Transformation and Reduction Formulas for
Two-Variable Hypergeometric Functions
on the Sphere S,

By E. G. Kalnins, H. L. Manocha, and Willard Miller, Jr.

We classify the two-variable hypergeometric functions that arise as eigenfunc-
tions of the Laplace-Beltrami operator on §, and characterize these functions in
terms of elements in the enveloping algebra of so(3). This operator characteriza-
tion is used to derive transformation and reduction formulas for the functions.

1. Introduction

In a previous paper we have obtained Lie algebraic characterizations for all 34
of the two-variable hypergeometric functions classified by Horn [1]. Here we list
those functions which are related to the complex Lie algebra sl(2)=s0(3) and
show how our operator characterizations lead simply to transformation and
reduction formulas for the Horn functions.

In Sec. 2 we list all Horn functions that are representable in terms of the
type-A operator realization of sl(2). (Type-A operators define a multiplier
representation on the complex sphere S, [2].) Each such function is a simulta-
neous eigenfunction of the Casimir operator for sl(2) and a second operator in
the enveloping algebra of sl(2) that is part first-order, part second-order. If two
families of functions have operators which lie on the same orbit under the
adjoint action of sl(2), then these families have a transformation formula that
relates them. Reduction formulas arise when the second operator equation
factors as a product of first-order operators.
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In Sec. 3 we list the Horn functions that can be characterized in terms of
angular-momentum operators for so(3), a special case of type-A operators.
These functions are all solutions of the Laplace-Beltrami eigenvalue equation on
the complex sphere S,. In addition to transformation and reduction formulas
that can be derived by the methods of the preceding section, we find a new type
of reduction formula. It is known that every purely second-order operator in the
enveloping algebra of so(3) characterizes a separable coordinate system for the
Laplace-Beltrami eigenvalue equation on S, [3, 4]. Thus for each Horn function
on S, whose defining operator equation is purely second-order, we can expand
this function in terms of purely separable eigenfunctions.

We have not in fact treated all Horn functions that are related to so(3). We
have confined our attention here to operator realizations associated with S, and
omitted the type-B operator realizations for confluent-limit Horn functions,
which were listed in Ref. [1]. Furthermore we have omitted all discussion of the
Appell function F,, which is more properly associated with the sphere S, and
so(4) and will be treated in another publication. (Indeed, the important reduc-
tion formula for F, as a product of two functions ,F, [5, p. 81] 1s a consequence
of the fact that for certain parameter choices the operator characterization of F,
corresponds to a separable solution of the Laplace-Beltrami eigenvalue equation
on §;.)

Our operator techniques provide considerable insight into the theory of
two-variable hypergeometric functions. In forthcoming papers we shall show
how these techniques can be used to obtain generating functions and expansion
formulas for hypergeometric functions.

2. Type-A operator realizations of Horn functions

We start by listing the two-variable hypergeometric functions that are associated
with the type-A operators:

L* = —vzd, —v%3,, L%°=v3, —in
L_=_z(1~—z}a:+au+z(p+£+l} p+1 2.1)
0 2v v

Here, v,z are complex variables and p, £ are complex constants. These operators
satisfy the commutation relations

[L%L*] = =L%,  [L%L7] = 2L (2.2)

hence they define a multiplier representation of the Lie algebra si(2) [2].
Furthermore, the operators (2.1) are closely associated with the type-A factoriza-
tions of Infeld and Hull [2, 6].

The functions F(u,v) in Table 1 all satisfy the Casimir eigenvalue equation

(L*L~+ L°L°— LYF = 1(p*—1)F (2.3)
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Table 1
Type-A Realizations of Horn Functions
Function; Operator equation;
related functions typical solution
N 2 L*LY+ L°%L%+ 3(B+2B —a—y+ 1)L —al’

~a(p+ I p—2a+1),
p=a¥ B=y,f=<a+Bry—1;
G, F(a,8,8",v,1—z,0)0"

(2) d,; LLO+ LY —al~(p+1)(p—2a+1),
p=a+ -y, t=—a+B+y—1,

¢, I, ®(a,B,y,1—z,0)0"

