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0. — Introduction

In this paper we present a unified treatment of variable separation for both
the linear and nonlinear equations of classical and quantum mechanics. Further,
for certain equations of special physical interest (Hamilton-Tacobi, Helmholtz,
Schrédinger, wave and Laplace equations) we show how geometric and symme-
try group methods can be used to characterize the separation.

We believe that the basic results of Section 1, viz. a general definition of va-
riable separation for partial differential equations and the relationship between
separation equations and separation constants, are new. (Our definition is an
extension of that of Levi-Civita for Hamilton-Jacobi equations [1]). Particularly
notable is the generality of our definition and our ability to distinguish and
classify several types of separability in the mathematical literature, some stated
explicitly, others implicit. (See for example, Koornwinder’s paper [2] in which
he discusses several earlier definitions and adds one of his own. All of these de-
finitions are special cases of ours). The authors in the past have adopted techni-
cal (nonintuitive) definitions of variable separation for ease of computation, e.g.,
[3], [4]. On the other hand several of the intuitive definitions found in the litera-
ture are virtually useless for computational purposes. The definition offered
here has the advantage that although it is intuitive it leads immediately to inte-
grability conditions which are convenient for computations.

In Section 2 we apply our separation criteria to the Hamilton-Jacobi, Hel-
mholtz, Schrédinger, Laplace and wave equations and obtain the technical condi-
tions for separation of various types. Each of these technical conditions has
appeared in the literature before but their concise derivation from a single general
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principle is new.

In Section 3 we show how each of the separable systems introduced in Section
4 can be characterized intrinsically in terms of symmetries of the associated par-
tial differential equation. Such a characterization permits the use of group repre-
sentation theory and functional analysis to obtain properties of the separated
solutions, e.g., [5]. At this point symmetry methods have been applied only for
linear and first order partial differential equations. The intrinsic characterization
of variable separation for general nonlinear differential equations remains unclear.

Unfortunately, space does not permit us to discuss the broader concept of par-
tial separation of variables for differential equations, a subject which is less
developed than total separation. See, however, [6]-[9].

I. — The General Concept of Variable Separation

We begin by motivating our definition of additive separability for a partial
differential equation

(1.1) Jé’?(xi, Uy Uy Uiy Uiy s - - J=F

in thé coordinates Xyp o v o X . Here, u is the dependent variable, U, = 9, U, Uy =

= 0, Oy x; Us etc., where 1 i, j, k,...<n,and E is a parameter. We assume (for
cc}nvemence) that 5 is a pDI}’HDHHﬂ] in the variables ., Ui o - with coefficients
which are real analytic functions of the variables x., , all defined in a common
domain D x J, D C R" with (0, .. ., 0) €D, and J an open interval on the real
line.

A solution of (1.1) is a function u = S(x, E) defined and analytic for x in a
nonzero domain D' € D and E in an open interval / C IR, such that substitution
of this function into (1.1) renders(1.1) an idantity forall (x, E) €D’ x I. A sepa-
rable solution is a solution of the form u = E sV (x E). We will derive neces-
sary and sufficient conditions on # and {x, } f-:-r thE existence of (additively)
separable solutions and, for a given coordinate system, will determine the mul-
tiplicity of such solutions.

Since for a separable solution Uy = 0 for i # j, without loss of generality we
can set all mixed partial derivatives identically equal to zero in (1.1) and obtain
the simple equation

(1:2) HOeu, u e, .. )=E
For convenience we set U g Sy, Uy =4a, Y = 0 sf=1,2 and
.lr+1 ”l' Il I)!
define m, to be largest number 2 such that o EH e HH, 0= = (. To avoid djscussiﬂn
i,
of deg&neratﬂ cases we require m. >0 fori =1, ,n. Let D, denote the total

differentiation operators
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(1.3) ‘Di= axi + U; 4 a'u + ufrza”i_l F e mh “:‘.m,—+ 1 aui*mi o IR
If u is a separable solution of (1.2) such Huf ' - () in some domain for all j, then
DH (x, u) =0, or o

D.H
(1.4) U1 = 0= i et

' f+1 ; ’ i

Huf,mi
where
(1.5) szax,- —I—ui'lau—i*. "+Hf,m¢- ”f.mf—l'

Clearly, y satisfies the integrability conditions Dju,-, S 0,f##Ii,0r

(1.6) H, H, DD H+H D,H) (D, H) =

Lz s F . Uiy T m.
I, m; },mj. LM }.mj.

= Hy, , O Oy )+ Hyy oy D) OBy

Note that is expression is a polynomial in the variables u; . In general, (1.6)
is a restriction both on the coefficients of A and the form of the particular se-
parable solution u. However, there is an important special case where (1.6) is
an identity in the dependent variable u, u; ,- (Indeed, this case will occur if (1 2)
admits so many separable solutions that for each x? € D and each set of real con-
stants u’, u?, uf‘:., gl 3 Ly wven T SREISEVINE H(x°, 0, u?,ug, ...)=E, there is
a separable solution u(x) such that u(xﬂ) =", ul.(Iu) = u? ,...). Then conditions
(1.6) reduce to restrictions on the coefficients of H which are independent of
the choice of separable solution. If (1.6) is an identity we say that {xi} is a regular
separable coordinate system (for the equation ¥ =E).

