Homework Problem Set #1

Willard Miller

February 4, 2004

Exercise 1 For n > 0, define the functions $f_n \in L^2[0, \infty]$ by

$$f_n(t) = \begin{cases} \sqrt{n}, & \text{for } n \leq t \leq n + \frac{1}{n} \\ 0, & \text{otherwise.} \end{cases}$$

- 1. Compute $||f_n f_m||$. Does the sequence $\{f_n\}$ converge in the L^2 norm?
- 2. Show that $f_n(t)$ converges pointwise in $[0, \infty)$ and find the limit.
- 3. Does the sequence converge pointwise uniformly? Justify your answer.
- 4. Show that $\{f_n\}$ is ON. Is it a basis?

Exercise 2 Does the sequence

$$f_n(x) = \frac{x}{1 + nx^2}$$

for $n = 1, 2, \cdots$ converge uniformly on the real line? Justify your answer.

Exercise 3 For n > 0, let

$$f_n(t) = \begin{cases} 0, & \text{for } -\pi \le t \le 0 \\ nt, & \text{for } 0 \le t \le \frac{1}{n} \\ 1, & \frac{1}{n} \le t \le \pi. \end{cases}$$

This sequence belongs to $C[-\pi,\pi]$, i.e., the space of continuous real-valued continuous functions on the interval $[-\pi,\pi]$ with the usual inner product and norm.

1. Show that $f_n \to \chi_{(0,\pi]}$ in the L^2 norm, where

$$\chi_{(0,\pi]}(t) = \begin{cases} 0, & \text{for } -\pi \le t \le 0 \\ 1, & \text{for } 0 < t \le \pi, \end{cases}$$

so that $\{f_n\}$ is Cauchy in L^2 .

2. Show that $||\chi - h|| > 0$ for every $h \in C[-\pi, \pi]$. Conclude that $C[-\pi, \pi]$ is not a Hilbert space.

Exercise 4 Suppose the function $\phi(t) \in L^2[-\infty, \infty]$ satisfies $\int_{-\infty}^{\infty} \phi(t) \overline{\phi(t-k)} dt = \delta_{0,k}$, i.e., the integral equals 1 for k=0 and vanishes for $k=1,2,\cdots$. Show that for any fixed integer j the functions $\phi_{jk}(t)=2^{j/2}w(2^jt-k)$, $(k=0,\pm 1,\pm 2,\cdots)$ form an ON set.

Exercise 5 Project the function $f(t) = t^2$ onto the subspace of $L^2[0,1]$ spanned by the functions $\phi(t), \psi(t), \psi(2t), \psi(2t-1)$, where

$$\phi(t) = \begin{cases} 1, & \text{for } 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases} \qquad \psi(t) = \begin{cases} 1, & \text{for } 0 \le t < \frac{1}{2} \\ -1, & \text{for } \frac{1}{2} \le t < 1 \\ 0, & \text{otherwise.} \end{cases}$$

(This is related to the Haar wavelet expansion for f.)

Exercise 6 Let $L^2[-\infty, \infty, \omega(t)]$ be the space of square integrable functions on the real line, with respect to the weight function $\omega(t) = e^{-t^2}$. The inner product on this space is thus

$$(f,g) = \int_{-\infty}^{\infty} f(t)\overline{g(t)}\omega(t)dt.$$

The Hermite polynomials $H_n(t)$, $n=0,1,\cdots$ are the ON set of polynomials on $L^2[-\infty,\infty,\omega(t)]$, obtained by applying the Gram-Schmidt process to the monomials $1,t,t^2,t^3,\cdots$ and defined uniquely by the requirement that the coefficient of t^n in $H_n(t)$ is positive. (In fact they form an ON basis for $L^2[-\infty,\infty,\omega(t)]$.) Compute the first 4 of these polynomials. NOTE: Later we will show that $\int_{-\infty}^{\infty} e^{-ist}e^{-t^2}dt = \sqrt{\pi}e^{-s^2/4}$. You can use this result, if you wish, to simplify the calculations.

Exercise 7 Note that in the last problem, $H_0(t)$, $H_2(t)$ contained only even powers of t and $H_1(t)$, $H_3(t)$ contained only odd powers. Can you find a simple proof, using only the uniqueness of the Gram-Schmidt process, of the fact that $H_n(-t) = (-1)^n H_n(t)$ for all n?

Exercise 8 Find the $L^2[-\pi, \pi]$ projection of the function $f_1(t) = |t|$ onto the (2n+1)-dimensional subspace spanned by the ON set

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos kt}{\sqrt{\pi}}, \frac{\sin kt}{\sqrt{\pi}} : k = 1, \dots, n\right\}$$

for n = 1. Repeat for n = 2,3. Plot these projections along with f_1 . (You can use MATLAB, a computer algebra system, a calculator, etc.) repeat the whole exercise for $f_2(t) = t$. Do you see any marked differences between the graphs in the two cases?

Exercise 9 Use least squares to fit a straight line of the form y = bx + c to the data

$$\begin{array}{rclrcrcr} x & = & 0 & 1 & 3 & 4 \\ y & = & 0 & 8 & 8 & 20 \end{array}$$

in order to estimate the value of y when x = 2.0.

Exercise 10 Repeat the above problem to find the best least squares fit of the data to a parabola of the form $y = ax^2 + bx + c$. Again, estimate the value of y when x = 2.0.