(3) Fs; L¥Y[L°—a+ B +(p+1)/2)+[L—a+(p+1)/2]
X[L— a+ vy +(u—1)/2]~0,
p=y— L, E=28—v;

FE!HZ FI(H,B,,S;,T,‘}'I,E,ﬂ)ﬂu

(4) Hy; (L°—a+ B+2y—1-¢/2(L°—a+ B—£/2)+4L*L* ~0,
p=8—1,£(=28-14;
H’? H..;'(ﬂ,ﬁ,']",s, —ﬂzlz)ﬂa
(5) ¥, (L°—a+B+y —1-£/2)(L°—a+B—§/2)+ L™ ~0,
Hll ‘I,I(E:B:T:Tr:z:ﬂ)ﬂﬂ_.r+lz.r-l
(6) i LY (L4 y—1—-£/2)—i(L°+ ' +y—1—¢/2)~0,
p=a—f.f=a+p—1;
H, E(a, o, B, vz v~z FphmrH]
(7) E; ~iL*(L%+y—1—-¢/2)~1,
p=a—p,{=a+f—1;
H, E'l(a,ﬁ,*r,z_l, —jp Nz " FpP-rH!

in addition to a second operator equation that is partly first-order, partly
second-order in the enveloping algebra of sl(2).

These results follow from Table 3 of Ref. [1] and constitute the list of all
type-A operator realizations of two-variable hypergeometric functions for which
the multiplier is nonzero. Corresponding to each function in the list we also give
all related hypergeometric functions. (We regard two hypergeometric functions
as related if the standard pair of partial differential equations for one of these
functions (as listed in Ref. [7], pp. 224-227) can be transformed into the
standard pair of differential equations for the other by a multiplier transforma-
tion and change of independent variables and parameters. The explicit transfor-’
mations can easily be obtained from the “canonical” equations of Ref. [1]. By an
operator equation C~a, a €C, for a function F(v,z) we mean that F satisfies
CF=aF as well as relation (2.3).

The operator equations for F, and ®, are of a different nature than the
remaining equations on our list. It is well known that the standard equations for
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F, and ®, admit exactly three linearly independent solutions, whereas those for
F,, Hy, ¥,, =, and Z, admit four linearly independent solutions [8, 9]. Now the
sl(2) operator equations for F,,...,Z, in Table 1 correspond precisely to the
standard equations for these functions. However, as follows from their derniva-
tion in Ref. [1] the operator equations for F, and ®, are more general than the
standard equations, i.e., each solution of the standard equations satisfies the
operator equations, but the converse is not true. Indeed, using standard tech-
niques, [8, pp. 44-49], one can show that the operator equations for F, and @,
admit four linearly independent solutions.

Comparing the operator equations for F, and F,, and taking into account the
expressions (2.1), we see that these equations are identical provided either

case 1: a=c=a+8—v+1],
b=g,
b =B+p —v+],
¢=B—-v+2
or
case 2: a=a, b= B, b= B,
c=a+fB—7v+1],

c'=—[B+7,

where a,b,b’,c.¢’ are the parameters of F,, and a, 8,8,y are the parameters of
F,. 1t follows that any solution of the F-equations can be expressed as a linear
combination of independent solutions of the F,-equations. For example, in case

1 one can see from the list of 60 solutions of the standard F-equations [8, p. 62]
that

vz (11— o) P B (y-ay—B- BBy +1—a=Bz 1)

is a solution of the F,-operator equations. (These 60 solutions can be derived by

group-theoretic arguments; see Ref. [10].) On the other hand it is straightforward
to check that the only solution of the F,-operator equations of the form

%2 Y~ *PG(z,v),
where G is analytic in a neighborhood of (0,0), is

0¥ *"BFE(y~ B,y—a,B,y—a— B+1,y—B,2,0);
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see Ref. [8], p. 50. Thus

FE(T_ B,'}"—{L’,ﬁr,‘f—{t—ﬁ'F I:T"' ﬁ,f,t})

z
1—v

= (1mu)_ﬁtFl(T_ﬂsT_B_B!rB;:T-ﬂ"'B'l'1,3, ) (24)

Though this particular identity is not new, the method of proof is new and, we
believe, very simple. Similar computations allow one to expand F,- or G,-func-
tions as linear combinations of F,-, F;-, or H,-functions. Analogous reasoning
permits expansion of @,-, ®,-, or I';-functions in terms of ¥,- or H,,-functions.