Suppose {x,} is a regular separable coordinate system and consider the equa-

tions

D;v=uv;,
H Df”j,l = 5:';‘ U
Df UJ'. m;— 1 - Sfﬁ uf.mj
Dy =—0b D;.H(x. ) 1 <i, j<sn
i f.mj ] H“;’,m; (x, v) ’ ’ -
The integrability condition for this system of equations, Dkﬂiuj.m;i}fﬂk i mj

is equivalent to (1.6). Since (1.6) 18 satisfied identically for x0 €D and each set
of constants u?j, 1l <i<n 0<j<sm,; such that H“,fm {x”, %) = 0, there is a

0
i1

unique solution v of the system (1.7) such that u(x%) = uﬂ, DfU(x“) =V
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D:”:;( “) — 9 el ([10], chapter 1). Choose £ such that E H(x LU ) Then
u = v(x) is a separable solution of (1.2) such that u{.:-: } = v° and u; (I ) = U?I
I <i<n, 1 <j<m, Indeed D x; H(x, v) = 050 H(x, v) =

THEOREM 1. If {x.} is a regular separable system for the equation Y= E, 1e,
if equations (1.6) are satisfied identically, then for every set of m, +m, + ...+

+ m, + 1 constants fvY, }w:th H(x0 ") = E and H (x", o) # 0, there is

a unique separable Su!u.tmn u of H(x, u) = E such that u(xﬁ} = Uy Y {IU) = Uﬂj

I<i<n 1<j<m,

If equations (1.6) are not satisfied identically, separable solutions still may
exist, but they will depend on fewer thaan m. + 1 parameters. This type of
separation is nonregular.

EXAMPLE 1. H = (x; + x,) (4, + u,,) — 2(u; + u,). Equations (1.6) are satistied
identically so {x,, x,} is a regular separable system. The general separable solu-
tion depends on 5 parameters and is given by

E
(1.8) iL.= cu:f—kﬁxf%—';rxl—'z—xl +{—ax§+ﬁx§—rﬁz+§).

EXAMPLE 2. H = uj, + u, + t,y

Here we have u,,, = — 1/2 (provided Uy, # 0) and u,,, = 0 so equations (1.6)
are satisfied identically and {xl, xz} is a regular separable system. The general
separable solution depends on 5 parameters:

::-:3

1
(1.9) U= —E—l—u:xl-i-ﬂxl) [ (E—-4czz—ﬁ}x§+'}'xz+5}

EXAMPLE 3. H = Xy Ugy + X Uy + Uy + u,.

Equations (1.6) reduce to the requirement u , + u,, = 0. The general separable
solution depends on 4 parameters:

(1.10) w= (o2 + Bx;) + [—oxs + (E —B) x, + 7).

This is a nonregular separable system.

U.. + ut
EXAMPLE4 H= 11 "22

u
Equations (1.6) are satisfied identically for u # 0. The general separable solu-

tion depends on 5 parameters:
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(1.11) u = aexp(x, EY?) + B exp(—x, EY?) +
+ry E}([}{IEE”E) + & exp(— IEEHEL

for E > 0, with obvious modifications for £ < 0

Associated with any separable coordinate system, regular or not, there 1s a
system of separation equations. Let u = v(x) = Zjuf'{xj) be a particular separable
solution of the equation H(x, u) = E, uniquely determined by its initial condi-

fions u = UD, Uy o = u?k at the point x = x". Now fix i and set x = (yl, S AT
XMy o5 5005 where we consider X asa variable and y; as a parameter, j # 1.

Substituting u = v into H(x, u) = E we obtain an ordinary differential equation
(1.12) HOC, 0 (), y) =E, i=1,...0i%1,

for the function &' = v {x) an equation that depends on the parameters Yo
u"(y ). Each such expressmn (1.12) is a separation equation for ', It is u‘npc}rtant
to nbserve that ifu' = v (x ) is any solution of the i-th separation equation (1.12),
valid for all values of the Vs then

(1.13) a(x) = ) v(x) +0(x)

j+1i

is a separable solution of (1.1).
To write the separation equations in a normal form we solve for the highest
derivative term . in (1.12) and obtain
Y -
. =FW J
(1.14) Uim, = F7 (X Uy 0 V' (3))s ¥ E)
O0<f<m,j#i

(Since H is a polynomial in the derivatives of u, there may be several distinct
solutions (1.14). We choose that solution which corresponds to v; ,,.).

We say that the separation equations corresponding to the separable coordi-
nates {x | are normal if each of the functions F¥,i = 1, . .., nin (1.14) is inde-
pendent of Yis j # i, for each fixed choice of v, If the sﬂparatmn equations
e~ iofriall thiere i3 single equation for each unknown function u'”. The equa-
tions then take the form

(1.15) e =F P - 5 M), i=1,..m,

I, m;

where | < g < Em + LA =N (u J» 1 < k<gq, and the parametersh are

functionally 1ndependent as functmns Df the 2 m. + 1 parameters u? ie’ We choose
AL

g to be minimal: the g n-vectors ( (xf., ?u.j)] k=1,...,q are linearly inde-

k
pendent over the field of functions f(A,, . . ., ?\q).
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THEOREM 2. If the separation equations are normal then g = n and for each set
of solutions um{xf.], i =1,..., n, of the ordinary differential equations (1.15)
the function u = Tu® (xf} is a separable solution of (1.2). All separable solutions
of (1.2) arise in this manner.

