Lecture Notes and Background Materials on
Lebesgue Theory from a Hilbert and Banach
Space Perspective, Including an Application to
Fractal Image Compression

Willard Miller

September 23, 2002



Contents

1 Vector Spaces with Inner Product.

1.1 Definitions . . . . . . . ...
1.2 Schwarz inequality . . . . .. .. .. ... ...
1.3 An aside on metric spaces and the completion of inner product
SPACES  « .« 4t e e e e e e e e e e e
1.3.1 An aside on compact metric spaces . . . . .. ... ..
1.3.2 Completion of metric spaces . . . . . . .. .. ... ..
1.3.3 Completion of a normed linear space . . . .. ... ..
1.3.4 Completion of an inner product space . . . . . . . . ..
1.4 Hilbert spaces, L2 and ¢2 . . . . . .. ... ... ... .....
1.4.1 The Riemann integral and the Lebesgue integral . . . .
1.4.2  Some technical results . . . . ... .. ... ... ..
1.5 Lebesgue measure and integration . . . . . . . ... ... ...
1.5.1 Fundamental convergence theorems . . . . . . ... ..
1.5.2  The Hilbert space L2(J) . . . . ... ... .. .....
1.5.3 An aside on measurable functions . . . . . .. ... ..
1.5.4 Extensions of the theory . . . . . . ... ... ... ..
1.5.5 An aside on differentiation and integration . . . . . . .
1.5.6 Some results on measurablesets . . . . . ... ... ..
1.5.7 Derivatives of monotone functions . . . . . . . ... ..
1.5.8 Functions of bounded variation . . .. .. .. ... ..
1.5.9 Absolutely continuous functions and the fundamental
theorem of calculus . . . . . .. .. ... ... ... ..
1.6 Orthogonal projections, Gram-Schmidt orthogonalization . . .
1.6.1 Orthogonality, Orthonormal bases . . .. .. ... ..
1.6.2 Orthonormal bases for finite-dimensional inner product
SPACES -« « v e e e e e e e e e e e e



1.6.3 Orthonormal systems in an infinite-dimensional sepa-

rable Hilbert space . . . . . . . .. ... ... ..... 73

1.7 Linear operators and matrices, Least squares approximations . 76
1.7.1 Bounded operators on Hilbert spaces . . . .. ... .. 79

1.7.2 Least squares approximations . . . .. ... ... ... 82

2 Contraction Mappings and Fixed Points 85
2.1 Newton’s method and the contraction principle . . . ... .. 88
2.2 Contractions and iterated function systems . . . . . . ... .. 90
2.2.1 Fractal image compression and IFSM . . . . . .. . .. 102

3 The Fourier Transform 106
3.1 The transform as a limit of Fourier series . . . . . .. ... .. 106
3.1.1  Properties of the Fourier transform . . . .. ... .. 109

3.1.2 Fourier transform of a convolution . . . . . . . ... .. 112

3.2 L? convergence of the Fourier transform . . . ... ... ... 113
3.3 The Riemann-Lebesgue Lemma and pointwise convergence . . 118

Comment These are lecture notes and background materials for the course.
I have included supplementary material, for those students who wish to delve
deeper into some of the topics mentioned in class.



Chapter 1

Vector Spaces with Inner
Product.

1.1 Definitions

Let F' be either the field of real numbers R or the field of complex number
C.

Definition 1 A vector space V over F is a collection of elements (vectors)
with the following properties:

o For every pair u,v € V there is defined a unique vector w =u+v € V
(the sum of u and v)

o For every a € F, u € V there is defined a unique vector z = au € V
(product of a and u)

e Commutative, Associative and Distributive laws

U+v=v+1uU

(u+v)+w=u+ (v+w)

There exists a vector © € V such that u+ © =u for allu € V
For every u € V there is a —u € V such that u + (—u) = ©
lu=wu forallueV

a(fu) = (af)u for all a,f € F
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7. (a+ B)u = au+ Pu

8 a(u+v)=au+av

Definition 2 A non-empty set W in 'V is a subspace of V if au+ v € W
forall a, 8 € F and u,v € W.

Note that W is itself a vector space over F.

Lemma 1 Let uq,us,---,u, be a set of vectors in the vector space V. De-
note by [u1,us, - - -, Un| the set of all vectors of the form ayus + agug + -+ -+
QU for a; € F. The set [uy, ug, - -, uy] is a subspace of V.

PROOF: Let u,v € [uy, ug, - - -, uy]. Thus,

m m
u = Zaiui, 7)2251%'
i=1 i=1

SO
m

au+ fv = (ao; + BBi)u; € [ur, ug, - - -, Un).
i—1

Q.E.D.

Definition 3 The elements uy,us,---,u, of V are linearly independent
if the relation aju; + agug + -+ - + apu, = © for a; € F holds only for
o =g =+ =a, =0. Otherwise ui,---,u, are linearly dependent

Definition 4 V is n-dimensional if there exist n linearly independent vec-
tors in 'V and any n+ 1 vector in V' are linearly dependent.

Definition 5 V is finite-dimensional if V' is n-dimensional for some in-
teger n. Otherwise V is infinite dimensional.

Remark: If there exist vectors uq,- - -, uy, linearly independent in V' and
such that every vector u € V can be written in the form

U= QUi + Uy + - - - + Qply, a; € F,

({u1,---,u,} spans V), then V is n-dimensional. Such a set {uq,--,u,} is
called a basis for V.



Theorem 1 LetV be an n-dimensional vector space and uq, - - -, u, a linearly
independent set in V. Then uq,---,u, s a basis for V and every u € V can
be written uniquely in the form

u = Brur + Boug + - -+ + Bply.

PROOF: let u € V. then the set uq,---,u,,u is linearly dependent. Thus
there exist aq,---, an11 € F, not all zero, such that

Uy + oty + - - + Qplly, + apu = O.

If a1 =0 then oy = --- =, = 0. Impossible! Therefore o, ; # 0 and
Q;
u = Bruy + Poug + - + Bpln, Bi = — .
Ont1

Now suppose
u = Biuy + Boug + - - + Bpln = Y1U1 + YoUz + - -+ Vnln.

Then
(61— )ur + -+ (Bn — Yn)un = O.

But the u; form a linearly independent set, so 8 —v1 =0,---, 8, — 7, = 0.
Q.E.D.

Examples 1 e V,, the space of all (real or complex) n-tuples (o, - - -, ),
a; € F. Here, © = (0,---,0). A standard basis is:

u; = (1,0---,0), wuy=1(0,1,0,---,0),---,u, = (0,0,---,1).
PROOF:

(g, -+, ) = 0qug + - - - + Qplp,

so the vectors span. They are linearly independent because
(B, Bn) = Brur + -+ + Bt = © = (0,--+,0)
if and only if 51 =---=B,=0. Q.E.D.
o V., the space of all (real or complex) infinity-tuples
(04170527 e Qe )

This is an infinite-dimensional space.
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o C™a,b]: Set of all complez-valued functions with continuous deriva-
tives of orders 0,1,2,---n on the closed interval [a,b] of the real line.
Let t € [a,b], i.e., a <t < b with a < b. Vector addition and scalar
multiplication of functions u,v € C™][a, b] are defined by

[u+v](t) = u(t) + v(t) [au](t) = au(t).
The zero vector is the function ©(t) = 0. The space is infinite-dimensional.

o S(J): Space of all complex-valued step functions on the (bounded or un-
bounded) interval J on the real line. s is a step function on J if there
are a finite number of non-intersecting bounded intervals Jy, - - -, Jn and
complex numbers c1, - - -, ¢y such that s(t) = ¢ fort € Jy, k=1,---.m
and s(t) =0 fort € J — U, Jx. Vector addition and scalar multipli-
cation of step functions s1,se € S(J) are defined by

[s1 + s2](t) = s1(t) + s2(2) [asi](t) = asi(t).

(One needs to check that s, + sy and as; are step functions.) The zero
vector is the function ©(t) = 0. The space is infinite-dimensional.

1.2 Schwarz inequality

Definition 6 A wvector space N over F is a normed linear space (pre-
Banach space) if to every u,€ N there corresponds a real scalar ||u|| such
that

1. ||lu]| > 0 and ||u|| = 0 if and only if u = 0.
2. |loul| = |af ||ul| for all o € F.
3. Triangle inequality. ||u + v|| < ||ul| + ||v]| for all u,v € N.

Examples 2 o C™[a,b]: Set of all complex-valued functions with con-
tinuous derivatives of orders 0,1,2,---n on the closed interval |a,b] of
the real line. Let t € [a,b], i.e., a <t < b with a < b. Vector addition
and scalar multiplication of functions u,v € C™|a,b] are defined by

[u+v](t) = u(t) + v(t) [au](t) = au(t).

The zero wvector is the function ©(t) = 0. The norm is defined by
[lull = J; [u(t)] dt.



o SY(J): Set of all complez-valued step functions on the (bounded or un-
bounded) interval J on the real line. s is a step function on J if there
are a finite number of non-intersecting bounded intervals Jy,- - -, Jp, and
real numbers ¢y, - -+, ¢y, such that s(t) = ¢ fort € Jy, k=1,---,m and
s(t) =0 fort € J— U, Jy. Vector addition and scalar multiplication
of step functions s1,se € S(J) are defined by

[s1+ s2](t) = s1(t) + s2(2) [asi](t) = asy(t).

(One needs to check that sy + so and asy are step functions.) The zero
vector is the function ©(t) = 0. The space is inﬁnite—dimensional. We
define the integral of a step function as the “area under the curve”,i.e.,
[7s(t)dt =35 cil(Jg) where £(Jy) = length of Jy, =b—a if Jy = [a b]
or [a,b), or (a,b] or (a,b). Note that

1. se S(J) = |s| € S(J).
2. | [ys(t)dt| < [y ]s(t)|dt.

3. 81,80 € S(J) = 181 + aasy € S(J) and [;(a181 + aase)(t)dt =
ay [;s1(t)dt + oo [ s2(t)dt.

Now we define the norm by ||s|| = [, |s(t)|dt. Finally, we adopt the rule
that we identify s1,s2 € S(J), s1 ~ $2 if s1(t) = s2(t) except at a finite
number of points. (This is needed to satisfy property 1. of the norm.)
Now we let S*(J) be the space of equivalence classes of step functions
in S(J). Then S*(J) is a normed linear space with norm || - ||.

Definition 7 A vector space H over F is an inner product space (pre-

Hilbert space) if to every ordered pair u,v € H there corresponds a scalar
(u,v) € F such that

Case 1: F'=C, Complex field

£
<
~—
/—\

X0
u+v,w) = (u,w)+ (v,w)

au,v) = a(u,v), for all o € C

(
(
(
(

o (u,u) >0, and (u,u) =0 if and only if u=0



Note: (u, av) = a(u,v)

Case 2: F'= R, Real field

1. (u,v) = (v,u)

2. (u+v,w) = (u,w) + (v,w)

3. (au,v) = a(u,v), for dlla € R

4. (u,u) >0, and (u,u) = 0 if and only if u =0

Note: (u, av) = a(u,v)

Unless stated otherwise, we will consider complex inner product spaces from
now on. The real case is usually an obvious restriction.

Definition 8 let H be an inner product space with inner product (u,v). The
norm ||ul|| of u € H is the non-negative number ||u|| = +/(u, u).

Theorem 2 Schwarz inequality. Let H be an inner product space and u,v €
H. Then
[(u, v)| < [ul] [[v]l-

Equality holds if and only if u,v are linearly dependent.

PROOF: We can suppose u,v # ©. Set w = u + av, for « € C. Then
(w,w) > 0 and = 0 if and only if u + av = 0. Hence

(w,w) = (u+ av,u+av) = ||ul>+ | ||v]|* + a(v,v) + &(u,v) >0

Set a = —(u,v)/||v|[*. Then

(w0 [(u,0)]”

[Jul* + -
o[> [|v][?

> 0.

Thus |(u,v)[* < ||ul|? ||v|]*. Q.E.D.

Theorem 3 Properties of the norm. Let H be an inner product space with
inner product (u,v). Then

e ||ul| > 0 and ||u]| = 0 if and only if u = 0.
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o |lou|| = |a] [[u]].

o Triangle inequality. ||u +v|| < ||u|| + ||[v||. PROOF:

lu+0][* = (u+v,u+v) = [Jul* + (u,v) + (v, u) + [v]|*

<l + 21 ful] oIl + [Jv][* = ([lul] + [Jv]])*.

Examples:

e H, This is the space of complex n-tuples V,, with inner product

for vectors
u:(ala"':an)a U:(ﬁla"':ﬁn)a aiaﬁiec-

e R, This is the space of real n-tuples V,, with inner product
n
(U'a U) = Z aiﬁi
i=1

for vectors

U:(Ch,"',an), U:(ﬁla"'vﬁn)a aiaﬂiER-

Note that (u,v) is just the dot product. In particular for R; (Eu-

clidean 3-space) (u,v) = ||ul| ||v]|cos¢ where ||[u|| = \/a? + a2 + a3
(the length of u), and cos ¢ is the cosine of the angle between vectors
u and v. The triangle inequality ||u+v|| < ||u||+||v]|| says in this case
that the length of one side of a triangle is less than or equal to the sum

of the lengths of the other two sides.

~

e H.., the space of all complex infinity-tuples
u= (a17a27"'7an:"')'

such that only a finite number of the o; are nonzero. (u,v) = 322, a;f3;.
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Ho, the space of all complex infinity-tuples

u:(a1,a27"'7an;"')-

such that 320, |oy|?> < oo. Here, (u,v) = X2, a;0;. (need to verify
that this is a vector space.)

2, the space of all complex infinity-tuples
u= ("',a—laQOaala"',an,"')'

such that % |a;|? < co. Here, (u,v) = 32 a;8;. (need to verify
that this is a vector space.)

cim [a,b]: Set of all complex-valued functions u(t) with continuous
derivatives of orders 0,1,2,---n on the closed interval [a, b] of the real
line. We define an inner product by

(u,v) = / up) dt,  wve O, b,

C’Qn)(a, b): Set of all complex-valued functions u(t) with continuous
derivatives of orders 0,1,2,---n on the open interval (a,b) of the real
line, such that [’ |u(t)|?> dt < oo, (Riemann integral). We define an
inner product by

b
(u,v) = / w(@)o(t) dt, w0 e 8 (a,b).
Note: u(t) = t71/3 ¢ 052)(0, 1), but v(¢t) = ¢t~! doesn’t belong to this
space.

L?[a, b]: Set of all complex-valued functions u(t) on the closed interval
[a,b] of the real line, such that [° |u(t)|? dt < oo, (Riemann integral).
We define an inner product by

(wo)= | "ut) dt,  wve La,b.

Note: There are problems here. Strictly speaking, this isn’t an inner
product. Indeed the nonzero function u(0) = 1,u(t) = 0 for t > 0
belongs to L2[0,1], but ||u|| = 0. However the other properties of the
inner product hold.
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e S%(J): Space of all complex-valued step functions on the (bounded
or unbounded) interval .J on the real line. s is a step function on
J if there are a finite number of non-intersecting bounded intervals
Ji, -+, Jm and numbers ¢, -+, ¢y, such that s(t) = ¢ for t € Jy,
k=1,---,mand s(t) =0 for t € J—U,. Vector addition and scalar
multiplication of step functions sy, sy € S(J) are defined by

[s1 4 s2(t) = s1(t) + s2(t)  [as1](t) = asy(2).