More generally we can relate two classes of Horn functions if the operator
equations defining one class are equivalent to the operator equations of the
other class under the adjoint action of sl(2). For example, if F(v,z) is a solution
of the F,-operator equations (3) in Table 1 and we denote the parameters of F,
by a,b,b’,¢c,¢’, then we see that exp[in4+ iz #L% exp[; L *] F satisfies the Hy-op-
erator equations (4) if a=a, b=, ¢=4, and ¢'=2b"=2y. Thus

4iv z )
14+ 2iv’ 142iv

can be expanded in a basis of H, solutions. A simple example is

z 40 W
Fi(ﬂ:ﬂrTranzT: ]+2|‘J’ l+2ﬂ)(l+2ﬂl) =H4(H,B,T,6,U1,z)- {2‘5)

Reduction formulas of the second kind can also be easily derived from our
operator realizations. To explain the method we consider the case of the Appell
functions F,. The operator equation C~A0 for these functions as given in Table 1
factors into a product of first-order operators in sl(2) if and only if there exist
constants a,b such that

C=(L*+L°+a)(L°+b)~0 (2.6)
or constants ¢,d such that .
C=(L°+)L+L°+d)~0. (2.7)

It is easy to verify that (2.6) is valid precisely when B'=0 or f'=y— -1
Restricting our consideration to the first possibility we see that then

a=j(~a=B+y=1), b=i(-a+p-y+). (2.8)
Now any solution of (2.3) and the equation

L°+b~0 (i)
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is a solution of (2.6). Except for special values of «,B,y, a basis for the
2-dimensional solution space of (1) and (2.3) is given by

« B

o —_—— T_a? = i
) =IF](a+ﬂ-T+1 "’)“ > = H"’F‘( ) z)” |

r=a=+]

(2.9)

(Indeed—as follows from Ref. [11]—Eq. (2.3) admits separable solutions in only
two essentially distinct coordinate systems. In one of the systems, {z,v)}, the
separated solutions are characterized as eigenfunctions of LY and the z-depen.
dent factor of each separable solution satisfies the Gauss hypergeometric equa-
tion. See Refs. [12] and [2, pp. 199-214)] for a more complete discussion of these
systems.)

If J is a solution of (2.6), then, setting G=(L%+ b)J, we see that G is &
solution of

(L*+L°+a)G=0. (2.10)
We have already determined those solutions F of (2.3) and (2.6) such that G =0.

To find all possible solutions G of (2.3) and (2.10), we first compute all solutions
K(z,v) of (2.3) and (L°+ @)K =0. Then

G =exp(—L+)K( lfﬁ’ Ifu)

satisfies (2.10), where K=exp(L™)G. A basis for the solution space is

ra
1—0v

Gy =1~ )-ﬁ“ st 4 A et o]

z Y—a—p§ L = 1, —
G_‘-( ) (1—p)7 A IEFI( R

Z )ﬂa+ﬁ-—v+l
l-o y—a—B+1 '