Proof. Suppose the separation equations for the coordinates Jl“":;} are normal and
that they take the form (1.15). Since ”Emf - Z 0 (x u” ?\ ) it follows
immediately that g = n.
From equations (1.7) we can (local]y} consider each A, as a function of x and
b Xl =1,..,m k=0, A =S8 }(HEI‘EES-Glfulsa
saparable solution nf (1.2)). Frum (1 15) and the fact g = n it follows that n of

.’E"]

these functions, say Sl, BT Sth have the property det (6 / ) # 0. Thus there
“i,m-

exist functions T, such that :

(1.16) Wim, = 1,06 Aps .., hﬂ,um), 0< <m; l<i<n.

Furthermore,

(1'1?) h.'i‘ B Qs(xr :h']: 1o T -5 }I"”: ujpE), F= H + ]-1- i Y 'q: 0 % E {mj"

Substituting (1.17) into (1.15) we obtain the separation equations in the form

(1.18) ui.*mt_(xf} = FW(x, ui’p(xl.)j Wiy emims hn, ”f,ﬂ{xf})’

where 1 <j<n j#i0<p<m,0<p<m,0< E{m andh —S(x
u, (x;)), 1 <q <n.Normality implies that the right hand side Df (1. 18) is ldﬂﬂtl-
cally the same in the variables Xps U 83 the parameters x, sweeps over a range

i
of values:

(1.19) D50 = ﬂjax_yiﬂ -pp, #=
1
— a bl m. _3 :
_Djaxfauf;m. o I:..'. ka j'#;].

LEMMA 1. Let | < a < f < n. Then either 9, J"m}—a ﬁm]=ﬂ,0%£<ﬁma
or 0, ﬁ{“]—a ﬁ{“:’—{l 0%}*"{”’1 i<

Proof. For clarity we consider the example n = m, =M= 2. (The general case
follows easily from this). Thus
Uy = Flxys x5, ud 42 Uys Uy g fhl)

2 (1) (2
Uy = G(J:l, Xop W 007 Uy, Uy, 7‘«1, ?'tz)
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The conditions D,# =D,9, #=D,0 (,#=D,9,#=0 imply (since DA, =0)

L , Syt eE, =

H[E
“¢I131+u “ilui 2) +G°¢I1H2 N
(1.21) ﬁuﬂ}xz +u, ﬁu“}u{z} +G # B =)
Fuyuy T U2 ﬁuluw +G6 Sy u, = 0.

If (Tr,*,1 = (), it follows immediately from the first of equations (1.21) that ‘ﬁu{IJ =
= ﬁuz = 0; thus £ is independent of X5 um, Usy- If ﬁuz =0 we apply axl to
both sides of the first equation (1.2) and use the second equation to obtain
Gy, = 0. Similarly the third and fourth equations yield G ;) = Gy, = 0. Thus
G is independent of x,, ull) Uy - (Q.ED.)

Returning to the proof of the theorem, we choose two distinct integers o, f3,
(1 <, f<n), and consider the separation equations

— gla) .
(1223} Hﬂ!mﬁ(xﬂ} -_— ﬁ (I&,Iﬂ;. HII,P’ }lkl:l = Ty }I\n} uﬂ.E)

— ¢(B)
(1.22b) Uy m, ) = F 0 Xt o Ao - Nt ).

(We suppress the dependence of #£® #¥) on the variables X Uy 0§ F 0, B).
According to the lemma, by mterchangmg the labels o and g if nece:ssary, we can

ensure that #® is independent of X, and u_ 5

(1.23) U my (%) =Py T

8 ¥p.0°

Let u = E um(x ) be a separable solution of (1.2) corresponding to the para-
meters hj, ot Vil Now let u*{"”(x ) be any solution of (1.22a) corresponding
to parameters l , A and the {{backgmund}} u{“{xk) k #+ q. Then u* =
= u*(“}{x ) L= ”‘](x ) is a separable solution of (1.2). Since the separation
equation (1. 221::} is independent of u*'*'(x ), for any solution u*m[xﬂ} of (1.22b)
corresponding to parameters A,, h and «backgroundy, u””(x ), st B,
we have a separable st:-lutmn u** nf {1 2): u** = u*{“"}(x) + u*m}(x] +
+ 2 U '[h}(xh} Now u'® = 4* is any solution of (1.22a) but also satmfles

_ gla) *
u mﬂ(xﬂ) = & (xm,xﬂ,uﬂ,p_,ll, e o Ug o

where u*® s any solution of (1.23). This is possible only if FADET independent

of X4 and u - Repeating this argument for each pair of indices &, § we find that

the separation equations assume the simple form

_ gD .ol
e g (U o Agewas X )y T=T00 50 (Q.E.D.)
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COROLLARY 1. If | X115 a separable system with normal separation equations
then it is a regular sepamb!f system.

Note that Examples 2 and 4 have normal separation equations, while Exam-
ples 1 and 3 are nonnormal.

