Homework Problem Set #2

Math 5467

March 8, 2004

Exercise 1 Expand $f(t) = \pi^2 - 2\pi |t|$ in a Fourier series on the interval $-\pi \le t \le \pi$. Plot both f and the partial sums

$$S_k(t) = \frac{a_0}{2} + \sum_{n=0}^{k} (a_n \cos nt + b_n \sin nt)$$

for k = 1, 2, 5, 7. Observe how the partial sums approximate f.

Exercise 2 Expand f(t) = -t in a Fourier series on the interval $-\pi \le t \le \pi$. Plot both f and the partial sums S_k for k = 5, 10, 20, 40. Observe how the partial sums approximate f. What accounts for the slow rate of convergence?

Exercise 3 let $f_1(t) = t$ and $f_2(t) = \pi^2 - 3t^2$, $-\pi \le t \le \pi$. Find the Fourier series of f_1 and f_2 and use them to sum the following series:

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}$$

$$2. \sum_{n=1}^{\infty} \frac{1}{n^2}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

4.
$$\sum_{n=1}^{\infty} \frac{1}{n^4}$$

Exercise 4 Let

$$\Pi(t) = \begin{cases} 1 & \text{for } -\frac{1}{2} < t < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

be the box function on the real line. We will often have the occasion to express the Fourier transform of f(at+b) in terms of the Fourier transform $\hat{f}(\lambda)$ of f(t), where a,b are real parameters. This exercise will give you practice in correct application of the transform.

- 1. Sketch the graphs of $\Pi(t)$, $\Pi(t-3)$, and $\Pi(2t-3) = \Pi(2(t-3/2))$.
- 2. Sketch the graphs of $\Pi(t)$, $\Pi(2t)$, and $\Pi(2(t-3))$. Note: In the first part a right 3-translate is followed by a 2-dilate; but in the second part a 2-dilate is followed by a right 3-translate. The results are not the same.
- 3. Find the Fourier transforms of $g_1(t) = \Pi(2t-3)$ and $g_2(t) = \Pi(2(t-3))$ from parts 1 and 2.
- 4. Set $g(t) = \Pi(2t)$ and check your answers to part 3 by applying the translation rule to

$$g_1(t) = g(t - \frac{3}{2}),$$
 $g_2(t) = g(t - 3),$ noting $g_2(t) = g_1(t - \frac{3}{2}).$

Exercise 5 Let f(t) have Fourier transform

$$\hat{f}(\lambda) = \begin{cases} 1 & 0 \le \lambda < 1 \\ 2 & 1 \le \lambda < 2 \\ 3 & 2 \le \lambda < 3 \\ 0 & \text{otherwise,} \end{cases}$$

Sketch the graph of the Fourier transform of the function:

- \bullet f(-t)
- 2f(2t)
- $e^{4it}f(t)$
- f'(t)
- (f * f)(t)
- $f(t) \cdot f(t)$.

Exercise 6 Sum the Fourier series $\sum_{n=0}^{\infty} 2^{-n} \cos nt$ and $\sum_{n=1}^{\infty} 2^{-n} \sin nt$. Hint: Take the real and imaginary parts of $\sum_{n=0}^{\infty} 2^{-n} e^{int}$. You should be able to sum this last series directly.

Exercise 7 Let $f(t) = e^{iat}$ for a real but not an integer, and $-\pi \le t \le \pi$. Use Parseval's formula for complex Fourier series, and evaluate the L^2 norm $||f||^2$ in two ways to deduce that

$$\sum_{n=-\infty}^{\infty} \frac{1}{(a-n)^2} = \frac{\pi^2}{\sin^2 a\pi}.$$

Exercise 8 (Haar wavelets on [0,1]) Let $\phi(t)$ be the Haar scaling function

$$\phi(t) = \begin{cases} 1 & \text{if } 0 \le t < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Let n be a positive integer and $h_k(t) = \sqrt{n}\phi(nt-k)$, $k = 0, 1, \dots, n-1$

- 1. Show that $\{h_0, \dots, h_{n-1}\}$ is an ON set in $L^2[0, 1]$.
- 2. Let f(t) be a continuous function on [0,1] and form the projection $f_n(t)$ on the subspace S_n of $L^2[0,1]$ spanned by $\{h_0, \dots, h_{n-1}\}$:

$$f_n = \sum_{k=0}^{n-1} (f, h_k) h_k.$$

Show that $f_n(t) \to f(t)$ pointwise in t as $n \to \infty$.

3. For f(t) = t, compute explicitly the Haar wavelet decomposition for n = 4 and n = 8. Plot the results.