1—1v

(2.11)

except for special values of @, 8,y. (Note that these solutions are separable in the
coordinates {z/(1—v),v} and are characterized as eigenfunctions of L%+ L*.
In the group-theoretic analysis of variable separation these coordinates are
considered as equivalent to {z,v}, because L°+ L* lies on the same orbit as L°
under the adjoint action of sl(2) [13].) We can find the functions J; such that
(L°+ b)J.= G, i=3,4, by straightforward integration. For uniqueness we require
that the coefficient of v* be zero in the convergent expansion J, =3, v*g(z2). If
Re(f—v)> —1, then

| i
J, = o° f u= "G (z,u)du, i= 13,4, (2.12)
0
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for (z,v) in a sufficiently small deleted neighborhood of (0.0) The solutions for
Re{ B—v)< —1 are obtained from (2.12) by analytic continuation in B and v.
Except for some special values of a,B,y, the functions {/,.....J,) form a basis
for the solution space of (2.3) and (2.6). Thus for 87=0, any solution of the
F,-equations (2.3) with C~0 can be uniquely expressed as a linear combination
of a separable solution in the variables {z,v)} and the functions (2.12).

As a nontrivial example, consider the solution [8, p. 62]

(1—2)* " "z7—=A(1 —0)P ' 1—-z- p)! F

vz z .
XF](I—,B,T—B,I—::::,';.»'+1—&—3,(1_ﬂ)(1_z), I—u)” . (2.13)

From the behavior of this function in a deleted neighborhood of z =0, v=0, we
see that the solution must be a multiple of J,. Hence we obtain the identity

vz <
FI(I—B,T—BJ—&J+l—ﬂ“ﬁ=(1_ﬂ)(l_z)‘l—u)

e (l“ liﬂ)ﬂ_](l-‘E)T_ﬁzFl( T:i_;;fii’):

or

1-_.3.'- ".I"'_.B: l—a
F'( ydi=oa=p

= - B 1_.85 T_B E
x’y)'“ * EF‘(?—a—ﬁH .}*—1)'

Another example is provided by the solution [8, p. 62]

un+ﬁ+]—?{1__ﬂ}'f“ﬁ_l{1_z_ﬂ)—‘.ﬂFl(l; .3.'- 'f-’-"'}'l_".'u"r

v v )
24 8-y |o+z—1"0—1)

which is easily seen to be ( 8— v)Ji(z,0).
Clearly, remarks similar to the above hold for all values of a, 8,8,y such that

either (2.6) or (2.7) is valid. Also, analogous treatments can be given for systems
(3), (4), and (6) in Table 1.

3. Angular-momentum operator realizations

Here we study the two-variable hypergeometric functions associated with the
angular-momentum operators

JI = IEax: - IlaxB, J: = Il ax3 T ?:3 axl, Jj g xzaxt N Il axz, (3-1)
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where x,, x,, x5 are complex variables. Setting
Jr=il,xJ, J'=il, (3.2)

we see that the sl(2) commutation relations (2.2) are satisfied. The operators (3.2)
correspond essentially to the type-A operators (2.1) with £=0. Indeed, setting
£=0 in (2.1) and computing the transformed operators L=p~'Lp, where the
multiplier function p(v,z)=(v/2)** /% we find

o T .
LT=J"= —vzd,—v"d,

t~a

“=J = —%{1—z)az+aﬂ, (3.3)

where

ri{z—1 ' -]

Note that the operators (3.3) leave invariant the complex sphere S,:x} + x3 + x}
=] (or §,:r=1).

In one sense the eigenvalue equation for the Laplace-Beltrami operator on 3§,,
(JYT~+JU—JOF = 1(p2-1)F, (3.5)

is just a special case of (2.3). However, the solutions of (3.5) have a much richer
structure than those of (2.3) for general £ Indeed, (2.3) separates in only two
coordinate systems, whereas (3.5) separates in five systems [3]. Note in particular
that by splitting off an appropriate variable in (2.3) we can obtain general
one-variable hypergeometric functions ,F, as solutions. The analogous proce-
dure in (3.5) yields the Gegenbauer functions, which enjoy many transformation
properties not shared by the more general , F,.

Setting £=0 and performing the multiplier transformation F—sp~'F, we
obtain for each function listed in Table 1 an operator characterization of the
corresponding hypergeometric solutions of (3.5). The results are listed in ¥able
2

The hypergeometric functions appearing in Table 2 all have linear restrictions
on their parameters. However, as follows from the results of Ref. [1], there are
other hypergeometric solutions of (3.5) on the complex sphere for which all
parameters are arbitrary. A complete list of these functions appears in Table 3.