There is a similar theory of additive separation for a partial differential equa-
tion of the form (1.1) with £ = 0, i.e., an equation not depending on a parameter.
We make the same assumption on ¥ as before and take the equation in the form
(1.2) with £ = 0:

(1.24) Hl{xf, u, U, uh.) =}

Then a separable solution u of (1.24) must satisfy the integrability conditions
(1.6). In case the integrability conditions are identities in the sense that there
exist functions Pr.f{xk, U,y . )> polynomials in Uy o such that

(1.25) Fy=Hy nHy  ODH) +H, . (D H) D H) =
] “:rm: ”,r iy Uy T
~H, mj{D,_H} (D;H, )~ Hyy D, D H,, e
= Pz'.f H, L]

we say that {xk} is a regular separable coordinate system for the equation =10

THEOREM 3. If {Ik} is a regular aeparabfe system ﬁ;l'."‘ H = 0 then for every S[?.i" of

m,+m,+...+m, + 1 constants e £ § with H(x", ") =0 and H J( x5 9%

+ 0, there is a unique separable solution u of H(x, u) = 0 such that u(:.r: == uD,

{ID]—U 1 <i<n, l{;ﬁim}

Proof. The verification of this result is only a slight modification of the proof
of Theorem 1. Corresponding to the regular separable system {Ik} we construct
the system of equations (1.7). If the initial conditions are chosen such that
H(x°, v%) = 0 the, from (1.25), D' Dy* ... D" Z,(x°,v") = 0,m; >0, 2nd
these are the integrability conditions for the system (1.7), ([10], Chapter 1).
(Q.E.D.)
Again we observe that if equations (1.25) are not satisfied identically, separa-
ble solutions still may exist but will depend on fewer than E; m, independent
parameters. This is nonregular separation.
Examples 1-4 above for £ = 0 are instances of regular and nonregular separa-
tion. Less trivial 1s

EXAMPLE 5. H = (x, — x3) s+ (g —xz) Uy + (4 —xz) - Equations (1.25)
are satisfied with PI!,"' + 0, so x, is a regular separable system for / = 0, though
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not for H = E. The general separable solution depends on 6 parameters and is
given by

o B
(1.26) U= E(xf + 54 x3) + E(xf+x§+x§) oy X, Xy + Yy X+ 6.

We can define the concepts of separation equation and normal separation for
H = 0 in exact analogy with the definitions for H = E. The separation equations
depend on g independent parameters and we have:

THEOREM 4. If the separation equations for H = 0 are normal in the coordinates
{x.}, then g = n — 1 and for each set of solutions u (x,),i=1,... nof the
Separation equaftions, the function u = 2 u(ﬂ(xf) is a separable solution of H = (.

The proof is virtually the same as that of Theorem 2. The only difference is
that, since £ = 0, there is one less parameter in the separation equations. It is
easy to check that the separation equations for Example 5 are normal;

u.+ax.+p=0, i=1,2,3.

2. — Separability for Hamilton-Jacobi, Helmholtz and Laplace Equations

We now apply the results of Section 1 to determine the possible regular se-
parable coordinate systems for the Hamilton-Jacobi equation on a pseudo—Rie-
mannian manifold (V" g):

H
(2.1) HG ) = Z gl uu =E,
Lji=1

where u. = 3.u. In the local coordinates {x'} the metric on V" isds? = X 8 dx'dx/
and E gjg"‘r‘ = 6‘*, g = det(g,; ) # 0. (We adopt the notation of Emenhart s book
[11] and assume that all functmns on V" are locally analytic). Initially we limit
ourselves to orthogonal coordinates {xi}, ie., coordinates for which ds* =
= .? Hf{dx")z, so that 8 = 0ifi=#j. Thus (2.1) becomes

n

(2.2) Y H %l =E

I
i=1

and from the integrability conditions (1.6) we see that {x'} is a regular separable
system if and only if |

-2 __ —32 =g —2 -2 .
(2.3) 3, H =0 H 20, InH 213 H-23 0l j#k.

¥
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These are the standard Levi-Civita separability conditions and are well known
to be equivalent to the requirement that the metric coefficients be in Stdckel
form with respect to the coordinates {x"}, [2], [12]. That is, there exists ann x n
matrix Sﬁ(x"'), whose j th row depends only on :t:f, such that § = det {Sﬁ) #* 0,
(a Stackel matrix) and

s/
(2.4) H %= —
/ S

where S/! is the (j, 1) minor of (SI.}.}, It is not difficult to show that the separa-
tion equations are normal and take the form

(2.5) W+ Y ASN=0, N\ =—E.
=1

For the Hamilton-Jacobi equation with potential
iﬂ'
(2.6) Y H7ul+ Vix)=E,
i=1

the results are similar. The integrability conditions reduce to (2.3) and
= = _ .
(2.7) amV—akEan BjV—afRnHk 0. V=0, j#Fk.