(One needs to check that s; + so and as; are step functions.) The zero
vector is the function ©(¢) = 0. Note also that the product of step func-
tions, defined by s1s9(t) = s1(t)s2(t) is a step function, as are |s;| and
5. We define the integral of a step function as [; s(t)dt = 7 cxl(J)
where ¢(Ji) = length of J, = b— a if Jy = [a,b] or [a,b), or (a,b] or
(a,b). Now we define the inner product by (s1,s2) = [; s1(t)sz2(t)dt.
Finally, we adopt the rule that we identify s;,s, € S(J), s1 ~ so if
s1(t) = sao(t) except at a finite number of points. (This is needed to
satisfy property 4. of the inner product.) Now we let S?(J) be the
space of equivalence classes of step functions in S(J). Then S?(J) is
an inner product space.

1.3 An aside on metric spaces and the com-
pletion of inner product spaces

This is supplementary material for the course. For motivation, consider the
space R of the real numbers. You may remember from earlier courses that
R can be constucted from the more basic space R’ of rational numbers. The
norm of a rational number r is just the absolute value |r|. Every rational
number can be expressed as a ratio of integers r = n/m. The rationals are
closed under addition, subtraction, multiplication and division by nonzero
numbers. Why don’t we stick with the rationals and not bother with real
numbers? The basic problem is that we can’t do analysis (calculus, etc.) with
the rationals because they are not closed under limiting processes. For exam-
ple v/2 wouldn’t exist. The Cauchy sequence 1,1.4,1.41,1.414, - -- wouldn’t
diverge, but would fail to converge to a rational number. There is a “hole” in
the field of rational numbers and we label this hole by v/2. We say that the
Cauchy sequence above and all other sequences approaching the same hole
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are converging to /2. Each hole can be identified with the equivalence class
of Cauchy sequences approaching the hole. The reals are just the space of
equivalence classes of these sequences with appropriate definitions for addi-
tion and multiplication. Each rational number r corresponds to a constant
Cauchy sequence r,7,r, -+ so the rational numbers can be embedded as a
subset of the reals. Then one can show that the reals are closed: every
Cauchy sequence of real numbers converges to a real number. We have filled
in all of the holes between the rationals. The reals are the closure of the
rationals.

The same idea works for inner product spaces and it also underlies the re-
lation between the Riemann integral of your calculus classes and the Lebesgue
integral. To see how this goes, it is convenient to introduce the simple but
general concept of a metric space. We will carry out the basic closure con-
struction for metric spaces and then specialize to inner product and normed
spaces.

Definition 9 A set M is called a metric space if for each u,v € M there
is a real number p(u,v) (the metric) such that

1. p(u,v) >0, p(u,v) =0 if and only if u =wv

2. plu,) = plo,u)

3. p(u,w) < p(u,v) + p(v,w) (triangle inequality).
REMARK: Normed spaces are metric spaces: p(u,v) = ||u — v||.
Definition 10 A sequence uy,usq, -+ in M is called a Cauchy sequence if
for every e > 0 there exists an integer N (€) such that p(un, Un) < € whenever
n,m > N ().
Definition 11 A sequence uy,us,--- in M is convergent if for every e > 0
there ezists an integer M (€) such that p(un,u) < € whenever n,m > M(e).

here u is the limit of the sequence, and we write v = lim,,_, o, U,.

Lemma 2 1) The limit of a convergent sequence is unique.
2) Every convergent sequence is Cauchy.
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PROOF: 1) Suppose v = limy,_yo0 Up, v = lim, 00 tu,. Then p(u,v) <
p(u, uy) + p(tn,v) = 0 as n — oo. Therefore p(u,v) =0, so u=v. 2) {u,}
converges to u implies p(un, um) < p(tn, u) + p(tm, u) — 0 as n,m — oo.
QE.D

Definition 12 A metric space M is complete if every Cauchy sequence in
M converges.

Examples 3 Some particular metric spaces:

e Any normed space. p(u,v) = ||lu—v||. Finite-dimensional inner product
spaces are complete.

e M as the set of all rationals on the real line. p(u,v) = |u — v| for
rational numbers u,v. (absolute value) Here M is not complete.

e The Hausdorff metric. (This is an important tool in the study of frac-
tals.) Let V,, = R,, be the space of real n-tuples with the usual distance
norm ||-||, i.e., n-dimensional Euclidean space. Let X be a closed sub-
set of R,. Recall that A C X is compact if A is a closed, bounded
subset of X. Let K(X) be the collection of all nonempty compact sub-
sets of X. If v € X and A € K(X) we define the distance from x to A
by

dist(z, A) = inf ||z — al|.
acA

(Note that this is the minimum distance from x to a point in A. Since
A is closed there exists @ € A such that dist(z, A) = ||z —al|.) Now we
define the Hausdorff metric on K(X) by

dy(A, B) = max{sup dist(a, B),sup dist(b, A)}
acA beB

for A, B € K(X). (Note that there is a point @ € A that is mazimally
distant from B, and a point b € B that s mazimally distant from A.
dy (A, B) is the largest of those two distances.) We can verify that
dy is a metric on K(X) (we will show later that this metric space is
complete):

1. (positive definiteness) A is closed = dist(z, A) = 0 if and only
if x € A. Thus dg(A, B) =0 if and only if A = B.

2. (symmetry) Obvious.
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3. (triangle inequality). Let A,B,C € K(X). Given a € A we can
find b € B such that dist(a, B) = ||la — b|| and ¢ € C such that
dist(b, C) = ||b — ¢||. Thus,

dist(a,C) < |la—c|| < ||a—b||+||b— c|| = dist(a, B) + dist(b, C)

= sup,4 dist(a,C) < duy(A, B) + du(B,C). Similarly (switch-
ing the roles of A and C') we have sup, . dist(c, A) < dy(A, B) +
dy(B,C). Hence,

du(A,C) < du(A, B) + dy(B, O).
Q.E.D.

Definition 13 A subset M’ of the metric space M is dense in M if for
every u € M there exists a sequence {u,} C M such that v = lim,_, Uy,.

1.3.1 An aside on compact metric spaces

In this section we collect several results on compactness that will be useful
in the remainder of the course. This is all very standard material in analysis
courses. (Indeed, we will follow the treatment in the book by Davidson and
Donsig.) We collect it here for reference and completeness. Most of these
results can be stated and proved for general metric spaces. A few are specific
to Euclidean spaces where the metric is the Euclidean distance. We shall
demonstrate that several versions of compactness are, in fact, equivalent.
We give proofs for some of the results and leave the more standard proofs to
the reader.
Let M be a metric space with metric p(u, v).

Definition 14 A subset O of M is open if for every u € O there is an
€ > 0 such that all points v € M contained in the ball p(u,v) < € also lie in
O. A subset C is closed if all convergent Cauchy sequences in C converge to
points in C.

Lemma 3 C C M is closed if and only if O = M — C (the complement of
C is open.
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PROOF: Suppose C is closed and let u € O. Let r, = inf,ec p(u,v). Ifr, =0
we can find a sequence {v,} of points in C such that lim,_, p(u,v,) = 0.
Thus {v,} is a Cauchy sequence converging to u € O. But C is closed, so
u € C. This is impossible, so that we must have r, > 0. Thus every point v in
the ball p(u,v) < r, must lie in @. This means that O is open. Conversely,
suppose O is open and let {v,} be a convergent sequence of points in C,
converging to v. If v € O then for every € > 0 we can find points v,, € C
such that p(v,v,) < e. This is impossible since O is open. Thus v € C and
C is closed. Q.E.D.

Definition 15 Let f be a function f : M — M’ from the metric space M to
the metric space M', with metrics p, p', respectively. We say f is continuous
on M if for every point u € M and every € > 0 there is a 0(€,u) > 0 such
that p'(f(u), f(v)) < € whenever v € M satisfies p(u,v) < 6(€, u).

Theorem 4 The following are equivalent:

1. f: M — M is continuous.
2. If v, = v in M then f(v,) — f(v) in M.

3. The set f[71(O') ={ve M: f(v) € O} is an open subset of M for
every open subset O' of M'.

PROOF: The equivalence of 1 and 2 is let to the reader. We show that 1 is
equivalent to 3. Suppose f is continuous and O’ is an open subset of M’. Let
vg € f7HO"). Then f(vo) = vy € O'. Since O’ is open, there is an € > 0 such
that if p'(vg, v') < € then v’ € O'. Since f is continuous there is a d(e, vg) > 0
such that p'(f(vo), f(v)) < € wherever p(vy,v) < §. Thus every point v in
the ball p(vg,v) < § belongs to f~(O').

Conversely, suppose 3 holds and f(vy) = vy. Given € > 0 consider the
open ball B! = {v' € M': p/(vy,v') < €}. Then f!(B!) is open in M and
vg € f1(B!). Thus we can find a d(e, vp) > 0 such that the ball Bs = {v €
M : p(vg,v) < 4} is contained in f~'(B!). This means that f is continuous.
Q.E.D.

We will give several definitions of compactness and show that for metric
spaces (hence for normed linear spaces) they are equivalent.

Definition 16 e A metric space M is sequentially compact if ev-
ery sequence {u,} in M has a convergent subsequence {un, } such that
Up, — U € M as k — oo.
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e An open covering of a subset N of M is a collection of open sets
{0, : a € A} such that N C UaeaO,. The set A is the index set for
the covering. (Note that A may not be countable so that the covering
can’t be indexed by the integers.) A subcover of {O, : a € A} is a
subcollection {O,, : o € B}, where B C A, that is still a covering of
N. If B is a finite set then it defines a finite subcover. We say that
the metric space M is compact if every open cover of M has a finite
subcover.

e A collection of closed sets {C, : € A} in M has the finite intersec-
tion property if every finite subcollection of these sets has nonempty
intersection.

e A metric space M 1is totally bounded if for every e > 0 there are

finitely many points vy, ve,-- -, v, in M such that the collection of
balls {B(v;) : 1 < i < n} is an open cover. Here B.(v;) = {v e M :
p(vi,v) < €}.

Theorem 5 (Borel-Lebesque lemma) The following are equivalent.
1. M is a compact metric space.

2. Every collection of closed subsets of M with the finite intersection
property has a nonempty intersection, i.e., if every finite subcollec-
tion of the closed sets {Co : o € A} has nonempty intersection then
NacaCa # 0, i.e., is nonempty.

3. M s sequentially compact.

4. M s complete and totally bounded.

PROOF:

o 1= 2. Let {C, : @ € A} be a collection of closed sets in M such that
NaecaCo = 0. Let O, = M — C, (the complement of C,.) Then O, is
an open set and Uy,c4O, = M. Since M is compact there is a finite
subcover M = Oy, U Ogipha, U -+ - U Oy, . But then Cy; N Coippa, N+ N
Ca,, =0, s0 {Cq : @ € A} doesn’t have the finite intersection property.
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e 2 — 3. Let {v;} be a sequence in M and set C, = {v; : i > n}, i.e,
C, is the closure of the set {v; : ¢ > n}. Then C,.1 C C,, so we have
a decreasing sequence of closed sets. Each finite subcollection of these
sets Cp,, - +,Cp, With n; < mp < --- < my contains the point v,,, so
the full collection has the finite intersection property. By assumption
2 there is a point v € N32,C,,. Now we choose a subsequence v;, of the
sequence v; recursively as follows. Set i1 = 1. If 4, has been chosen,
choose ;41 such that v;, € {v; : 4 > ng} with p(v, v, ) < k—}rl Then
v, — v as k — oo.

e 3 = 4. Let {v;} be a Cauchy sequence in M. Then we can find
a convergent subsequence {v; }: v;, = v € M as k — oco. It is
straightforward to show that v; — v as i — oco. Now suppose M is not
totally bounded. Then there is an € > 0 such that no finite collection of
open balls B.(u;) can cover M. We can select the points u; recursively
so that u; 41 & Be(u1)U- - -UBc(u;) for all j > 1. However, the sequence
u; can contain can contain no covergent subsequence u;, , for if it could
there would be a finite positive integer N, such that p(u;,,u;,) < € for
all j,£ > N.. Then we would have u;, € Bc(u;,), which contradicts
the construction of the sequence ;.

e 4 = 1. (The hard part!) For each ¥ > 1 we can find a finite set
vf,- -+, vy such that By (vf)U- -« By (v) ) = M. Suppose M has an
open cover O = {O, : a € A} with no finite subcover. Now we con-
struct, recursively, a sequence of points u; = v} so that N¥_, By/;(u;)
has no finite subcover from O. To start with, M has no finite subcover.
Suppose that we have carried out the construction to stage k£ — 1. If
every ﬁf;llBl/j(uj) N Byk(vf) had a finite subcover from O, then by
combining them for ¢+ = 1,---,ny we would have a finite subcover for

M%Z1By/;(u;), a contradiction. Thus we can choose some uy, = vk such

that N¥_, By/;(u;) has no finite subcover from O.

We will show that the sequence u; is Cauchy, and this will lead to a
contradiction. Note that N¥_, By/;(u;) must be nonempty. (Indeed, if
it were empty then it would have a finite subcover.) Hence for any
j < k there is a point v € By/;(u;) N Byx(ug), so

| =

+

<
el

plug, ug) < p(uj,v) + p(v, ug) < =
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It follows easily that the sequence u; is Cauchy. Since M is complete,
by 4, we have u; = u € M as j — 0co. Now u € O, for some ¢, since
O is an open covering. Thus there is an € > 0 such that B.(u) C O,.
Now we can choose k so large that 1/k < ¢/2 and p(u, ug) < €/2. Then

by the triangle inequality Bj,(uy) C Bc(u) C O, This contradicts
the fact that By ,(ux) has no finite subcover from O.

Q.E.D.

Definition 17 Let M be a metric space with metric p(-,-), and let N be a
nonempty subspace of M. We say that N is a compact subspace of M
iof, considered as a metric space with inherited metric p, N is compact.

Thus the preceding theorem gives equivalent conditions for a subspace of
a metric space to be compact. Note: In the special case where N is a subset of
Euclidean n-space R" with the usual distance metric, then it is elementary to
show that A is closed and bounded if and only if it is complete and totally
bounded. Hence a closed bounded subset of R™ is compact. (However, a
closed bounded subet of V,, need not be compact.)

Theorem 6 (Cantor intersection theorem) Let M be a metric space with
metric p(-,-), and let C; D Cy D --- be a decreasing sequence of nonempty
compact sets in M. Then C = N2,C, is a nonempty compact set.

PROOF: The sets C,, are closed and have the finite intersection property.
Hence, by the Borel-Lebesgue lemma, C is nonempty. Now let {v,} be a
sequence of points in C. Then, since C; D C is compact there is a convergent
subsequence {vg, } such that v,, — v € C; as kK — oo. Since {v, } C C, for
alln =1,2,--- and each C, is compact, it follows that v € C,,, hence v € C.
Thus C is compact. Q.E.D.

Lemma 4 A finite union of compact sets is compact.