Many interesting identities can be read off rather easily from these tables. For
example, denoting the parameters of F, by a,b,b’ respectively, we see that the
operators characterizing entries (1) and (8) agree if a=a, f=b', y=a—b+1.
Thus any F, solution of the operator equations (1) can be expressed as a linear
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Table 2
Special Horn functions on §,
Function; Operator Equation;
related functions typical solution
(1) F; JYI+ I+ (B+B —a) Tt —a®
a-dl(,u+ I pu—2a+1),
p=2p—-1;
G, Fl({x;ﬁ,ﬁ’,u—ﬁ+1,l—z,ﬂ)ﬂ“_ﬁzﬂ
(2) D,; JU+ T —ad '~ (p+D(p—2a+1),
u=2p-1,
®,,T, D (o, B0 —B+1,1—2,0)0* AP
(3) F; JYI—a+B+B)+ ([T —a+ BN °—a+ B+y —1)~0,
p=28-1;
FE.?HE Fz(ﬂriﬂsﬁFszﬂ!'}’}sz:ﬁ)ua_ﬁzﬂ
(4) Ha; (JP—a+ B+2y=DJ ' —a+B)+4J *J T ~D,
p=28—-1;
H‘T H4(ﬂ',ﬁ,']",25, _uiiz)un_ﬁzﬂ
(5) ¥; (J—a+B+y— DI "—a+ B)+J T ~0,
p=2p—1;
Hll ‘Pl(aiﬁizﬁiTIrzsﬁ)uaHBﬁ+ 13,3}5'-—I
(6) ol JYJ'+y—-1D=i(J%+ o'+ y—1)~0,
p=1-20;
H, E(l=B,a B, v,z v Doty 1-2h
(7) i —J I+ y—1D~1,
p=1-28;
H,  B0-Bpxye - n¥

combination of four basis solutions of the H,-equations (8). A simple con-
sequence is the identity

Flabb,a—b+1,w,0)

W v
(l+w)1?1+“"

- Hg(a,b',a —b+1, )(l +w) %, (3.6)

as can be checked by comparing coefficients of 1, w, v, and wv on each side of
this equation. Similarly entry (2) is a special case of (5), and entries (2), (9), and
(11) are equivalent. We also have the equivalences (1)<(10), (6)<(12), and
(Tex(13).

As follows from the results of Refs. [3] and [4], Eq. (3.5) admits solutions via
separation of variables in precisely five coordinate systems. The separable
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Table 3
General Horn functions on S,
Function; Operator equation;
related functions typical solution
(8) H, JHI+B—y+ D+ —a+y=1)J—y+1)~0,
n=2la—2y+1;
Gl:Hﬁ Hj(ﬂ':.ﬁ:-r: (;_2)1 ’ zfz)za-?+|(2_z)"ﬂﬂ?'—l
-z
(9) H JU+ 7+ —aJ'~(1— )1 —v+a),
n=2a—2y+1,
11—z v
(2—z)* 2-2
0_ B d¥ga 3y
(10)  H, (..r a+8+5 z)” a+d+)
+J"’(J”—n:+ﬁ+ > +%—)~U,
p=2y—2
HT Hd(ﬂ ﬁ Y 3 31 —_ 2v )(2_2)"HIT—1f2ﬂﬂ—?+lf2
: | ¥ ¥ !4(3_2)2? 2_2
(11) H, J++(Jﬂ+rx+%+%)(.fﬂ—a+~§—%) 0,
p=2y—2;
2 2v —a,y—1/2, a—y+1/2
H? ﬂ::Tsaiq-( 2)1:_ =1 {‘3_2] z 20
7 —
1 ]
(12)  H, (J“-u—,8+-f:-,+-§)—J+(J“-a+%+5)~ﬂ,
p=28—2; -
z’ z—2 —a, =172 a—8+1/2
H9 {11316:4( 2)29 T (3_2) z v
-
]
(13) H J“‘"(J“—ﬂ:+§)~l, p=20-2;
2 -
e
4(z—

coordinates and the corresponding operators K [second-order symmetric opera-
tors in the enveloping algebra of so(3)] are listed in Table 4. Here the separated
solutions F, = F{"(u,)F{*(u,) in the coordinates {u,,u,} are characterized by
(3.5) and the eigenvalue equation KF, =AF,, where A is the separation constant.