As shown in reference [4], this last condition means precisely that the potential
function can be expressed in the form

(2.8) V=Y fOuh)H?
i=1

Again the separation equations are normal.
A regular orthogonal separable system for the Hamilton-Jacobi equation (2.2)
with E = 0 is characterized by the integrability conditions

-2 -2 £ —3 -2
(2.9) aﬁ: H ™ — ajH:. G EnH! — aka annHk
= 0 (%) HT*HH;, j+k
for some functions p re These equations are equivalent to
== 2 2
(2.10) afk RnKI. + a;R”K,- 3, EHK:‘ —
2 —2 —2 —2 _
- HIEHKI. E}kEHK! — Bjﬂnﬁk 9, Eﬁﬁ} =0

for K;z = Hf_ EIHI._E_ Furthermore, as shown in Ref. [13], the equations are
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equivalent to the requirement that Hl._2 = (0(x) L?E‘?‘z where the metric ds* =
=D f (dx’)? is in Stickel form. The separation equations have the appearance
(2.5) with £ = 0.

For the general case of regular nonorthogonal separation for the Hamilton-Ja-
cobi equation (2.1) the integrability conditions are identical with those derived
by Levi-Civita [1]. However, the basic types of nonorthogonal separation that can
occur, as a result of solving these equations, were worked out only recently
through Benenti’s theory of separability structures, [14]. Benenti used the fact
that separable coordinate systems occur in equivalence classes, each element of
which determines the same separable solutions, and showed that every equiva-
lence class contains a «canonicaly separable system {x“, x”, x* } with contrava-
riant metric

.ﬂl HE ?‘13

qﬁ”ﬁng 0 0 E n,

(2.11) @)= 0 0 H7’B(x") | n,
—2poayr B

[ 0 H °B, (x7) g 3 ny

Here n, > n, and the integer indices a, r, & vary in the ranges 1 <ga, b <n;
n+tl<sr<n tn,in +n,+ | <a,f <n+n,+n,=n.. Furthermore, aug‘-’ =
= ( for each «ignorable variable» x®, The integrability conditions further require
that the metric

My ny+ng
(2.12) =) HAax+ ) HdxX')
a=1 J"=H1+ 1

is in Stickel form and that each matrix element g** be expressible as

nj ny+na
(2.13) e, ) =Y R H 2+ ) R HL.
a=1 r=ny+1

This last requirement simply means that the equation (2.7) are satisfied for
1 <i, j, k<n, + n, with g*® in place of V. The separation equations take the
form

Hy+Ha
H§+Zf:ﬂ(xa}}"s}kﬂ+ Z AgS ) =0,
o, R=1
(2.14) —

25" BN, + Y PN ) AS, BN =0,
o a g g=1
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where (SH.) is the (”1 +- ”1) X (ﬂl + ”1) Stiackel matrix. (The similar equations
for nonorthogonal separation of the Hamilton-Jacobi equations with E =0
can be found in Ref. [13]).

Given a pseudo-Riemannian space V" it is natural to ask for all regular separa-
ble coordinate systems of the Hamilton-Jacobi equation (2.1) on V". In his
classic paper [12] Eisenhart developed the machinery to handle this problem
for spaces of constant curvature and completely solved it for three dimensional
Euclidean space (where there are 11 separable systems). In the past two decades
complete lists of separable systems have been determined for a number of flat
and constant curvature spaces of low dimension, [15]-{20]. Recently the authors
have determined the separable systems for @/l Euclidean spaces Eﬂ, spheres S’n
and hyperbolic spaces H, [21], [22].

Next we study the problem of (multiplicative) separation of variables for the
Helmholtz (or Schrodinger) equation

(2.15) (A + V(x)) ¥(x) = E¥(x)
on the pseudo-Riemannian manifold V",
Here
1 .
(2.16) A= Z_f 2,(Veg" 3)
j V&

is the Laplace-Beltrami operator on V", defined independent of local coordinates.
To convert this product separation problem ¥ = l'[‘lf*:1 D (x") to the standard
additive separation form we introduce the new dependent variable u = fn V.
Further, we restrict ourselves to orthogonal separable systems

n
ds*= )  HXadx'}.
i=1

Then (2.15) becomes

n
(2.17) H=) (Hy Hug +ub) +Su, )+ V =E
=1
where
1
(2.18) S,=—— 3,(VgH; Y, Vg=HH,...H.
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The integrability conditions (1.6) for regular separation lead to (2.3), (Stickel
form), upon comparison of the coefficients of uﬁ. Comparison of the coefficients
of u,. in (1.6) yields the Robertson condition [23]:

(2.19) e (Vg H %) =0, i#]

Comparison of the constant terms in (1.6) yields the conditions (2.7) on the
potential V(x), i.e., the potential must be expressible in the form (2.8) to permit
separation. There are no additional consequences of the integrability conditions.
Again the separation equations are normal and take the form

n
2 ] i '
(2.20) .+ us + g, (x) u + £, + E : AS() =0,
‘il':‘

where A, = — E.

It follows that every orthogonal coordinate system permitting product sepa-
ration of the Helmholtz equation (2.15) corresponds to a Stickel form; hence per-
mits additive separation of the Hamilton-Jacobi equation (2.6). Eisenhart has
shown [12] that the additional Robertson condition for product separation is
equivalent to the requirement Rff = ( for i # ] where RH 1s the Ricci tensor of
V" expressed in the Stidckel coordinates {x'}. It follows that the Robertson
condition is automatically satisfied in Euclidean space, a space of constant curva-
ture or any Einstein space.