PROOF: Let Ny, ---,N, be compact subsets of the metric space M, and
let O = {O, : a € A} be an open covering of N = N UN, U ---UN,
with index set A. Since each N is compact it has a finite subcovering
Oq, a € AU where AU) is a finite subset of the index set A. Then {O,, a €
AD U AP y...U AM} is a finite subcovering for A. Thus N is compact.
QE.D.
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Theorem 7 Let f be a continuous function f : M — M’ from the metric
space M to the metric space M', with metrics p, p', respectively, and let C
be a compact subset of M. Then the image set f(C) is compact in M'.

PROOF: Let {v'n = f(v,) : v, € C} be a sequence of points in f(C). Since C
is compact there is a convergent subsequence vy, in C such that v,, - v €C
as k — oo. Since f is continuous, f(v,,) — f(v). Thus the subsequence
f(vy, ) converges to f(v) and f(C) is compact. Q.E.D.

Corollary 1 (Eztreme value theorem) Let f be a real-valued continuous
function f : M — R from the metric space M with metric p and let C
be a compact subset of M. Let M = sup,.c f(v), m = infyccacf(v). Then
there are points vy, vy € C such that f(vy) = M, f(v1) = m.

PROOF: Since f is continuous and C is compact, then f(C) is a compact
subset of the reals. This subset must be bounded, so M = sup,. f(v) is a
finite number. By definition, we can find a sequence of points v, € C such
that f(v,) — M as n — oo. Then there exiasts a convergent subsequence
Up, in C such that v,, — vy € C as k — oo while f(v,,) — M. Since f is
continuous we must have f(vg) = M. A similar proof works for the minimum
value. Q.E.D.

Definition 18 Let f be a continuous function f : M — M’ from the metric
space M to the metric space M', with metrics p, p', respectively, and let N
be a subset of M. We say f is uniformly continuous on N if for every
€ > 0 there is a 6(¢) > 0 such that p'(f(u), f(v)) < € whenever u,v € N

satisfy p(u,v) < 0(e).

Theorem 8 Let f be a continuous function f : M — M’ from the metric
space M to the metric space M', with metrics p, p', respectively, and let C
be a compact subset of M. Then f is uniformly continuous on C.

PROOF: Suppose f is continuous on C, but not uniformly continuous. Then
for some € > 0 there would be no § > 0 satisfying the required property. That
means that for each 9§, = % and n = 1,2,--- we can find points u,,v, € C
such that p(un,v,) < + and p'(f(un), f(vs)) > €. Now C is compact so there
is a convergent subsequence of u,, of u, such that u,, — u € C as k — oo.
Since p(un,, Vn,) < % it follows that also v,, — u as k — oco. Since f is
continuous we have f(un,) — f(u) and f(v,,) = f(u) as k — oco. But this

contradicts the assumption that p'(f(un,), f(vn,)) > € for all k. Q.E.D.
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1.3.2 Completion of metric spaces

Definition 19 Two metric spaces My, Mc are isometric if there is a 1-
1 onto map f : My — Mc such that pa(f(u), f(v)) = pi(u,v) for all
u,v € My

Remark: We identify isometric spaces.

Theorem 9 Given an incomplete metric space M we can extend it to a
complete metric space M (the completzon of M) such that 1) M is dense in
M. 2) Any two such completions M M are isometric.

PROOF: (divided into parts)

1. Definition 20 Two Cauchy sequences {uy,},{tu,} in M are equiva-
lent ({u,} ~ {tn}) if p(tn,tn) — 0 as n — 0.

Clearly ~ is an equivalence relation, i.e.,
(a) {un} ~ {u,}, reflexive

(b) If {u,} ~ {v,} then {v,} ~ {u,}, symmetric
(c) If {un} ~ {v,} and {v,} ~ {w,} then {u,} ~ {v,}. transitive

Let M be the set of all equivalence classes of Cauchy sequences. An
equivalence class u consists of all Cauchy sequences equivalent to a

given {uy,}.
2. M is a metric space. Define p(u,v) = lim, ;s p(Un, v5), where {u,} €
u, {v,} € 1.

(a) p(u,v) exists. PROOF:

P(tn, vn) < p(Un, Um) + p(Um, Vm) + P(Vm, Un),

SO
P(Un, Vn) = P(Um, Um) < p(Un, Umm) + P(Vin, Vn),

and
|p(tns V) = P(Umy, V)| < p(Un, Um) + p(Vm, vn) — 0

as m, m — o0.
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(b) p(w,v) is well defined. PROOF: Let {u,}, {u,} € @,{v.},{v]} €
v

. Does limy, 00 p(tn, ) = limy, 00 p(ul,, v!

o
,ul)? Yes, because

P(Uny Vn) < p(Un; Uy) + p(Un; vy) + p(Vy; vn),
SO
|p(tn, vn) — Pt vy)| < p(tn, uy,) + p(vy, v5) — 0
as n — oo.
(c) p is a metric on M, i.e.
i. p(u,v) > 0, and = 0 if and only if = = ¥ PROOF: 5(@,v) =
lim,, o0 p(Uy, v,) > 0 and = 0 if and only if {u,} ~ {v,}, i.e,
if and only if 7 = .
ii. p(u,v) = p(v,u) obvious
ili. p(w,v) < p(u, w) + p(w, ) easy
(d) M is isometric to a metric subset S of M. PROOF: Consider

the set S of equivalence classes @ all of whose Cauchy sequences
converge to elements of M. If @ is such a class then there ex-
ists u € M such that lim, o u, = v if {u,} € w. Note that
U, U, -, u,- - €U (stationary sequence). The map u <> wis a 1-1
map of M onto S. It is an isometry since

p(@,v) = lim p(un, vn) = p(u,v)
for u,v € S, with {u,} = {u} € u, {v,} = {v} € v.
(e) M is dense in M. PROOF: Let u € M, {u,} € u. Consider

S = {uk,uk,---,uk,---} € 3: M, k= 1,2,"'. Then ﬁ(ﬂ,gk) =
limy, o0 p(Un, ug). But {u,} is Cauchy in M. Therefore, given
€ > 0, if we choose k > N(€) we have p(u,s;) < €. Q.E.D.

(f) M is complete. PROOF: Let {v;} be a Cauchy sequence in M.
For each k choose 5, = {ug, ug, -, U, -} € S = M, such that
p(Ux,3k) <1/k, k=1,2,---. Then

p(uj, ur) = (55, 5k) < (55, 5) + (V55 Ok) + P(Tk, 5k) = 0
as j, k — oo. Therefore @ = {uy} is Cauchy in M. Now

p(u,vx) < p(T,3;) + p(5k, U) = 0

as k — oo. Therefore limy_, ., 7, = u. Q.E.D.
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1.3.3 Completion of a normed linear space

Here B is a normed linear space with norm p(u,v) = ||u — v||. We will show
how to extend it to a complete normed linear space, called a Banach Space.

Definition 21 Let S be a subspace of the normed linear space B. S is a
dense subspace of B if it is a dense subset of B. S is a closed subspace
of B if every convergent sequence {u,} in S converges to an element of S.
(Note: If B is a Banach space then so is S.)

Theorem 10 An incomplete normed linear space B can be extended to a
Banach space B such that B is a dense subspace of B.

PROOF: By the previous theorem we can extend the metric space B to a
complete metric space B such that B is dense in B.

1. B is a vector space.

(a) u,s € B=u+7v € B.
If {u,} €w, {v,} €7, define 4+ 7T = u+ v as the equivalence
class containing {u, + v,}. Now {u, + v,} is cauchy because
[(un + va) = (Um — vl < [[un = unl[ + |[vn — vm|| — 0 as
n, m — oo. Easy to check that addition is well defined.

(b) a € C,u€ B= au € B.
If {u,} € u, define am € B as the equivalence class containing
{au,}, Cauchy because ||au, — aun,|| < |o|||u, — unll.

2. B is a Banach space.

Define the norm |[[@||’ on B by |[u||" = p(w, ©) = lim,_,« ||un|| where
O is the equivalence class containing {©,0,---}. positivity is easy.
Let a € C, {u,} € u. Then ||au|| = p(aw,0) = lim, ,u ||ou,|| =

|| limp o0 [[unl| = |a[p(z, ©) = |af|[a]]".
@+ 9| =p(u +7,0) <5(u+7,7) + p(v,0) = [[7]|' + [|7]|, because
BT +7,7) = limnseo || (Un + Vn) — Vnl| = liMnseo ||| = |[T]]'. Q.E.D.
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1.3.4 Completion of an inner product space

Here # is an inner product space with inner product (u, v) and norm p(u,v) =
||lu — v||. We will show how to extend it to a complete inner product space,
called a Hilbert Space.

Theorem 11 Let H be an inner product space and {un},{v,} convergent
sequences in H with limy, oo tp = u, limy, 00 vy = v. Then limy, o0 (U, v,) =
(u,v).

PROOF: Must first show that ||u,|| is bounded for all n. {u,} converges —
g < [Jun—ul|+||ul| < e+||u|| for n > N(e). Set K = max{||u],- - -, ||[un(e), €+
llul[}. Then ||u,|| < K for all n. Then |(u,v) — (tUn, V)| = |(u — up,v) +
(tn, v — )| < ||u = upl| - ||| + [lunl] - |[[v — vp|| = 0 as n — co. Q.E.D.

Theorem 12 Let H be an incomplete inner product space. We can extend
H to a Hilbert space H such that H is a dense subspace of H.

PROOF: A is a normed linear space with norm ||u|| = {/(u, u). Therefore we
can extend #H to a Banach space H such that # is dense in . Claim that H
is a Hilbert space. Let @, € H and let {u,}, {@,} € @, {v,}, {0} € 7. We
define an inner product on H by (@, 7)" = lim,_,e0(Un, v,). The limit exists
since |(Un, vn) — (Um, Vm)| = | (Um, Vn — Vm) + (Un — U, V) + (U, — Uy, Uy —
Um)| < tml| - [[vn = vml| + [[un = wm|[ - |[Vm]] + [[un = um|| - [|vn — vm|| — 0 as
n, m — oo. The limit is unique because |(uy,, vy,) — (@, 0,)| — 0 as n, m — oo.
can easily verify that (-,-)" is an inner product on H and || - [|' = +/(-,-)".
Q.E.D.

1.4 Hilbert spaces, L? and ¢?

A Hilbert space is an inner product space for which every Cauchy sequence
in the norm converges to an element of the space.

EXAMPLE: ¢2

The elements take the form

u:("':aflaaOaala"')a aiec
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such that ¥° |a;]? < oo. For

V= ("'7ﬁ—171805517"') €£27

we define vector addition and scalar multiplication by

1=—00

U/+'U:("',Of_l+ﬂ_1,a0+ﬁ0,a1+ﬁ1,"')

and
au = (-, aa_1, g, oy, - ).

The zero vector is © = (---,0,0,0,---) and the inner product is defined
by (u.v) =32 a;f3;. We have to verify that these definitions make sense.
Note that 2|ab| < |a|?+b|? for any a,b € C. The inner product is well defined
because |(u,v)| < X2 |aifBi] < (Z;’f_oo il + 32 |Bil?) < co. Note
that |a; + Bi* < |ail* + 2|yl - |Bi] —|— 1812 < 2(Jai|? + |B;[?). Thus if u,v € £2
we have ||u+ v|[* < 2|[u|[* + 2|]v||* < 00, so u + v € £2.

Theorem 13 (2 is a Hilbert space.

PROOF: We have to show that £* is complete. Let {u,} be Cauchy in %,

Up = (- a<”f,ag”),a§ ),---).

Thus, given any € > 0 there exists an integer N(¢) such that ||[u, — un,|| <€
whenever n,m > N(e). Thus

Z o% () _ 2<é (1.1)

1=—00

Hence, for fixed i we have |o{™ —a{™| < . This means that for each 7, {o{™}

is a Cauchy sequence in C. Since C' is complete, there exists «; € C' such

that lim,_ e aZ(") = o for all integers i. Now set u = (--+,a_1, g, a1, +).

Claim that u € ¢? and lim,_,o u, = u. It follows from (1.1) that for any

fixed k, Y5, |ai™ — a{™|? < € for n,m > N(e). Now let m — 0o and get

PO |oz,(” — ;|2 < €% for all k and for n > N(e). Next let £ — oo and get
© i — o2 < € for n > N(e). This implies

|lun —ul| <€ (1.2)
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for n > N(¢). Thus, u, —u € £2 for n > N(¢), so u = (u — u,) + u, € 2
Finally, (1.2) implies that lim, . u, = u. Q.E.D.

EXAMPLE: L?[a, b]

Recall that Cy(a, b) is the set of all complex-valued functions u(t) contin-
uous on the open interval (a,b) of the real line, such that [’ |u(t)[? dt < oo,
(Riemann integral). We define an inner product by

(o) = [ ut) dt,  wve O (a,b).

We verify that this is an inner product space. First, from the inequality
lu(z) +v(z)|* < 2|u(z)]? + 2v(z)[* we have ||u+ v|[? < 2||ul|* + 2||v||?, so if
u,v € Cs(a,b) then u+v € Cs(a,b). Second, |u(z)v(z)| < 5(Ju(z)|?+|v(z)[?),
so |(u,v)| < [2 [u(t)v(t)| dt < L(|Ju[?>+ ||v|[?) < oo and the inner product is
well defined.

Now Cy(a, b) is not complete, but it is dense in a Hilbert space Cy(a, b) =
fg[a,b] = L*[a,b] In most of this course we will normalize to the case
a = 0,b = 2r. We will show that the functions e,(t) = e™/\/2m, n =
0,+1,42, --- form a basis for L?[0,2x]. This is a countable (rather than a
continuum) basis. Hilbert spaces with countable bases are called separable,
and we will be concerned only with separable Hilbert spaces in this course.

1.4.1 The Riemann integral and the Lebesgue integral

Recall that S'(J) is the normed linear space space of all real or complex-
valued step functions on the (bounded or unbounded) interval J on the real
line. sis a step function on J if there are a finite number of non-intersecting
bounded intervals Ji, - - -, J,, and numbers ¢y, - - -, ¢, such that s(t) = ¢ for
t€Jy,k=1,---,mand s(t) =0 for t € J — UJ" | J. The integral of a step
function is the [; s(t)dt = Y pt cxl(Jx) where ¢(J;) = length of J, = b—a if
Jr = [a,b] or [a,b), or (a,b] or (a,b). The norm is defined by ||s|| = [, |s(t)|dt.
We identify s1,s0 € S(J), s1 ~ $9 if s1(t) = s2(t) except at a finite number
of points. (This is needed to satisfy property 1. of the norm.) We let S*(J)
be the space of equivalence classes of step functions in S(J). Then S*(J) is
a normed linear space with norm || - ||.

The space of Lebesgue integrable functions on J, ( L'(J)) is the
completion of S'(J) in this norm. L'(J) is a Banach space. Every element u
of L'(J) is an equivalence class of Cauchy sequences of step functions {s,},
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[7|sj — sgldt = 0 as j,k — oo. (Recall {s],} ~ {s,} if [; s}, — sp|dt — O as
n — 00.