Recall that every second-order symmetric operator in the enveloping algebra
of so(3) lies on the same orbit [under the adjoint action of so(3)] as exactly one
of the operators on Table 4 [3]. Thus by choosing the parameters of the
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Table 4
Separable coordinates for §,

iCoordinates Defining operator

fA) x,=cosuy, (%
' Xo=SINU, COS U,
Xy=Ssinu, sinu,

xy=3[e™ "+ (1—u3)e™] (Jy + iJ5)
Xy = U,e™
Xy= —yile™™ — (1 + u3)e™!
]
X, =4 dn(u;, k) dn(uy, k) Ji+ kY?
ik

X3 = F Gﬂ(ﬂl, k) cﬂ(”z: k}
X3 = Kk sn(uy, k)sn(u,, k)

Bu U,y

(D) x,=tanhy,tanhy, — IR TR+ I3 iU+ )
3 . 1 1{coshu, coshu,
Xy=1 —= + '
coshu,coshu, 2\ coshu, coshu,
_ 1 coshu, 4 coshu,
*37 2\ cosh u, coshu,
E i _
i e 8u,u, [4+ (uf — u3)"] (JoJy+ I )+ i(J 3 + T, J5)
__1 T
B (47 + 1]
L x= o[-l

operators 1in Tables 2 and 3 so that these operators become purely second-order
and by identifying the orbits on which the operators lie, we can find all cases in
which the operator equations yield solutions via pure separation of variables.
The possibilities are listed in Table 5.

Note that only two separable systems appear as special cases of the systems in
Tables 2 and 3: the type-D coordinates which lead to solutions that are products
of Gegenbauer functions, and the type-E coordinates which yield solutions that
are products of Bessel functions.

Consider for example the F,-operator equations in Table 5. If F(z,v) is a
solution of these equations, then

T\ 10 Lips - z 2iv
exp[(ln2+:2).f }ﬂxp[z.}' | F(z,0) 1+iﬂ’l+iﬂ) (3.7)

is a solution of (3.5) with u=28—1 and an eigenfunction of JU°+J *J* with
eigenvalue (a— B)° It follows that if F(z,v) is any solution of the F,-equations
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Table §

Systems of Horn functions admitting separation on 5,
Function; Operator equation
separable-coordinate type

(1) Fy: YIT T IO+IUO~p,
D a=0, 4= % — B
(3) F>; LIU T+ T IN+ IV ' ~(a— BY,
D Y=2a—p)+1, 8 =a—B+3
4) Hy: JUIO+4T T * ~(a—B),
D y=a—f+3
(7) o JUr+J %~ =2,
E y = %
(8) G; LIU* +T I+ TV %~a?,
D B=—a, B'=1
(10) Hi: %(J“J++J+J°)+J“J“~(B—%}3,
D y=a—B8+1,6=28
(13) i JOI*+JHI~2,
E a=0

on Table 3, then (3.7) can be expressed as a linear combination of four separahil
solutions. The first factor of each separable solution is either of the Legend.
functions Pf: (), Qﬁ_‘ y () for j=1, and the second factor is the same exco|
j=2. Thus, for a=0,-1,—2,..., we have

Fl(a,ﬁ,a—ﬁ+g,z,8,z{a-m+1,X,x\/(uf-1)(’;§-1) Jxe

= Ji= s f—
=€2F](u,u+1 28 Hl)zFx(ma-l-l P ug)} (S

a—B+1 2 a— f+1 2

X = Z[V(uf—l)(uf—l) +uzu2+l}-1,

Comparing the two sides of the equation for u,=1, we find

. _T@AT(B-a)
FR-)T(B)’
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