More generally we can introduce the notion of R-separation for the Helmholtz
equation (2.15) in orthogonal coordinates {x'}. Here, R-separable solutions take
the form ¥ = ¢R™ H:.’zl ¥ (1) = ¢® ® where R(x) is a fixed function, indepen-
dent of parameters. If R = 0 we have separation and if R(x) = EL; Rm(x") we
have frivial R-separation. Otherwise the R-separation is nontrivial. Writing u =
= n® = R — W, we have the following generalization of (2.17):

M
(2.21) H= ) [Hy ug+ud) + QH; 23R +S) u, +
=1

—2 2 .
+ H, “(0,,R + (3,R))+S,0 R]+ V =E

Comparing the coefficients of u? in the integrability conditions (1.6) we again

find that the metric ds? = Z Hf(d'.rf ) must be in Stickel form. Comparison of

)

the coefficients of u.. yields
(2.22) 0, [2R + (Vg HT D] =0, j+#].

Finally comparison of the constant terms in (1.6) and use of (2.22) leads to the
requirement (2.7) for the «modified potential»
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1
(2.23) — ¥ Hr (a 2 + — 523)
e 2
where
(2.24) 0 = 3.8n(Vg H %) = 3,8n(Vg/S).

We see that whenever V satisfies (2.7) (hence (2.8)), equation (2.15) permits
orthogonal R-separation with

1 n
(2.25) R =— —(h/S) + Z L@ ()

2 i=1
where the functions L are arbitrary. Thus through appropriate choice of V,
every additively separable coordinate system {x'} for the zero-potential Hamil-
ton-Jacobi equation can occur as a multiplicatively separable system for the
Helmholtz equation. In all these cases the separation equations are normal. De-
tails are given in reference [24].

The question arises whether nontrivial R-separation occurs for V' = 0. From
(2.19), (2.22) and Eisenhart’s formulation of Roberfson’s condition as R.. = 0,
[ # j, we see that only trivial orthogonal R-separation can occur in an Emslam
space. However, as the authors have shown [24], [25], nontrivial R-separation
can occur for ¥V = 0; even in conformally flat spaces. An example is

ds® = (x +y+2z) [(x—-y}(x—z)dx2+

(2.26) +(y—2) (y—x)dv* + (z —x) (z —y) dz*].
= +y+z) V4,

Nonorthogonal R-separation for the Helmholtz equation can be treated in an
analogous manner. Necessary and sufficient conditions for R-separation are that
the metric can be expressed in the form (2.11) and that the modified potential

L |

1
297 V= V—— H %38 +— ﬁl)
22 L e e

a=1
satisfy (2.7), (hence (2.8)) forj#k, 1 <k <ny + 1, Here
¢ =23 (Vg H %) =0,0(Vg/S) 1<a<n, +n,.

If these conditions are satisfied the most general multiplier is given by

1 2
(2.28) R(x)=—— Rn(VlS) +00*) + ) A, (x*)

a=1
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where

ﬂ1+H1

(2.28) Z g3 0

r=nji

satisfies (2.7) for each o, n; + n, + 1 <a<n; +n, + n,. See reference [26]
for more details and examples of nontrivial R-separation.
Next we take up orthogonal R-separation for the Laplace equation on V":

(2.29) AW(x)=0

Here the Laplace-Beltrami operator is given by (2.16). We are interested in solu-
tions of the form ¥(x) = eX™®@(x) where O(x) = . ¥ (') and the metric
becomes ds* = T 2(dx")? in the coordinates {x/}. Writing u = 21 © we
can write (2.29) in the standard form

"
(2.30) H=Y  [Hy g, +ul) + QH; 28,R +8,) uy +

2 2 L
+ H, “(3,,R + (0,R)7) + 5,9, R]=0

where

!
(2.31) 5= = 3,(VeH %), Vg=H

g

We now substitute these expressions into the integrability conditions (1.25) to
find the requirements that {x*" } be a regular separable coordinate system. Equa-
ting the coefficients of u we obtain the conditions (2.9), hence (2.10), on the
metric cumpan&nts H 2 Thus there exists a function Q(x) such that H 2 =

= QJE"’I._ i =1,.. . n, where the metric ds* = iy 2(dx'y? is in Stackel
form. Let (Sl.j(x’ )) be a Stidckel matrix associated w1th th1s form. Comparison
of the coefficients of u_. yields

Q{E—HJIE h
(2.32) aﬁ.[m +£n( 5 H=U, i~y ]
where A = }ﬁﬁg ..., H#,. Comparison of the constant terms in (1.25) and use
of (2.32) leads to the remaining requirement that the «potential»
1 02 2 j,
(2.33) V= 2:‘_1%.‘ E (a-ﬂ. + — E.Z) L= a‘i&n( )
= I I i 2 ] I i S

satisfies
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X —2n T —~2 - : :
(2.34) ajkV—akEn}E‘} ajV——ajﬂnﬁi‘} 0, V=0, j#k;
hence V is a Stickel multiplier:
(2.35) V=31 fOuh 2
If conditions (2.10) and (2.43) are satisfied then {x/} is R-separable with

¥ JOREE o
(2.36) Rx)=——n ( ) LY
x > _Z] ')

where the L are arbitrary.