In the next section we shall show that, in fact, we can associate equiva-
lence classes of functions f(¢) on J with each equivalence class of step func-
tions {s,}. The Lebesgue integral of f is defined by

H)dt = 1i L ()dt,
/J Lebesgue ) n60 JS ®)

and its norm by

If1] = U@WzﬁgAMﬁWt

/J Lebesgue

How does this definition relate to Riemann integrable functions? To see
this we take J = [a,b], a closed bounded interval, and let f(¢) be a real
bounded function on [a, b]. Recall that we have already defined the integral
of a step function.

Definition 22 f is Riemann integrable on [a,b] if for every € > 0 there
exist step functions r,s € Sla,b] such that r(t) < f(t) < s(t) for allt € [a,b],
and 0 < [P(s —r)dt < e.

EXAMPLE. Divide [a,b] by a grid of n points a =ty < t; < --- <t, =b
such that #; — ;-1 = (b—a)/n, j = 1,---,n. Let M; = sup,epy, . f(2),
m; = infte[tj_htj] f(t) and set

t € [tj-1,t)
t ¢ la,b)

_my tEti1,t)
@ =10" t¢ap)

salt) = { o

% s,(t)dt is an upper Darboux sum. [’r,(t)dt is a lower Darboux sum.
If f is Riemann integrable then the sequences of step functions {r,}, {s,}
satisfy r, < f < s, on [a,b], for n = 1,2,--- and [’(s, — 7)dt — 0 as
n — oo. The Riemann integral is defined by

b
/ . fdtzlim/sndtzlim T dt =
«Riemann n—00 n—00
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inf / sdt = sup / t dt.
upper Darboux sums lower Darboux sums

Note that
n b .
;Mj(tj —tj 1) > /a Riemann fdt> j;mj(tj —tj ).
Note also that
rj — Tk < Sk — Tk, TR —1; < 85— T

because every “upper” function is > every “lower” function. Thus

/|rj—7“k|dt§/(sk—rk)dt—l—/(sj—rj)dt—)()

as j,k — oo. Thus {r,} and similarly {s,} are Cauchy sequences in the
norm, equivalent because lim,, ., [(s, — r,)dt = 0.

Theorem 14 If f is Riemann integrable on J = [a, b] then it is also Lebesgue
integrable and

/ F(t)dt = / F)dt = lim [ sa(t)dt
J Riemann J Lebesgue n—oo J g

The following is a simple example to show that the space of Riemann
integrable functions isn’t complete. Consider the closed interval J = [0, 1]
and let 71,79, - - - be an enumeration of the rational numbers in [0, 1]. Define
the sequence of step functions {s,} by

_ 1 t:'rbT?a"'aTn
sn(t) = { 0 otherwise.

Note that
o 51(t) < so(t) <---foralltel01].
e s, is a step function.

e The pointwise limit

) 1 if ¢ is rational
Ft) = nh_)rgo sa(t) =4 0 otherwise.
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e {s,} is Cauchy in the norm. Indeed [, |s; — s;|dt = 0 for all j, k =
1,2,

e fis Lebesgue integrable with fol Lebesgue ft)dt =1lim,, o [, 5, (t)dt =
0.

e f is not Riemann integrable because every upper Darboux sum for f is
1 and every lower Darboux sum is 0. Can’t make 1 — 0 < € for € < 1.

Recall that S%(J) is the space of all real or complex-valued step functions
on the (bounded or unbounded) interval J on the real line with real inner
product (s1, s2) = [; s1(t)52(t)dt. We identify s1,s5 € S(J), s1 ~ s2if 51(t) =
So(t) except at a finite number of points. (This is needed to satisfy property
4. of the inner product.) Now we let S?(J) be the space of equivalence classes
of step functions in S(J). Then S?(J) is an inner product space with norm
[Isl|* = J; [s(t)2dt.

The space of Lebesgue square-integrable functions on J, ( L%(J)) is
the completion of S?(J) in this norm. L?(J) is a Hilbert space. Every element
u of L?(J) is an equivalence class of Cauchy sequences of step functions {s,},
[71s; — sk|*dt — 0 as j, k — oco. (Recall {s,} ~ {sp} if [;|s} — sn|?dt — 0
as n — 0o.

In the next section we shall show that we can associate an equivalence
class of functions f(¢) on J with each equivalence class of step functions
{s,}. The Lebesgue integral of fi,fo € L*(J) is defined by (fi, f2) =
JiLebesgue f1(t) f2 dt = limn o0 [; 500 (£)s12 (t)dt.

How does this definition relate to Riemann square integrable functions?
In a manner similar to our treatment of L'(J) one can show that if the
function f is Riemann square integrable on J, then it is Lebesgue square

integrable and [;1 ohesue |f®)*dt = [;Riemann | f (£)[dt.

1.4.2 Some technical results

In the preceedinfg section we obtained the space of Lebesgue integrable func-
tions L'(J) as the completion of the normed linear space space S(J) of all
real or complex-valued step functions on the (bounded or unbounded) in-
terval J on the real line. We let S'(J) be the space of equivalence classes
of step functions in S(J). Then S'(J) is a normed linear space with norm
l|s|| = [, |s(t)|dt. The space of Lebesgue integrable functions on J, (
L*(J)) is the completion of S*(J) in this norm. L'(J) is a Banach space.
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Every element v of L'(J) is an equivalence class of Cauchy sequences of step
functions {s,}, [;|s; — sgldt — 0 as j,k — oo. (Recall {s]} ~ {s,} if
[y s}, — spldt — 0 as n — oo.

We turn now from the abstract notion of the elements of the Lebesgue
space as equivalence class of Cauchy sequences of step functions to an iden-
tification with actual functions. How should we identify a function with an
equivalence class of Cauchy sequences of step functions in S(J)? Let {s;} be
a Cauchy sequence in S(J).

e Does f(t) = lim;_, s;(t) always exist point wise for all t € J? AN-
SWER: no.

e Is there a subsequence {s;} of {s;} such that f(t) = lim;_ s;(%)
exists? ANSWER: almost.

Example 1 Let J = (0,1] and f(t) =0 fort € J. We will define a partic-
ular Cauchy sequence {s;} of step functions that conferge to f in the norm.
Any positive integer j can be written uniquely as j = 2P +q forp=0,1,---
and ¢ =0,1,---,2P — 1. Now set

(1) = 1 for & <t < fracg+12P
Sr el =) otherwise.

Then )
/]|f—8j|dt:/J\82p+q|dt=2—p—>0

as p = oo (or j — o0) so s; — f in the norm as j — oo. However
lim;_, s;(t) doesn’t exist for any t € J. Indeed for any fized ty € J and any
J there are always integers ji,jo > j such that s;,(t0) = 0 and sj,(ty) = 1.
Note, however, that we can find pointwise convergent subsequences of {s;}.
In particular, for the subsequence of values j = 2P we have lim,_,, So»(t) =
f(t)=0 forallteJ.

Definition 23 A subset N of the real line is a null set (set of measure zero)
if for every € > 0 there exists a countable collection of open intervals {I, =

(Gn,bp)} such that N C U I, and Y20 4(1,) < e. (Here £(I,) = b, — ay.)
EXAMPLES:

1. Any finite set is null.
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2. Any countable set is null. PROOF: Let N = {ry,79,---,ry,---}. Given
€>0let I, = (ry — gigr, "o+ gagr), 0 = 1,2,--- Then N C U2 I, and
T 0(L) = T, & =

The rationals form a null set.
The set I = (a,b) with a < b is not null.

A countable union of null sets is null.

o vk W

There exist null sets which are not countable. The most famous exam-
ple is probably the Cantor set.

EXAMPLE: The Cantor set

X c
C={ze€l0,1]: x:2213_2, ¢, =0,2}. (1.3)
n=
Note that any real number z € [0,1] can be given a ternary representation
T = 3ol 5% = .cicc3Cy -+, for ¢ = 0,1,2. For example 1 = 3779, 3% =
2222 ---. (Just as with decimal expansions of real numbers, this represen-
tation is not quite unique, e.g., % = .10000--- = .02222-- -, but we could

adopt a convention to make it unique.) The Cantor set consists of those
real numbers whose ternary representation doesn’t contain any c, = 1. We
are more familiar with the binary expansion of any real number y € [0, 1],

o b

Y=2.n=1 2—2 = .b1byb3by - - : where b, = 0,1.
e (' is uncountable. PROOF: The map C' = [0, 1] defined by

oocn oo%cn
D3 = 2
n=1 n=1

is one-to-one and onto. Since the real line contains an uncountable
number of points, C' is also uncountable.

e ( is a null set. PROOF: We can see this geometrically, from the tri-
adic representation. The points in the open middle third (3,2) of the
interval [0, 1] don’t lie in the Cantor set, so we can remove this third.
Then we can remove the open middle thirds (5,2) and (7, 2) of the
remaining intervals, etc. After k steps there remains a set C} that is
the union of 2* intervals of total length (2)¥. C'= N2, Cy, so for each
k, C can be covered by 2% open intervals of length < 2(2)*. Since this

goes to zero as kK — oo we see that C' is a null set. Q.E.D.
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Definition 24 If a property holds for all real numbers t except fort € N, a
null set, we say that the property holds almost everywhere (a.e.).

The following technical lemmas show us how to associate a function with
a Cauchy sequence of step functions.

Lemma 5 Let {s} be a Cauchy sequence in S(J). Then there exist strictly
increasing sequences {ny} of positive integers such that

o
> /J |Sngyy — Sny|dt < 00. (1.4)
k=1

For every such sequence {ny} the subsequence {s,,(t)} converges pointwise
a.e. in J.

PROOF: Choose ny > ny_1, and so large that [; s, — sp|dt < 5 for all

m,n > ng, k = 1,2,---. Then [;|s,, ., — sp,|dt < 2%, k =1,2,--- and

S0 Jy [8ngy — Snldt < T2 55 < co0. Now assume {s,, } is an arbitrary

subsequence of {s,} such that (1.4) converges. Set
uk:|5n1|+|5n2_3n1|+"'+|3nk_Snk71|’ k=2, ur = [sp,|.

Then 0 < uq(t) < us(t) < ---for all t € J and wuy is a step function. By
(1.4) there exists M > 0 such that [; uxdt < M for all k. We will show that
limy,_, o ug(t) exists for almost all ¢ € J. Given € > 0, let Ry(e) = {t € J :
ug(t) > M}, Clearly:

1. Ri(€) = Ry is the union of finitely many nonintersecting intervals.

2. let € be the sum of the lengths of the intervals in Ry. Then ¢, < €
because ug(t) > Ly, (t) = [updt > [ 2 xg, dt = M > ¢, where
Xs(t) is the characteristic function of the set S, i.e.,

1 ifteS
XS(t)_{ 0 iftgs.

3. Up > Up—1 = Ri D Ri—1-
4. Let
R:R(G) = Uk21Rk(€) :’R1U (RQ —Rl) u---u (Rk _Rk—l) J---

Then Ry — Ry_1 can be represented as the union of finitely many non-
intersecting intervals of total length €, — €x_1.
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5. It follows that R(e) is the union of countably many non-intersecting
intervals. The sum of the lengths of the intervals in R(e) is

€1+ (e2—€1)+ -+ (e —€p1) +---= lim ¢ < e

k—o0

CONCLUSION: uy(t) < 2,k =1,2,---forallt € J—R(e) = limy_, o0 (1)
exists for all ¢ € J — R(¢). The points of divergence are covered by the
intervals of R(€) (of total length < €). But € is arbitrary so the points of
divergence form a null set N. = limy_,, ux () exists a.e.

Consider
Sy (1) + (Sny (8) — 5, () + -+« + (50, (8) = 8, () +--- (1.9)
Now
[$n ()] + [8no (8) = Sy (0)] 4 -+ + [0 () = Smpy ()] + - -+ = 1im e (2)

k—o00

exists for all ¢ ¢ N. Therefore (1.5) converges for allt ¢ N = limy_,, Sy, (%)
exists a.e. Q.E.D.

Lemma 6 Let {s;}, {s}.} be equivalent Cauchy sequences in S(J), possibly
the same sequence. Let {sp, }, {sy, } be subsequences of {s} and {s}} that

converge pointwise a.e. on J. Then limy_, (spk (t) — st (t)) = 0 pointwise
a.e. on J.

PROOF: Let v, = sp, — sp,, k = 1,2,---. Then {v;} is a Cauchy sequence
and limy_, . vx(t) exists pointwise for all ¢ ¢ N; where N; is some null set.
Also,

/]\vk|dt:/]|spk—s;k\dt§/J\spk—sk\dt—i—/J\sk—s§c|dt+/J|s§€—s;k|dt—>0

as k — oo. let {k;} be an increasing sequence of positive integers such that
Y21 J; vk, |dt < co. Then by lemma 5, >7°, |vg,(t)| converges for all ¢ ¢ No
where Nj is a null set. == limy_q, v, (t) = 0 pointwise for all t ¢ Ny, =
For all ¢ ¢ Ny U N, (a null set) we have limy_, vy (t) = limy_,oo vy, () = 0.
Q.E.D.

We want to associate an equivalence class of functions (equal a.e.) with
each equivalence class of Cauchy sequences of step functions. How can we do
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this uniquely? In particular, let {s;} be a sequence in S(J) such that s, — 0
a.e. as k — oo. How can we guarantee that [, spdt — 0 as k — oo?

EXAMPLE: let a > 0, J = (0,1). Set
0 if t >+

sp(t) =< ak if0<t< <, kodd
k if0<t<%,keven.

REMARKS:

e s;(t) = 0 as k — oo, for every t.

o, k odd
/Jskdt o { 1, k even.

o limy ,o [;skdt =1, if @ = 1. Otherwise the limit doesn’t exist.

The next lemma and the basic theorem to follow gives conditions that
guarantee uniqueness.

Lemma 7 Let {s}, {tx} be Cauchy sequences in S(J) that converge point-
wise a.e. in J to limit functions that are equal a.e. in J. Then {si} ~ {tx},
i.e., [;|sk — teldt = 0 as k — oo.

PROOQF': This is an immediate consequence of the following basic theorem.

Theorem 15 Let {sy} be a sequence in S(J) such that limy_, sk(t) = 0
a.e. in J. Suppose either

1. The s; are real and
s1(t) > s9(t) > -+ > sp(t) > -+ >0
forallt € J, or

2. For every € > 0 there exists an integer N(e) such that [ |s; — si|dt < €
whenever, j, k > N(€), i.e., {si} is Cauchy in the norm.

Then [;|sgldt — 0 as k — oo. (Note: | [, sgdt| < [;|sg|dt, so [; spdt — 0
as k — 00.)
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PROOQF:

§1> 89>+ >0, sk(t) — 0 a.e.as k — oo.

Given € > 0, let M = maxs;(t), and let [a,b] be the smallest closed
interval outside of which s;(¢) = 0. We can assume a # b.

Let N be the null set consisting of the points ¢t where either limy_,, sx (%)
is not zero or where the limit doesn’t exist, plus the points where one
or more of the functions s;.s9, - - - is discontinuous. Let Z = {[, I5,- - -}
be a countable family of open intervals that cover N and such that
Y1 l(I) < e. Choose ty € (a,b) such that ty € Ug>1l;. Since
sk(to) = 0 as K — oo there exists a smallest index h = h(e, tg) such
that sg(to) < e for all k > h. Since t; is a point of continuity of sj, there
exists an open interval in [a, b] that contains ¢y and on which sp(t) < e.
let J(to) = J (o, €) be the largest such interval. Then s, (t) < € on J(to)
for all &k > h(ty). Let G = {J(t) : t € [a,b] — U,I,,}. Let H = H(e)
be the family consisting of the intervalsd of Z and those of G. Now H
forms a covering of [a,b] by open intervals. Therefore, by the Heine-
Borel theorem (see the digression below, if you are not familiar with
this theorem) we can find a finite subfamilty ' of H that covers [a, b].

