k)dt = \int w(t)\tilde{w}(t-k)dt = \delta(k),$$
$$\int \phi(t)\tilde{w}(t-k)dt = \int \tilde{\phi}(t)w(t-k)dt = 0.$$

Exercise 3 Verify that if $g \in L^2(-\infty, \infty)$, ||g|| = 1 and g is centered about (t_0, ω_0) in phase space, then the windowed Fourier function $g^{[x_1, x_2]}$ is centered about $(t_0 - x_1, \omega_0 + x_2)$.

Exercise 4 Given the function

$$g(t) = \begin{cases} 1, & |t| \le \frac{1}{2} \\ 0, & |t| \ge \frac{1}{2}, \end{cases}$$

show that the set $\{g^{[m,n]}\}\$ is an ON basis for $L^2(-\infty,\infty)$. Here, m,n run over the integers.

Exercise 5 Suppose $g \in L_2(-\infty, \infty)$ with ||g|| = 1 and g is centered about (0, k) in the position-momentum space. Show that the continuous mother wavelet $g^{(a,b)}$ is centered about $(b, a^{-1}k)$.