An important problem for each pseudo-Riemannian space V" is to determine
those coordinate systems on V" that permit R-separation of the Helmholtz or
Laplace equation. The differential geometric techniques for finding separable sy-
stems for the Helmholtz equation were introduced by Eisenhart [12] who showed
how to find the solutions of equations (2.3) for flat spaces and spaces of nonzero
constant curvature. In his book [27] Bocher developed geometric methods for
finding R-separable orthogonal coordinate systems for the Laplace equations on
these same spaces. The authors, in collaboration with C. P. Boyer, have extended
both the theory of Eisenhart for Helmholtz equations (to obtain lists of separble
coordinates for all 3 and 4 dimensional space and for E..S,,H inall dimensions,
[3], [21], [22], [28]) and Bocher’s theory for Laplace equations, [29] - [31].
In particular, for E_we have shown recently, [31], that Bécher’s method yields
all R-separation systems. (However, his method obviously fails for Minkowski
space, 1.e., the wave equation, where nonorthogonal R-separation becomes im-
portant).

The basic results on nonorthogonal R-separation for Helmholtz and Laplace
equations and detailed lists of coordinates are due almost entirely to the authors
and our collaborators: [26], [32] - [34]. We mention in particular Ref. [34] where
it 1s shown that the Helmholtz equation on CP(2), complex projective space,
admits separation in exactly 2 nonorthogonal coordinate systems, and fails to
separate in-any orthogonal system.

3. — Intrinsic Characterization of Variable Separation

For the Hamilton-Jacobi, Helmholtz and Laplace equations on V", introduced
in the previous section, (R-) separable coordinate systems can always be characte-
rized intrinsically, i.e., in a coordinate-free manner.

To ciescribe this characterization we need to use the Eri-dimensmnai cotangent
bundle V" associated with V™. 1If {x'} is a local coordinate system on V?® (with
metric tensor gﬁ). then there is a local coordinate system {x’ ,pf} on _V". If {x''} is
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another coordinate system on V", x! = f’-(xﬁ'}, it induces a new local coordinate

; ax*
system {x"', pj'}ﬂﬂ V" where ;:.:r = %I o Thus the Hamiltonian
x!

(3.1) #=) &'pp,
)

prs
is independent of coordinates. A function .#(x, p) on V" is a constant of the
motion (associated with Hamiltonian 3#) if {.%, 3} = 0 where

i}

(3.2) (F(x, p), Sx,p)} = Z; @, F3 ,F~2, IO &)

#*
is the Poisson bracket of functions %, #on V". (As is well known the Poisson
bracket is defined independent of canonical changes of coordinates). This nota-

d
tion arises from the fact that { %, ¥} = 0 if and only if i:f—f,.5,"‘;’(;3['(1‘),, p(t)) = 0 for

any solution x(r), p(¢) of Hamilton’s equations gji. = — Eixf.}f, ¥ = ap,-.,}f. If #is
a polynomial in the p., then it is a Killing tensor; if linear in the p,, a Killing
vector.

Now consider the problem of additive orthogonal separation for the Hamilton-
Jacobi equation (2.1). From the separation equations (2.5) we are led to the
quadratic forms

51
(3.3) o Z—pﬂ, 0=1,...,n.

From expressions (2.2) - (2.5) we can verify the following properties:

1) ot =0p

2) The n element set (") is linearly independent (as a set of quadratic forms).

3) (&%) is in involution, i.e.,| f, !} = 0 and each &' is a Killing tensor.

4) The differential of the separable coordinates w’ = dx’ constitute a simulta-
neous eigenbasis for the (&7%). (Here, p is a root of a quadratic form & = (a")
with respect to the metric g7 if (a7 — pgf) = 0, and w = z, }kEdI is an eigen-
form corresponding to p if w = 0 and E (@7 — pg"') Pa. = 0).

5) o (x, p) = — A, for each addﬂwely selaarabla solution u = 23 u@(x' \) of
(2.2), where p; = = a}.u

In [35] the authors proved the following converse of these statements:

THEOREM 5. Let (%), ' = #. be a linearly independent set of n second or-
der Killing tensors such that
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N, ™1 =0,1<8 m<n.

2) The (&%) have a common eigenbasis {w"},

Then there is a separable coordinate system {x'} for the Hamilton-Jacobi
equation #(y, 0 U] = E on V" such that w7 = f(x) dx’ for some functions
$ W The sepambfe solutions u are determined by o “(x, p) = hﬂ, p; = ax,.u_

The main point of this theorem is that, under the required hypotheses the
eigenforms w® of the quadratic forms ¢’ are normalizable, i.e., that up to mul-
tiplication by a nonzero function, w'? is the differential of a cmrdmate:, This
fact, which is proved through use of the commutation relations {.o/ PefMm =
to verify appropriate integrability conditions, permits us to compute the coordi-
nates directly from a knowledge of the symmetry operators. (Earlier versions
of this theorem, e.g. [6], page 31, assume also that wY is a closed eigenform.
We show that this assumption is unnecessary).