H ={J(tr), J(ta), -+, J(tn), 11, 12, -+ I}
On J(t1), 1 < i < n, we have s,(t) < e for all k& > h(t;). Let p =
max{h(t1),---,h(t,)}. Then s4(t) < € for £ > p on every interval
m, w

J(t:), 1 <i <n. On I, 1 <k < m, we know only si(t) < s1(t) < M.
Therefore, for k£ > p,

/skdtg / s,,dtg/ [eXJ(tI)U...UJ(tn) +MX11U---UIm] dt
J J J

<elb—a)+ Me since s, < €X(t)UUI(tn) T M X100Vl -

(Note that the latter are step functions.) But € is arbitrary, so limy_, o, sxdt =
0.

lim si(t) =0 a.e., /|s;c — s¢|ldt — 0 as k, £ — oo.
k—o0 j
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Now

[ dselat = [ 1sclat = | [ lsel = IseDat] < [ Jisel = Jsa

< / |sk — se|dt — 0
J

as k, £ — co. = {[, |sk|dt} is a Cauchy sequence of real numbers =
[ |skldt — A as k — oo.

We will show that A = 0 by making use of part 1 of the proof. Let

nyg <ng <---<mng<---be a strictly increasinfg sequence of positive
integers. Set vy (t) = |Sn,(t)], and vk = [Sny| A [Sny| A Alsn, |, k =
2,3, -, 1e., vp(t) = min{|sp, (t)], [Sn, (t), - - -, |5n, (t)]. REMARKS:

e v, € S(J).

L] Uk:kal/\|8nk|-
e v >vg>u3>---2>0.

o vi(t) < s, (t)] = 0 ae. as k — oo. Therefore, by part 1,

o — U+ U1 = —Vg—1 A |Sp, | + V1 =

’Uk_l(t) — ’Uk(t) =

0 i s, (1)) > v ()

tr-1(t) = |$n, (8)] < [$n_y (£)| = I5n, ()]
< |8py_y (t) — 8n,, (2)] otherwise.

o [(vg—1 —vp)dt < [;|Sn, , — Sn,|dt = 9 (definition).

Therefore,
/,] |Sn1|dt = /]Uldt = /J[UQ + (U1 - Ug)]dt S /]Ugdt + 52 (16)

= /J[U3+(’U2—’U3)]dt+52 S /}’Ugdt+52+53 S Tt S /]Updt+52+53+' : '+5p,

for p=2,3,---. Given € > 0 choose n; so large that [;|s,,|dt > A —¢
and [ |sy, — suldt < § for all n > n;. For k& > 2 choose ny > ng_;
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so large that [;[s,, — sn|dt < 55 for all n > ng. Then 6 < 5=, for
k =2,3,---. Choose p so large that [, v,dt < e. Then (1.6) =
€ €

A—e</|sm\dt<e+£+—+---+
J

5t 3 o1 < 2e,

= 0 < A < 3e. But € is arbitrary, so A = 0. Q.E.D.

DIGRESSION: The Heine-Borel theorem.

Theorem 16 let [a,b] be a bounded closed interval on the real line, and Z a
collection of open intervals that cover [a,b], i.e., [a,b] CU{I : I € T}. Then
one can find a finite number Iy,--- I, of intervals in T such that [a,b] C
LULU---UI,.

PROOQOF: Let
S ={c € la,b]: [a,c] can be covered by a finite number of intervals in Z} .

S is not empty because a € S. Let cp = supS. We will show that ¢y € S.
Choose I € 7 such that ¢y € I. Then we can find a ¢; € I such that ¢; < ¢y
and¢; € S. = [a,e;] CLHULU---UI, with [; € T, = ¢y € S. I claim
that ¢y = b. If not, we can find ¢y € I, with ¢ > ¢

= o, ] CLULU---UlLLUI = c €S, ¢ > .
Impossible! Therefore cg = b. Q.E.D.

Theorem 17 N is a null set in J <=> there exists a sequence {s} is S(J)
such that 332 sg(t) diverges for each t € N and Y32 [;|sk|dt < 0.

PROQOF: <= Done in lemma 5.

= Given € > 0 let Cy = {IF, I¥,--- I* --.} be, for each k, a countable
covering of N by open intervals of total length 20, ¢(I%) < 5,k =1,2,---.
Note that x;x(t) is a step function. Any ¢, € N is contained in an infi-
nite number of the I¥, so 0% _; x7x(to) diverges. But 300, [; xzx(t)dt <

Yhe1 5 = € <oo. Q.E.D.

Lemma 8 f € L'(J) <= there exists a sequence {uy} in S(J) such that
Ft) =302 ug(t) a.e. and 332, [ Jug|dt < oc.
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PROOF: <= Set s,(t) = >F_,ug(t) for n = 1,2,---. Then s, € S(J),
lim,_, s, (t) = f(t) a.e. and, for m > n,

/\sm—sn|dt:/| S wldt< Y /|uk|dt—>0
J I k=n+t1 J

k=n-+1

as m,n — oo. Therefore {s,} is Cauchy and f € L'(J).

= Suppose {s,} is a Cauchy sequence in S(J) such that lim,_, s,(t) =
f(t) a.e. By passing to a subsequence if necessary, we can assume Y00, [, [Sp1—
Spldt < co. Let uy(t) = s1(t), and U — k(t) = sg(t) — sg—1(t) for £ > 2. Then
up € S(J), f(t) =232, uk(t), a.e. and Y32 [ lug|dt < oco. Q.E.D.

Lemma 9 f € L'(J) <= For every € > 0 there exists a sequence {wy} in
S(J) such that

1. f=3%2,w a.e.
2. 300 [ lweldt <.
3. [;|f —w|dt <e.
In this case [; f dt = Y32, wpdt and Y32, [; |wg|dt < [;|f|dt + 2e.

PROQOF: <= Immediate.

= By lemma 8, f € L'(J) = there exists {ux} in S(J) such that
ft) = X2 uk(t) ae. and 302, f; |ugldt < co. Choose ky so large that
Sk, J7 |ukldt < € and set wy = 50 " up, wy, = Upgik—2 for k > 2. Then
Yoreo [y |wk|dt < e and

[ = wnlde = 13wt < 3 [ i <
Also
I;/J|wk|dt:/J|w1|dt+k§2/J|wk|dt§/J|f|dt+/J|f—w1|dt+e§/J|f|dt+2€,

Q.E.D.

Theorem 18 Let f € L'(J). Then for every ¢ > 0 we can find a s € S(J)
and a countable family Z. of intervals with total length < € such that
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1. [;1f — s|dt <.

2. |f(t)—s(t)| <eonJ—U(L), where U(Z,) is the union of the intervals
mn ..

PROOF: Part 1 follows from lemma 9. For part 2, we again refer to lemma 9
and define step functions s; = Y7, wg for j = 1,2, ---. Then for every t ¢ N
(a null set) we have s; — f a.e. as n — oo and lim;_, [, |f — s;|dt = 0.
Now let j; < jo < --- < j, < --- be a increasing sequence of integers. Then

f:‘sjl+[5j2_31'1]+"'+[3]'n+1 — Sj ]
Set v, (t) = sj,,,(t) — 55, (t). Then

o0

f@) = s, @) =D va(0), teJ-N, h=1,2,---
n=h

Now choose j; so large that [, |f — s;,|dt < ¢, and in addition require that
the j,, be chosen such that [, |s; — s;,|dt < & forall j > j, and n = 1,2,
Let G, be the finite family of intervals con51st1ng of the maximal sublntervals
of J on which |v, (¢ )| > o= Since [ |va|dt < 45 it follows that £(G,) < 5.
Note that |v,(t)] < 5= out51de U(Gn)-

For each pos1t1ve 1nteger D, let H, be the countable family of all intervals
in Gp, Gpt1, Gpt2, - - Now

1 1 1 1

E(%”S§+ﬁ+"'+2p+n+'”:§p*1’

and, for n > p we have |v,(t)| < 5 outside U(H,). Thus

| f(t) — 55, (¢ |<Z|Un <D 5 = 3

for t ¢ U(Hp) UN, L(H,) < 5. Now cover N by a countable family of
intervals of total length < (%)p—1 and add these intervals to H, to form C,,
UKp) < 5575, so that

f@) =85, < o0 tE T —UK,).

We obtain the statement of the theorem by choosing p so large that € < 2,, T
and setting Z, = K,. Q,E.D.
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Theorem 19 1. Let {g,} be a Cauchy sequence in L*(J) such that g,(t) —
f(t) a.e. asn — oco. Then f € LY(J) and [, f dt = lim,_,00 [; gndt.
Also, imy, 00 [; | f — gnl|dt = 0.

2. Let {fn} be a sequence in L'(J) such that f(t) = 352, fu(t) a.e. and
© Sy faldt < oo. Then f € LY(J) and [; f dt = Y22, [, fndt.

PROOF: Assertion 2 = assertion 1, by the proof of lemma 8. It is enough

to prove assertion 2. By lemma 9 there exist step functions s,; such that
fu(t) =252 snk(t) for t € N, (where N, is a null set), and

s 1
k=1"7 J 2
Set €, = smr.) Note that [, f,dt = 322, [, sprdt. Then
ont J k=1JJ

[ 00 o 1
S [lsmidt <Y [ Ifldt+Y o< oo
7 n=1"J n=1 2"

n,k=1

This implies that >7°% _; snx(t) converges absolutely for all t ¢ N, where N
is a null set. Therefore, if ¢ ¢ (U,N,)UN then 37°, f,,(t) = X0%—1 Snk(t) =
f(t) =

fer'(y ad [ dt:ZZ/ankdt:n;/andt.

n=1 k=1

Q.E.D.

1.5 Lebesgue measure and integration

We have already shown that we can obtain the spaces L'(J), L*(J) of
Lebesgue integrable and square integrable functions as the closures of the
space S(J) of step functions on J. The closures are taken in the respective

norms [;|s|dt and /[, |s|?dt. The “elements” of these Banach spaces are
equivalence classes of Cauchy sequences of step functions. In the last (tech-
nical) section we showed that to each equivalence class of Cauchy sequences
in the L'(J) norm we could associate a class of a.e. pointwise convergent
functions. Two functions in the same class converge to the same values a.e.
Here we will use these results to recast Lebesgue theory as a theory of inte-
grals of true functions.
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Definition 25 A function f is measurable on J if there erists a sequence
{sn} in S(J) such that lim,_, s, = f, a.e.

NOTE: If f is associated with L'(J) then there is a Cauchy sequence {s,}
in S(J) such that lim, , s, = f, a.e.

Definition 26 Let f be a function on J. If there exists a sequence {s,} such
that

1. lim, . 8, = f a.e.

2. [;|sn — smldt = 0 as n,m — oo, (i.e., if {s,} is Cauchy)
then we say that f is Lebesque integrable and we define the Lebesque integral
of fon J by [; f(t)dt = lim,, o [; sn(t)dt.
JUSTIFICATION:

1. Limit exists: ‘fj sndt — [; smdt‘ < [, 180 — Sm|dt = 0 as n,m — 00 =
{[; sndt} is Cauchy in C (or R) = [, f dt exists.

2. Limit is unique: By lemma 7, if {s,}, {r,} are Cauchy in S(J) and
Sp — [, — f a.e. asn — oo then {s,} ~ {r,}

:/|sn—rn\dt—>0 as n — 00
J

=

/sn—/rndt‘g/\sn—rn|dt—>0 as n — oo
J J J

= lim [ s,dt= lim [ r,dt.
n—oo J n—oo J

Note: Let F(J) be the space of equivalence class of a.e. equal Lebesgue
integrable functions on J and recall that L'(.J) is the space of equivalence
classes (in the norm) of Cauchy sequences of step functions on J. There is a
1-1 correspondence between these spaces. Indeed

1. Let {s,} be a Cauchy sequence in S'(J). Then there is a subsequence
{Sn, } such that limy , s,, — f a.e. and ||f|| = lim,00 [ [Sn|dt =
hmk—)oo fJ |Snk |dt = fJ, Lebesgue |f‘dt
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2. If f, g are Lebesgue integrable and f ~ g, then f = g a.e. on J, so
[, fdt=[,gdt

Let £(J) be the set of all real Lebesgue integrable functions on J. The
following theorem is very simple to prove.

Theorem 20 Let f,g € L(J), a, B scalars. Then
1. af + g € L(J) and

/J(af+ﬁg)dt:a/Jf dt+B/Jg dt.

2. Let f € L(J) and suppose {s,} is a Cauchy sequence in the norm of
S(J) converging to f, Then {|s,|} is also a Cauchy sequence in the
norm of S(J), |f| € L(J) and [, |f|dt = lim, s [; |Sn|dt.

8 f>20= [, fdt>0.

We define the norm of the Lebesgue integrable function f by ||f|| =
[, |f|dt. Also we introduce an equivalence relation on £(J) by defining f, g €
L(J) as equivalent (f ~ g) provided f = g a.e. Note that this equivalence
relation preserves the vector space structure: if f; ~ g; for j = 1,2 and «, 8
are scalars, then a.f; + 8 fo ~ ag; + Bg.. Also, all elements of the equivalence
class F' have the same norm, so we can define ||F|| = [, |f|dt for any f € F.

Now let L(J) be the normed vector space of equivalence classes of func-
tions in £(.J), equal a.e. It follows that L(J) is isomorphic to L*(.J) = S(J).
Hence L(J) is complete, i.e., if { f,} is a Cauchy sequence of integrable func-
tions on J, then there exists an integrable function f such that f, — f in
the norm: lim, o [, |fn — f|dt = 0.

Theorem 21 1. fe L(J), [;|fldt=0<«<= f =0 a.e.

2. f € L(J) = there exists {s,} C S(J) such that lim,,_, [; |f—sn|dt =
0.

PROQF:

1. f=0ae= |f| =0ae. = [;|f|dt = 0. Conversely, [;|f|dt =
0 = f € equivalence class of zero function = f = 0 a.e.
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2. f € S(J) = there exists {s,} C S(J) such that lim,_, ||f —s.|| = 0.

Q.E.D.

REMARK: Every f € £(J) is a limit in the mean, not only of step functions,

o OO
but also of continuous finctions, of differentiable functions, and of C'*° or
functions. Further, we have

Theorem 22 Let {fi.} be a Cauchy sequence in L*(J). Then there erists a
subsequence { f, } such that lim, o fx, (t) = f(t) is finite a.e. For any such
subsequence, f € LY(J), [; [ dt = limg_,o0 [; frdt, and [;|f — fr|dt — 0 as
k — oo. The f’s obtained from any two subsequences are equal a.e.