These results extend to R-separation of the Helmholtz equation on V”

(3.4) A¥(x) = E ¥(x)

where in local coordinates

-

1
(3.5) = — Vg g/ a,).
ol

Here a linear differential operator 4 on V" is a symmetry operator for A if
(3.6) [AA]l=A4A —AA=0.
Note that uniquely associated with every second order symmetry operator
. f
A= Z a*'fal.j-t-Zb" 0; + ¢
i.f=1 i

in local coordinates {y"} is the second order Killing tensor

ol = Z {Iij pf p}..
.

Indeed, [A, A] = 0 implies {3 | = 0, though the converse is false.

THEOREM 6. [24], [36]. Necessary and sufficient conditions for the existence
of an orthogonal R-separable coordinate system | x! } for the Helmholtz equation
AV = EY gre that there exists n second order differential operators Al = A,
A% ..., A" such that
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1)[A, AT1=0,1<ij<n

2) The associated set of Killing tensors (') is linearly independent.

3) There is a basis {wV : 1 <j < n} of simultaneous eigenforms for the oA’

If these conditions are satisfied then there exists functions j‘"(x) such that
w¥ = fdx! 1<j<n.

Theorem 6 follows from Theorem 5 through exploitation of the commutation
relations 1). Indeed, these relations can be used to show that the separation con-
ditions (2.7) for ¥ in (2.23) are valid.

COROLLARY 2. [24] Suppose the second order differential operators Al = A,
A% ..., A" satisfy conditions 1)-3) of Theorem 6, and in addition that they
are in self-adjoint form with respect to the measure ‘\/g?a::.".].flcfy2 I

(3.7) Za( gay 3 )+ ),

(a form which is independent of the choice of local coordinates{ y!'}). Then the
R-separable solutions ¥V = i ]'l:.’=l O () of AV = EV are characterized as
the eigenfunctions of the A®;

(3.8) AW =—p ¥, L=1,...,n,

where }‘1 = —Eand A, - . ., hn are separation constants.

For the Hamilton-Jacobi equation
(3.9) H(x, 0u)=0

i.e., E = 0, there is an analogous characterization of additive separation by con-
# . .
formal symmetries. A function Z(x, p) on V", a polynomial in the D, 18 said to

be a confomal Killing tensor provided there is a function g(x, p) on " such that

(3.10) L, H=qH.

THEOREM 7. [13] Necessary and sufficient conditions for the existence of an
orthogonal separable coordinate system {x'} for the Hamﬂmn-lacﬂbf equation
(3.9} are that there exist n — 1 quadratic functions B* = ” {k}{x} p;p; on
V" 2<k<n, such that :

1) Each B%isa conformal Killing tensor,

2B, By=0,2<ij<n

3) The set (#, B*) is linearly independent (as n quadratic forms).
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4) There is a basis {7 : 1 < < n} of simultaneous eigenforms for the RB*
If conditions 1)-4) are satisfied then there exists function f(x) such that
w? =fldx!, 1 <j<n.

Again, these results extend to R-separation of the Laplace equation on V" :
(3.11) A¥(x) =0

A linear differential operator B on V" is a conformal symmelry operator for A
if there exists a linear differential operator C such that

(3.12) [A,B]=AB —BA = CA.

Uniquely associated with every second order conformal symmetry operator

B= i b*’faﬁ+£bfa,.+¢

Li=1 i

(in local coordinates { y*}) is the second order conformal Killing tensor
RB= Z v'p. p; .
i

THEOREM 8. [36] Necessary and sufficient conditions for the existence of an
orthogonal R-separable coordinate system {x'} for the Laplace equation (3.11)
are that there exist n — 1 second order differential operators B* ... B"on V"
such that

1) Each B* is a con formal symmetry operator.

2)[B,B1=0,2<ij<n

3) The set ( H#, B ... B")is linearly independent.

4) There is a basis {wWV 1 1 <j < n} of simultaneous eigenforms for the B*.

If conditions 1)-4) are satisfied then there exists functions f1(x) such that
WV =fxyax,j=1,....n

The preceding theorems characterize orthogonal sgparation and R-separa-
tion for Hamilton-Jacobi, Helmholtz and Laplace equations in terms of symine-
tries. There are similar results for nonorthogonal separation of these equations,
though the results are more complicated to state and prove: (4], [26].

We can reach several important conclusions concerning variable separation
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and R-separation for Hamilton-Jacobi, Helmholtz and Laplace (or wave) equa-
tions. First, one must recognise the intrinsic geometric nature of R-separation.
The apparently technical conditions for R-separation are equivalent to the exi-
stence of an n-dimensional family of commuting symmetry operators which
can be simultaneously diagonalized. In spaces, such as those of constant curva-
ture, for which all symmetry operators can be constructed from the Lie symmetry
algebra, all R-separation questions become problems in algebra [5], [35].

Second, comparing Theorems 5 and 6, it is obvious that R-separation, not
ordinary separation, for the Helmholtz equation is the natural analogy of addi-
tive separation for the Hamilton-Jacobi equation. Finally, we note the close
relationship between variable separation and quantization theory. Corresponding
to a separable system {x’} for the Hamilton-Jacobi equation we have an involutive
family {o/*} of quadratic constants of the motion. The Helmholtz equation
R-separates in these same coordinates if and only if second order operators
{AE} can be found (with the pure second order terms in A" agreeing with those
of &7%) such that the A* pairwise commute.
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