PROOF: From theorem 18, for each integer k there exists a step function
sk € S(J) such that [, |fx — sk|dt < 55 and a countable family of intervals F
of total length £(Fy) < 5 such that | f(¢) — sk(t)| < 55 for t & U(Fy). From
lemma 5 we can find a subsequence {sy, } of {sx} such that lim, , s, () ex-
ists and is finite a.e., i.e., outside of the null set N. Set f(t) = lim, o Si, (),
outside N. Now

/]|Sj_8k|dt:/]|sj_fj+fj_fk+fk_5k|dt

g/J|sj—fj|dt+/J|fj—fk|dt+[]|fk—sk|dt—>0

as j,k — oo. Thus {s;} is Cauchy in S(J), f € L}(J) and [, f dt =
limy 00 f; skdt. But | [, spdt — [; fredt| < [; sk — feldt — 0 as k — oo, so
[y | dt = limy o f; frdt.
Clearly si, — f a.e. Let H, = U2 Fpir. Then
1

1 1

Hence |f4(t) — sk, (t)| < 5 for ¢ ¢ H, where {(H,) < 3= and k > p. Thus

2p
fe— sk = 0ae = fi, = fae asn—oo. QE.D.
1.5.1 Fundamental convergence theorems

This section includes the proofs of the most important Lebesgue convergence
theorems that will be used as tools in the rest of the course. From now on
we will identify the spaces L(J), L'(J) and £L'(J)
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Theorem 23 (Monotone Convergence Theorem.) Let { f,} be an increasing
sequence of real valued functions in L*(J), (fi < fo < --+) such that [, frdt <
M < oo for all n. Then lim, ., f, = [ exists and is finite a.e., and [ €
LY(J). Further, [; f dt =lim, o [; fudt = K < M

PROOF: Let m > n. Then

/J|fM_fn|dt=/J(fm—fn)dtZ/medt—/andt—)O

as n,m — oo. Therefore, {f,} is a Cauchy sequence in L'(J). The rest
follows from theorem 22. Q.E.D.
Note: There is a similar result for monotone decreasing sequences.

Before presenting the next major theorem, we need to review some basic
concepts from real analysis. Let {ay : &k =1,2,---} be a sequence of real
numbers, and let

b, = inf ay, Cn = SUD Q.
k>n k>n

Note that b,, ¢, always exist, though they may be infinite.
Definition 27

liminf a; = lim inf ap = lim b, = lim ay,
n—o00 k>n n—00

limsup a; = lim sup a; = lim ¢, = lim ay.

For the proofs of our two major results, Fatou’s lemma and the Lebesgue
Dominated Convergence Theorem, we need the following preliminary result:

Lemma 10 Let f, g be real valued functions inL'(J) and fAg(t) = min{f(t), g(t)},
£V g(t) = max{f(t), g()}. Then f A g, fV g e Li(J).

PROQOF': We will lay out the steps in the straightforward proof and leave the

details to the reader.

e Since fV g=—(—f) A(—g) it is enough to prove the stated result for
fAg.

o If f, g € L'(J) there exist Cauchy sequences of step functions {f,}, {g.}
in S(J) such that f, — f, a.e., and g, — g, a.e., and [; f,dt — [, f dt,
[y gndt — [; g dt, as n — oo.
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e fuNg,€S(J)and f, Ag, — fAg,ae asn— oc.
e If wy, wy, vy, vy are real-valued functions on J then

[wi A vy (t) — we Avg(t)| < |wi(t) —wa(t)| + |v1(t) — ve(t)].

e {f. A gy} is a Cauchy sequence of step functions in the norm.

e Thus [, fu Agndt = [, fAgdt, [;|fANg— fauAgnldt = 0asn— oo
and fAge L'(J).

Q.E.D.

Properties of lim inf and lim sup:

1. lim ay, lim a;, always exist. They are either finite or +00 or —oc. This
follows from the properties

by <by<bg<---,

€L 2C 2032 .
2. ¢y > b, = lim,,_,oo Cp > lim,_,oo b,. Therefore, lim a; > lim ay.
3. limy_, o @ exists <= lim a; = lim a;, and is finite, in which case

lim a; =lim a; = lim ay.
k—o00

PROOF: ¢, > a, > b,.
(a) lim a; = lim a; finite =

lim a; = lim cn21i1?1 ar > lim b, > lim ay.
n n

(b) lim, a, = a exists = for every € > 0 there exists an integer N
such that |a — ax| < € for £ > N,. This means that

a—€e<ap<a+e if k> N.,.

Hence if n > N, then b, > a — ¢ and ¢, < a + ¢. This implies
that lim a; > a—eaﬂﬁ ar < a+ € for all € > 0. Hence
limg_,o ar = lim a = lim a5 = a. Q.E.D.
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Theorem 24 (Fatou’s lemma) Suppose { f,,} is a real sequence in L'(J) such
that f, > 0 a.e. for all n. Then

/h_mfndtSH_m/fndt.
J J

EXPLANATION: This means that if the right-hand side of this expression
is finite then lim f,, € L!(J) and the inequality holds.

PROOQF': There is no loss in generality by assuming that f,, > 0 everywhere.
Set gn(t) = inf{f;(t) : j > n}. Now g, € L'(J) since the decreasing sequence
h,(c") = fa A+ A fask—1 — Gn, everywhere as k — oo. (Note that hi") >
hY > -.) Now h{" € L'(J) and [, h{"dt > 0 => g, € L'(J), by the
monotone convergence theorem. But g; < g < g3 < ---and [; g,dt < [; f;dt

forall j > n, =
[ o <int [ fidt <lim [ fat

Therefore, if lim [; f;dt is finite, the monotone convergence theorem says

lim g,(t) = lim inf{f;(®)} = lim f;(t) € L'(J)

n—00 n—00 j>n
and [;lim f;dt <lim f; f;dt. Q.E.D.

Theorem 25 (Lebesgue’s Dominated Convergence Theorem) Let {f.} be a
sequence in L'(J) such that lim,_,., f, converges a.e., and suppose there is
a function g € L'(J) such that |f,| < g a.e. for alln. If f = lim, o0 fn
a.e., then f € LY(J) and [; f dt = [;lim, o0 fndt = lim, o [; fndt. Fur-
thermore lim,, o [; |f — faldt = 0.

PROOF: (We will assume that the f, are real functions. The extension to
complex functions then follows easily by splitting f,, into real and imaginary
parts.) We have 2g > g — f,, > 0 a.e. for all n and [;(g — f,)dt <2 [; g dt.
Therefore by Fatou’s lemma

g—f=g- lim f,=lim(g— f,) € L'(J),
and

[ (o=t <tim [ (9= fu)dt =lim( [ g dt - [ fudt) <2 [ g,
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/gdt—/fdtg/gdt—m/f”dt,
J J J J

= [, f dt > lim [; f,dt.
Similarly, 2g > g+ f, > 0 a.e., all n, and [,(g + f,)dt < 2 [, g dt.
Therefore by Fatou’s lemma: g + f = lim(g + f,,) € L*(J) and

/J(g+f)dt§h_m/](g+fn)dt=/Jgdt+li_m/andth/Jgdt,

—s [, f dt <lim [, fudt. Therefore [, f dt = lim, o0 J, fadt. Q.E.D.

1.5.2 The Hilbert space L?(J)

Recall that S?(J) is the space of all real or complex-valued step functions
on the (bounded or unbounded) interval J on the real line with real inner
product (si,$2) = [;s1(t)52(t)dt. (We identify s1,s9 € S(J), $1 ~ so if
s1(t) = sy(t) except at a finite number of points.) S?(J) is the space of
equivalence classes of step functions in S(.J). Then S?(J) is an inner product
space with norm ||s||? = [; |s(t)|?dt.

The space of L?(J) is the completion of S?(J) in this norm. L?(J) is a
Hilbert space. Every element u of L?(J) is an equivalence class of Cauchy
sequences of step functions {s,}, [;|s; — sk|*dt — 0 as j,k — oco. (Recall
{st} ~ {sn}if [; |8} — sn|?dt — 0 as n — oco. Now by a slight modification of
lemmas 5, 6 and 7 we can identify an equivalence class X of Cauchy sequences
of step functions with an equivalence class F' of functions f(¢) that are equal
a.e. Indeed f € F <= there exists a Cauchy sequence {s,} € X and an
increasing sequence of integers n; < ny - - - such that s,, — f a.e. as kK — oo.

In analogy with our treatment of the function space £!(J) and the Banach
space L' (J) of Cauchy sequences of step functions, we introduce the function
space L2(J).

Definition 28 f € L2(J) if there exists a sequence of step functions {s,}
in S(J) such that

1. s, — [ pointwise a.e.
2. [;1sn — sm[*dt = 0 as n,m — oo, i.e., {s,} is Cauchy in S*(J).

Lemma 11 £2(J) is a vector space.
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PROOF: Suppose f,g € L3(J), a, 3 scalars. Then there exist Cauchy se-
quences {s,},{r.} € S?(J) such that s, — f a.e. and r, — g a.e. as
n — oco. It follows that as, + fr, — af + B¢ a.e. as n — oo, and

[(wsn+Bra)—(sm—Brm)|| = [la(sn—sm)+B(rn—rm)|| < |e|{|sn=sm[+]B]|Ira—rm|| = 0
as n,m — oco. Q.E.D.

Lemma 12 If {s,} is a Cauchy sequence in S*(J) then {|s,|*} is a Cauchy
sequence in S(J).

PROOF: Given € > 0 we have

(14 ¢€)|sm] if (S — Su| < €8]

= s, —(5,,—5,)| < —s. | < ;
il = fom=(sm=n)| < fsm +lsm S""{ (14 Y)[sm — 50| if [5m — 50| > €lsiml,

:> 1
a2 < (1 + €25l + (1 + E)2|sm — sn|%,

SO
1
“S”|2 - ‘SWH S [(1 + 6)2 - 1”8m‘2 + (1 + z)ﬂsm - 5n|2'

Integrating this inequality over J and using that fact that since {s,,} is
Cauchy in S?(J) there exists a finite number M such that [;|s,|*dt < M,
we obtain

1
/J I3nf? = [5m/?| dt < [(1+ )% = 1M + (1 + )| = a1

Now, given € > 0 we can choose € so small that the first term on the right-
hand side of this inequality is < €'/2. Then we can choose n, m so large that
the second term on the right-hand side of this inequality is also < €’/2. Thus
[711snl? = Ism|?| dt — 0 as n,m — co. Q.E.D.

Note that if f € £2(J) than f is measurable and |f|*> € £'(J). Indeed
s, — [ ae. and {s,} is Cauchy in S*(J), so {|s,|*} is Cauchy in S(J),
1502 = | ae., and [ |f|?dt = limy,_y00 [ |Sn|?dt.

Lemma 13 If f is measurable on J and |f|> € L*(J), then f € L*(]), i.e.,
there exists a sequence {s,} € S(J) such that s, — f a.e. asn — oo and
{sn} is Cauchy in S*(J).
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CONCLUSION: £2(.]) is the space of all measurable functions f on J such
that |f|> € £'(J). There is a 1-1 relationship between equivalence classes X
of Cauchy sequences {s,}, i.e., elements X € L?*(J) and equivalence classes
F of functions {f} equal a.e. Here || X|> = lim, o0 [; |sn|2dt = [, | f|?dt.

Theorem 26 If f,g € L?(J) then f-g € L(J) and

< [1rwrar [ lgtofar

[ 109

PROOF: There exist Cauchy sequences {s,}, {r,} € S?(J) such that s, — f
a.e. and r, — g a.e. asn — oo. Then s, -7, = f-g a.e. as n — 0o. Now

/J |SnTn — SmTm|dt < /J |SpTn — SpTm|dt + /J |SnTm — SmTm|dt

< [ fsal-lra = rldt + [ [rn] - s = sl
< ||8nll2dot||rn — Tm||2 + ||7mll2 - [|8n — Sm|l2 = 0

as n.m — oc. (Here the norms are in S?(J) and the norms ||sy||2, ||rm||2 are
uniformly bounded.) Thus {s, - r,} is Cauchy in S'(J). = f-g € L(J)
and

[ 1 gdtl = i | [ sara dtl < Jim lsallllralls = 11£1]2 g1l

Q.E.D.

1.5.3 An aside on measurable functions

Recall that a real function f is measurable on the interval J if there exists a
sequence {s,} € S(J) such that s, — f a.e.

Theorem 27 let f, g be measurable on J and let a,b be real constants. Then
1. af + bg is measurable.
2. |f| is measurable.
3. fVg, fAg, ft and f~ are measurable.

4. fg is measurable.
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PROOF:
1. Obvious.

2. If {sx} € S(J) and sy — f a.e., then {|sx|} € S(J) and |sx| — |f]| a.e.

3. fVg=3(f+9+31f—gl, FAg=3f+9) —3|f—gl, f[+=F VO,
fm=(=f)vo.

4. Suppose {sp},{rn} € S(J) such that s, — f a.e. and r, — g a.e. as
n — oo. Then s, -r, — f-ga.e. asn — oo and s, -1, € S(J).

Q.E.D.

Theorem 28 Let {f,} be a sequence in L*(R) such that lim,,_,, f, converges
pointwise a.e. to f. Then f is measurable.

PROQOF': From theorem 18, for each integer n there exists a step function
sn € S(J) such that [, |fx — s,|dt < 5= and a countable family of intervals
Fy of total length ¢(F,) < 5 such that |f,(t) — sa(t)| < 55 for t & U(F,).
Let H, = U2y Fpin- Then

1 1 1

Hence |f,(t) — sa(t)| < 5 for t ¢ H, where £(H,) < 3= and n > p. Thus
fn—58, = 0ae. = s, = [ ae. asn — 00, so f is measurable. Q.E.D.

Lemma 14 f is measurable on the real line <= X[_pnfn € L' (R) for n =

1,2,---, where
fit) —n<fH)<n
fa(t) = { n fit)>n

—n  f(t) < —n.

PROOF: X[_pnn)fn = X[—nn) - (fT An— f~ An). Therefore, f measurable =
X[-nn]fn bounded and measurable, with compact support = X[ nnfn €
L'(R). Conversely, if X[_nnfn € L'(R) for each n we see that x{_nnfn — f
a.e. as n — 00, so by the preceeding theorem, f is measurable. Q.E.D.

Theorem 29 Let {f,} be a sequence of measurable functions on the real line
such that lim,_,o fn converges pointwise a.e. to f. Then f is measurable.

PROOF: Let g, = Xj—nn] - (fi An— f, An). Then g, € L'(R) for all n and
gn — f a.e. = [ is measurable. Q.E.D.
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1.5.4 Extensions of the theory

There are two important ways of extending the previous theory that we will
use later. First we can replace the usual length measure on the real line by
a more general measure. The easiest way to do this is to choose a weight
function p(t) on the interval J. Here p is a measurable function that is strictly
positive on J. We say that the measurable function

fe L] k)<= fVke L*J) < |f|’k € L'(J).

Then L?(J, k) is a Hilbert space with the inner product (f, g) = [; f(t)g(t)k(t)dt.

A second extension is obtained by replacing the interval J by a measurable
set, or by a domain D in an n-dimensional Euclidean space. (For the time
being, however, we will stay in one dimension.) Let S be a subset of the real
line and let xs be the characteristic function of S. i.e.,

1 iftesS
m@={ i

0 otherwise
We say the S is a measurable set if the function yg is a measureable func-
tion. We say that S is of finite measure if x5 € L£!(R) where R is the
real line. The measure of S is m(S) = [, xs(t)dt. Now suppose that S is
a measurable set and S C J. We define the integral on S of a measurable

function f by
/ Fdt = / Fysdt.
S R

Similarly we can define the Hilbert space L?(S) and the Banach space L!(S).

Lemma 15 S is of measure zero <= S s a null set.

PROOQF:

0=m(5)(:>/ |xs|dt =0 <= xs =0 a.e. <— S isanull set.
R

Q.E.D.

1.5.5 An aside on differentiation and integration

Suppose f(t) is integrable on the closed interval [a,b] of the real line. We
shall denote the integral of f on this interval variously as

/ab F(t)dt = /[a,b] F(t)dt = [ F(E)xian Byt
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where X[q4(t) is the characteristic function of [a,b] and the last integral is
taken over the full real line. This section will be devoted to examing the
fundamental theorem of calculus from a Lebesgue theory viewpoint. Given
a function f(¢) with derivative f’(¢), which may not exist at each point ¢, we
ask the following:

1. When does [; f'(t)dt = f(c) — f(a)?
2. When does £ [! f(7)dr = f(t)?

From first year calculus we know that the first identity is correct when f is
continuously differentiable on [a, c] and the second is true on intervals where
f Riemann integrable and where f is continuous at t.

To shed light on these questions we need to introduce three classes of
functions: the monotonic functions, functions of bounded variation, and ab-
solutely continuous functions.

Definition 29 Let J be a bounded or nonbounded interval of the real line
(with endpoints a,b) and let f be a function on J. We say that f is mono-
tone increasing if f(t1) < f(t2) for all t1,ty on J such that t; < ty. Sim-
ilarly, f is monotone decreasing on J if f(t1) > f(t2) for all t1,t2 on
J such that t; < ty. We say that f is monotone if it is either monotone
increasing or monotone decreasing.

Lemma 16 If f is monotone on J and ¢ € J (c # b) then f has a right-
hand limit at c:

Fle+) =tim £ (1),

PROOF: Suppose f is monotone increasing and set f(c+) = infis. f(¢). If
f(c+) is finite, then for every ¢ > 0 there is a 7 € J such that 7 > ¢
and f(c+) — f(7) < e. But since f is monotone increasing we have 0 <
fle+) — f(t) < efor e <t < 7. Thus f(t) — f(c+) as ¢t | c. A similar
argument works for f monotone decreasing. Q.E.D.

There is a similar result for left-hand limits.

Lemma 17 If f is monotone on J and c € J (c # a) then f has a left-hand
limit at c:

F(e=) = lim f(1).

ttc
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Note that f(c—) < f(¢) < f(c+) if ¢ is an interior point of J and f is
monotone increasing. Similarly, f(c—) > f(c) > f(c+) if ¢ is an interior
point of J and f is monotone decreasing. Thus if ¢ is an interior point of J
there are two possibilities:

1. f(e+) = f(c—). In this case f(c+) = f(c) = f(c—) and f is continuous
at c.

2. f(c+) # f(c—). In this case f has a jump discontinuity at ¢ with jump
flet) = fle—).

The endpoints have to be treated separately.

Lemma 18 A monotone function has at most countably many points of dis-
continuily.

PROOF': Suppose f is monotone on J. To each interior discontinuity c of
f we can associate uniquely the open interval I. = (f(c—), f(c+)) of the
real line. The intervals I, I., are non-overlapping for ¢; # ¢, and each I,
contains a rational number. Thus there is a 1 — 1 mapping between the set
of discontinuities {c} and a subset of the rational numbers. Hence {c} is
countable. Q.E.D.

From this result it is not hard to verify that a bounded monotonic function
on a bounded interval is Riemann integrable.

Definition 30 Let A be a subset of the real line and let I,---,1,,--- be a
countable number of open intervals such that A C U2 1,. We define the
outer measure m*(A) by

m*(A) =inf{>_ 4(I,) : A C UL, I,}
n=1
Lemma 19 Some simple properties of outer measure:
1. If A C B then m*(A) < m*(B).

2. A is a null set if and only if m*(A) = 0.

3. If A is an interval of the form [a,b], [a,b), (a,b] or (a,b), then m*(A) =
b—a.
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4. (countable subadditivity) If {A,} is a countable collection of subsets of
the real line, then m* (U2 | A,) < >, m*(A,). (This inequality holds
in the extended number system. Thus if the left-hand side 1s 400, so is
the right-hand side.)

PROOF: Properties 1) and 2) are easy. For 3) it is evident that m x (4) <
b — a. For the rest, use the Heine-Borel theorem. We give the proof of the
subadditivity. Assume that m*(A,) is finite for all n (otherwise the result
is trivial). For every e > 0 there is a countable collection of open intervals
{1} such that A, C U2 1I,; and 32, £(1,;) < m*(A,) + 5. Therefore
U A, CUn,i =1%1,,;, and

m (U2 A4,) < S (L) <Y mi(A) + Y Qin =Y m"(4,) +e.
n,d=1 n=1 n=1 n=1

Q.E.D.

Theorem 30 Given any subset A of the real line and any € > 0, there exists
an open set O such that A C O and m*(O) < m*(A) +e.

PROOQF: There exists a covering {I,} of A by open intervals such that A C
U I, and m*(A) > >, m*(I,) —e. Set O = U I,. Then A C O and
m*(0) < Y2, m*(I,) < m*(A) + e Q.E.D.

1.5.6 Some results on measurable sets

Note. If A is measurable then it is not difficult to show that m*(A) = m(A).
However, in general A is not measurable. Recall that a set S is measurable
if its characteristic function yg is a measurable function. Hence any interval
is measurable. The measure of S is m(S) = [ xs(t)dt, (which could be c0).
Every bounded measurable set has finite measure.

Lemma 20 Let 51,5, be measurable sets. Then S; U Sy, S1 NSy and S; U
Sy — 81 N Sy are measurable.

PROOF: By assumption xg,, Xs, are measurable functions. The lemma
follows from the observations that

XS1USs = XS1VXSar  XS1nSa = XS1/AXSs,  XS1US>—81nSs = X581 VXS2 —XS1 AXS,-
Q.E.D.
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Lemma 21 Let S,, n = 1,2,--- be measurable sets. Then U .S, and
Ne° 1Sy, are measurable.

PROQOF: Let S = U2 ,S,,. Note that

XS1USeU--USy = XS1 \ XS, VARERY XSn

is a measurable function for all N, and xs,us,u--usy — Xs a-e. as N — oo.
Hence S is a measurable set. Similarly, let S =N>2,S,,. Note that

X$1nSan--nSy = XSy AN XSy AN+ AN Xsy

is a megsurable function for all N, and xs,ns,n--nsy — Xg a.e. as N — oo.
Hence S is a measurable set. Q.E.D.

Theorem 31 Every open set in R is the union of a countable number of
disjoint open intervals. Thus every open set is measurable.

PROOF: Let O be an open set on the real line. For each t € O let Z(t) be
the maximal open interval such that t € Z(t) C O. Clearly O = UyicoZ(t).
However, the intervals Z(¢) aren’t all distinct. The number of distinct inter-
vals is countable, because for each n = 1,2, - - - the bounded interval (—n,n)
intersects at most a finite number of distinct intervals Z(¢) of length > 1/n.
(Note that if Z(t) N Z(¢') # 0 then Z(¢) = Z(¢').) Q.E.D.

Note that m(O) = Y m(Z(t;)) = X ¢(Z(t;)) where the sum is taken over
the disjoint open intervals.

Corollary 2 Every closed set is measurable.

PROOQOF: let C be a closed set on the real line. Then @ = R —C is open, and
Xec = 1 — Xcao- Thus xc is a measurable function and C is a measurable set.
Q.E.D.

Lemma 22 1. If 51,5y are measurable with S; C Sy, then m(S;) <

2. Let S = U2,S; where S; C Sy C --- is an increasing sequence of
measurable sets. Then S is measurable and m(s) = lim;_,o m(S;).

3. Let S = ﬂ;‘;lSj where s1 D So D --- is a decreasing sequence of mea-
surable sets. Then S is measurable and m(s) = lim;_, m(S;).
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4. Let S = U2, S; where S1,Ss, - - - is a countable family of nonintersecting
measurable sets. Then S is measurable and m(s) = 3272, m(S;).

PROOQOF': These results follow easily from basic results in integration theory,
including the Lebesgue monotone and dominated convergence theorems.

1. xs, (1) < xs,(t)

2. xs(t) = lim;_,e0 xs, (1)

3. xs(t) = limj 00 xs; (£)

4 xs(t) = X2 xs; (1).
Q.E.D.

Corollary 3 For any set A on the real line, let 0*(A) = inf{m(B) : B D
A, B measurable}. Then m*(A) = o*(A).

PROOF: If 6*(A) = 0o and O D A is open, then m(O) = 0o so m*(4) = oc.
Now suppose 0*(A) < oco. It is evident that m*(A) > o*(A). We will show
that m*(A) < 0*(A) and the equality will follow. Given any € > 0 there is
a measurable set B D A such that m(B) < 0*(A) + e. Choose k& > 1 such
that km(B) < m(B) + ¢ Then by lemma 9 there exists a sequence of step
functions s; such that

Z =kxp(t) > kxa(t) a.e.,
k=1

and
I;/R |sk(T)|dT < /RkXo(T)dT + € < m(B) + 2 < 0" (A) + 3.

By adding a sequence of nonnegative step functions with integral < e and that
diverges on a set of measure zero we can strengthen the above inequalities to

(e}

> su(t) > kxa(t) everywhere,
k—1

and -
|sk(7)|dT < 0*(A) + 4e.
>,
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Now set
Ay ={t:|s1(t)| > 1}

A, = {t : RZ ()] <1 < gij |sk(t)\}, n>o.

Then each of the A, is measurable and A; N A; = () for i # j. Further,

Ur=1 4k = {t i an sk (t)] > 1},

k=1
SO n n
S m(Ay) < Z/ Isk(t)|dt < o™ (A) + 4e.
k=1 k=1"%
Thus o
A C UR Ay, > m(Ag) < o*(A) + 4e.
k=1

We can easily modify the A; on a set of measure < € to turn them into a
covering of A by disjoint open intervals with total length < 0*(A)+ 5e. Since
€ is arbitrary, we have m*(A) < o*(4). Q.E.D.

Corollary 4 If A is measurable then m(A) = m*(A).

Definition 31 A set B on the real line is a Borel set if it can be obtained
by countable unions and intersections of open intervals.

Theorem 32 FEvery measurable set A can be expressed as a disjoint union
A = BUN where B is a Borel set and N is a null set.

PROOQF": Let O be an open set such that O D A. Since O is the disjoint union
of a countable number of open intervals, it is easy to see that O is measurable
and m(0) = m*(0). By definition, m*(A) = info open, 054 M(O). From
theorem 30 and the preceding lemma, there exists a sequence of open sets

0,00,>---20,D---D A

such that m*(A) = m(B) where B = N ,0,, is measurable. Since A is
measurable, m(A) = m*(A) = m(B). Now B — A is measurable and B =
(B— A)UA, a disjoint union. Hence m(A) = m(B) = m(B — A) +m(A), so

m(B— A)=0and N =B — Ais anull set. Q.E.D.
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Not all sets are measurable, i.e., there are sets S such that the character-
istic function xg is not measurable and m(S) = [ xs(t)dt has no meaning.
The outer measure m*(S) still is defined but it doesn’t have, in general, the
additive property m*(S; U Sy) = m*(S1) + m*(Ss) for disjoint sets Sy, Si.
Nonmeasurable sets and functions do not arise constructively; they will not
appear in any practcal calculations because one needs the axiom of choice
to show their existence. Following some preliminary lemmas, we will give a
famous example.

Let f be a function on R and a € R. We define the translated function

f*on Rby f(t) = f(t +a).

Lemma 23 1. f is measurable if and only if f® is measurable for all
a € R.

2. f € LY(R) if and only if f* € L*(R) and [ f(t)dt = [ f(t)dt for all
a € R.

PROQF:

1. f measurable <= there exists {sx} € S(R) such that limy_, sx = f
a.e. <= there exists {s}} € S(R) such that limj_,., s§ = f¢ a.e.

2. [psk(t)dt = [pse(t)dt, foralla € R, k=1,2,---.
QE.D.

Lemma 24 Let S C R and a € R, and define the set S® by S® ={t:t+a €
S}. The S is measurable if and only if S* is measurable. xs is integrable if
and only if xsa is integrable. If S is measurable then m(S) = m(S%).

PROOF: x¢ = xs. Q.E.D.

Example 2 A nonmeasurable set. Consider the interval [0,27). Think of
this interval as the unit circle I' in the complex plane. The points of I' are
{e = cosf +isinh, 0 < § < 2w}, Set €' ~ € if (6, — 6,)/27 is a
rational number. Note that the relation ~ divides I' into equivalence classes.
Using the aziom of choice, we select one point from each equivalence class
to form a set S C [0,2m). Now let wy = 0,w; = 5(27),ws = 3(2m), - be
an enumeration of all rational multiples of 2m in the interval [0,2m). (Note
that w; ~ 0 for all j.) Let S, be the set obtained by rotating S in the positive
direction through the angle w,. FEvery point in S, can be represented in the
form e™nen where e is a point of S = Sy. Then the following are true.
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e S;NS, =0 ifk #n. PROOF: ¢“keir = giwneifn — ¢illk—0n) —
elwn—wk) — @, — 0, is a rational multiple of 2n => 6, = 6, =
ek = ¢n_ Impossible!

o Euvery point € of I belongs to some equivalence class => €' € S, for
some n.

Thus
r=5usSu---, S;NS,=01if j #k.

Now suppose S is measurable. Then S C [0,27) = m(S) < 27, and
m(S;) = m(S) for j =0,1,2,---. Further,

o = m(T) = 2 m(S;) = 2 m(S)

If m(S) = 0 we find 0 = 2x. Impossible! If m(S) > 0 we find +oo = 2.
Impossible! Thus, S is not measurable and xg is not a measurable function.

1.5.7 Derivatives of monotone functions

Let Z be a collection of closed intervals I on the real line.

Definition 32 7 covers a set F in the sense of Vitali if for each ¢ > 0
and t € E there is an interval I € T such that t € I and £(I) < e.

Theorem 33 Vitali covering theorem. Let E be a bounded subset of the real
line and T a collection of closed intervals that cover E in the sense of Vitali.
Then given € > 0 there is a finite disjoint collection {I1,---,In} C T such
that m*(E — UN_,I,)) < e. Thus, there is a sequence of pairwise disjoint
intervals I, in T such that E — U2 1, is a null set.

SKETCH OF PROOF: The (technical) proof can be accomplished in the
following steps.

1. Since E is bounded, it is contained in a bounded interval (a,b). Then
the subfamily Z' of Z consisting of those intervals in Z that are contained
in (a,b) also covers E in the sense of Vitali.
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2. Unless F' is covered by a finite subfamily of pairwise disjoint intervals
in 7', there exists a sequence {I,} of pairwise disjoint intervals in 7’
such that

() > %sup{ﬁ(]) TeT,In (UL, L) =0},

Indeed, for each n, unless E' is contained in the closed set U7_,[;, the
family
{I:1eT,1n (U 1) =0}

isn’t empty.
3. Since 300, ¢(1,,) < b — a, we have lim,, ,, £(I,) = 0.

4. Suppose ty € E and to belongs to some I € I'. If I'NI; =  for all
j <nand n>1then ¢£(I) < 2¢(I,). This is impossible, so I N I,,, # ()
for some smallest ng > 1.

5. Let J,, be the closed interval with the same midpoint as I,, and
0(Jn,) = 5(1,). Then since £(1) < 2¢(I,,) we must have that ¢, is at
a distance of < 2.5¢(1,,,) from the midpoint of I,,,. Hence ty € J,,.

6. For each integer N > 2 and each point ¢t € E, either ¢t € UY_|I, or
t € J, for some n > N. Hence

E C (Uflvzlln) U (Uzo:N+1Jn) ’

where o -
S ) =5 Y UI,) <5(b-a)
n=N+1 n=N+1

7. Given € > 0 there is an integer NV, so that >0 v, £(J,) < efor N > N,.
Hence

m*(E = Uy, 1,) < m* (UpZns1Jn) < Z U(Jn) <€
n=N+1

for all N > N..

Q.E.D.
Suppose F'is defined on an interval of the real line that contains the point
0.
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Definition 33

limy, 0, F'(h) = inf sup F (h),  limy o F(h) = sup inf F (h)-
Note that limp,_,o4 F'(h) > limj,_,o, F (k) and we have equality if and only if
limy,_,o4 F'(h) exists, in which case the three limits are the same.

Definition 34 Let f be defined in an open interval of the real line containing
t. The four derivates of f at t are given by

DT f(t) = mh_)%f(t +h) - f(@t) D f(t) = mh—>0+f(t) — flt—nh)

h ’ . ,
D) = timy o, =IO D) =t LI,

Clearly, D*f(t) > D, f(t) and D~ f(t) > D_f(t). Tt D*f(t) = D, f(t) =
D= f(t) = D_f(t) # +oo, we say that f is differentiable at t and we define
f'(t) to be the common value of the derivates at t.

Theorem 34 Let f be a monotone real-valued fuction on the interval [a, b].
Then f' exists a.e. Furthermore, f' is Lebesque integrable and ff flt)dt <

f(b)= f(a) (for f increasing) and [° f'(t)dt > f(b)— f(a) (for f decreasing).

PROOF: Assume that f is monotone increasing. (The results for f monotone
decreasing can be obtained by setting f = —f.) We will show that the set
where any two derivates are unequal is of measure 0. Consider the set E
where DT f(t) > D_f(t), for example. We can write

E = Uu,,v rationalEu,va Eu,'u = {t : D+f(t) >u>v> D—f(t)}

We will show that E, , is a null set for all u, v, which will imply that F is a
null set. Let s = m*(E,,). We must show that s = 0.

Given € > 0 we can choose an open set O such that O D> FE,, and
m*(0) < s+ e. For each t € E,, there exists an arbitrarily small interval
[t—h,t] C O such that f(t)—f(t—h) < vh. By the Vitali covering theorem we
can choose a finite collection {1, ---, Iy} of these intervals that are pairwise
disjoint and such that m*(A) > s — € where A is a subset of E,, contained
in the interior of UY_, I}.

:>Z [ty — hy) ]<th <vm*(0) < v(s +e).

n=1
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Now for each point w € A there exist arbitrarily small intervals [w, w + k]
contained in some I, and such that f(w+ k) — f(w) > uk = there exists a
finite collection {.J1, - -, Jy/} of such intervals with the property that UM, J,
contains a subset A of outer measure greater than s — 2¢. Thus,

Zl[f(wi*‘k‘”) — fwy)] > quz > u(s — 2e).

i=1

For fixed n sum over those J; contained in I,,:

DU (wi+ ki) = f(wi)] < f(ta) = f(tn = ).

(Here we are using the assumption that f is increasing.) Therefore

v(s+e€) i f(tn — hy) ]>Z[f w; + ki) — f(w;)] > u(s — 2¢)

=1

— vs>us. Butu>v=—s=0.

For the last part of the theorem, set g(t) = limy,_o w Note that
g is defined a.e. Let g,(t) = n[f(t +1/n) — f(t)] for ¢ € [a,b] and note that
gn > 0. (We set f(t) = f(b) for t > b.) Then g,(t) is a measurable function
and lim,, . g,(t) exists a.e. (but may be +oc). By Fatou’s lemma,

b b b
[ 1wt = [ tim, g (t)dt < Tim, o, [ ga(t)dt
b

a+1/n

£+ 0 = F Ot =t ol [ f@de=n [T pe)at

a

= li—mn—mo[n /

a

= tim, o [F0) ~n [ F0)a] < £8) - f(0) < o0

= f'(t) is integrable = f’ is finite a.e. Therefore, f is differentiable a.e.
and g = f" a.e. Q.E.D.
Note: the inequality [° f/(t)dt < f(b) — f(a) can’t be improved.

Example 3 The almost perfect sneak. This function is related to the Cantor
set C' on the interval [0,1]. Recall that the Cantor set is constructed, recur-
sively, by throwing out the (open) middle third of each interval. We construct
the function f on [0,1] by first defining it on the mazimal intervals of com-
plement of the Cantor set C' = [0,1] —C. The mazimal intervals in C' are of
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length 1/3,1/9,---,1/3" ---. We define first f(t) = 1/2 for t € (1/3,2/3),
secondly f(t) =1/4 fort € (1/9,2/9), f(t) =3/4 fort € (7/9,8/9), etc. At
step k we define

1 2k —1
f(#) :2_ka"'a7
for t in the respective intervals of length 1/3F in C':
1 2 3F—2 3k-1

(

This defines f as a monotone increasing function on C'. By construction,
C" is dense in C. Thus we can define f on [0,1] by the requirement

ﬂ”:{ 0 t=0.

Then f is monotone increasing on [0, 1], with f(0) = 0 and f(1) = 1. The
range of f includes all values j/2% where j = 0,1,---2F and k ranges over
the non-negative integers. Thus the range is dense in [0,1]. This means that
f is continuous because it has no jump discontinuities. Since C' is a union of
disjoint open intervals and f is constant on each of these intervals, it follows
that f'(t) =0 for allt € C'. Since C is a null set, this means that f'(t) =0
a.e. We see that

L

0= [ fdr< F0) - O =1,

so the fundamental theorem of calculus doesn’t apply to f. Note that a
“sneak” moving according to the formula x = f(t) is “almost perfect.” Indeed
he gets from point 0 to point 1 in one time interval but almost all of the time
he isn’t moving!

1.5.8 Functions of bounded variation

Let f be a real-valued function on the closed, bounded interval [a, b], and let
a=ty <ty <---<ty=>bbe a partition of [a,b]. For a real number r let

+_{rif7‘20 T_{O itr>0

r= 0 ifr<o0 —r if r <0.
We define
k k
p=>_[f(t:)— fltic)]™, n=>Y [f(t:)— f(tic1)] -
i=1 i=1
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Note that

k

t=p+n=>_|f(t)— f(tic1)l, p—n=f()— f(a).

=1

Now we set
P(f = supp, Ng =supn, Tf = supt,

where the suprema are taken over all partitions of [a, b]. Here P?, N, T? are
called the positive variation, the negative variation and the total varia-
tion, respectively, of f on [a,b]. Clearly, T® > P’ N?. If T? < oo we say
that f is of bounded variation over [a,b], or f € BV for short.

Lemma 25 If f € BV on [a,b] then

TP =P+ N’ and f(b) — f(a) = P’ — N°.

PROOF: For any partition of [a,b] we have p = n + f(b) — f(a)
f(b) = f(a), so P < N+ f(b) — f(a). Similarly, P > n + f(b) —
P> N+ f(b) — f(a). Hence, P— N = f(b) — f(a).

Next,t=n+p< N4+p< N+ P,soT <N+ P. However, T > p+n =
2p — (f(b) — f(a))] =2p+ N —P,s0 T > P+ N. Therefore T = P+ N.
Q.E.D.

< N+
f(a) so

Theorem 35 f € BV on [a,b] if and only if f = g — h where g,h are
monotone increasing functions on |a, b].

PROOF: Set g(t) = P!, h(t) = N!— f(a). Then g, h are monotone increasing
on [a,b] and
f(t) = Py — Ng + f(a) = g(t) — h(2).
Conversely, suppose f = g — h, where g, h are monotone increasing on
[a,b], and let a =ty < t; < --+ < tg_1 <ty = b be a partion. Then

D 1F () = f(timn)] < Xlg(t) — g(tiza)] + D_[A(t:) — h(tiz)]

< [g(b) — g(a)] + [h(b) — h(a)],
so Tb(f) < g(b) — g(a) + h(b) — h(a) < co and f € BV. Q.E.D.

Corollary 5 f € BV on [a,b] = [’ exists a.e.
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Corollary 6 If F(t) = [' f(7)dT + F(a) for f € L'([a,b]) then F € BV.

PROOF: For any partition of [a, b] we have

t—2|/ dT|<Z/ ()= [ 15y

so TP < [*|f(7)|dr. Q.E.D.
Note: With more care, it can be shown that T? = [°|f(r)|dr.

Example 4 A continuous function on a bounded domain that is not of bounded
variation. Consider the function y = f(x) on [0,1] whose graph zigzags
between the lines y = x and y = 0. In particular, f(zx) = x for z =

1,1/3,1/5,---,1/(2k+1),--- and f(x) =0 forx =0 andx = 1/2,1/4,---,1/2k, - - -

and the graph zigzags between these points. Now let P, be the partition

1 1
0< — < =<1
< 2n < 2n —1 < < 2 <
Then the variation for this partition is

ty = 2 + 2 + +2+1>1+1+ +1
" 2p—1 2n-3 3 2 n

n ]

> —dx = logn
1 n

which s unbounded as n — oo.

1.5.9 Absolutely continuous functions and the funda-
mental theorem of calculus

Theorem 36 Suppose f(t) = Y02, fu(t) converges everywhere on the in-
terval [a,b] and that each f, is monotone increasing on [a,b]. Then f'(t) =

>, fi(t) a.e. in [a,b].

PROOF: f monotone increasing = f’ exists a.e. Without loss of generality

we can assume that f(a) = f,(a) = 0 for all n, so

fn(t) >0 for ¢t > a, fr >0, >0.
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Set s,(t) = >F_, f.(t). Then s, is monotone increasing and s, — f every-
where as k — co. Now

si(t) < sh(t) < -+ < sp(t) <o < (1),

except on a set of measure zero. Therefore limy_,o, 5,.(t) = >0, f1(t) con-
verges to a finite number a.e. Now choose the subsequence {s}c(@} by requiring
f(b) = sk <1/2, for £ =1,2,---. Then

0 < f(t) = su(e)(t) < f(b) = sk (b) < 55

for all ¢ € [a, b], because f — sy is monotone increasing. From these results

we see that - o 1
0< ;[f(t) — s (t)] < ; 2t = 1,

for all ¢ € [a,b], (f(a) — ske(a) = 0). = X72,(f — ske)' converges to a
finite number a.e. = f'(t) — s}, (1) = 0 a.e. as £ — oo. Q.E.D.

Theorem 37 Let f be Lebesgue integrable on [a,b] as set F(t) = [} f(1)dT+
c where a <t <b and ¢ is a constant. Then F' exists a.e. and F'(t) = f(t)
a.e. on |a,b.

PROOF': Without loss of generality we can assume ¢ = 0. We will carry out
the proof in stages.

e The theorem is true if f = x4, is a characteristic function, where
a < A< B<b. Indeed

0 a<t<A
/XAB TYdr=4 t—A A<t<B
B—A B<t<b

so F'(t) = x(a,5(t), a.e. on [a,b].

e The theorem is true if f € S([a,b]), i.e., if f is a step function on [a, b],
since then it is a finite sum f(t) = 3i"; ¢ix(a;,8,(1)-
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Finally, we show that the theorem is true for general f € L'([a,b]).
In this case, by lemma 8, there exists a sequence {¢;} in S([a, b]) such
that Y32 [ [or(T)dT < 00, and ¥, ¢ (t) = f(t) a.e. (Here, we assume
that ¢x(t) = 0 for ¢ & [a,b].) Setting

or(t)  dr(t) >0 o —ok(t) (t) <0
¢ (t) = { 0 () <O, % (1) = { 0 or(t) > 0,

we see that ¢x(t) = ¢f (¢t) — @5 (¢). Clearly,

J ot @ir < [ 1olar. [ s @< [ |6l

50 o5y [ & (T)dT < 00, 232, [ by, (T)dT < 00. Set fi(t) = 32, ¢4 (1),
e, and fo(t) = X2, ¢, (t), a.e. Then fi, fo are integrable and

f = fl — f2 a.e. Set
/ f1 dT—Z

kla

/ folr dT_ L4 (r)dr

Ic 1ve
for a <t <b. Since the infinite sums are monotone increasing, we see
that Fi, Iy are monotone increasing. Then by theorem 36 it follows
that F}, F exist a.e. and

=§ﬁm, ﬂ@=§%@

these last two identities holding a.e. Thus,

(61 (1) i ae.

M8

F'(t) = Fi(t) - Fy(t) =

k=1

Il

Q.E.D.

Corollary 7 Suppose f is integrable on [a,b] and [' f(T)dT = 0 for all t €

. Then f(t) =0 a.e. on [a,b).

Theorem 38 Let f € L'(R). Given € > 0 there exists a § > 0 such that if
the set S is measurable and m(S) < 6 then | [5 f(7)dr| < €.
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PROOQF:

1. Suppose f is bounded, i.e., there exists a positive M < oo such that
|f| < M everywhere. Set 6 =¢/2M. Then if m(S) < § we have

[ s@yar < [1f@ldr < [ 31 dr = dm(s) = S5 < e

- 2M
2. Suppose f € L'(R) but f is not bounded. Then by the approximation
theorem (theorem 18) there exists a ¢ € S(R) such that [ |f(7) —
¢(7)|dr < €/2. Since ¢ is bounded, there is a finite M such that
|p| < M. Set § =€/2M. Then if m(S) < 6 we have

\/Sf(T)dT\ - \/S[(f—qﬁ)—i-qﬁ]dﬂ §/5|f—gz5|dr+/5\¢\d7< *+ Mim(S)

<cELF
—+-==e
2 2

Q.E.D.

Definition 35 We say that the function f is absolutely continuous on
the interval [a,b] if, f is defined on [a,b] and given any € > 0 there is a
d > 0 such that Y7 |f(t)) — f(t:)| < € for every disjoint collection {(t;,t;)}
of intervals such that Y1, [t' +1i —t;| < 0.

Lemma 26 If f is absolutely continuous on [a,b] then f is continuous on

[a, b].

Lemma 27 If f' exists everywhere on [a,b] and is bounded, then f is abso-
lutely continuous on |a, b].

Lemma 28 Suppose f, g are absolutely continuous on [a,b] and o, B are real
scalars. Then af + Bg is absolutely continuous on [a, b].

Lemma 29 If f is absolutely continuous on [a,b] then f € BV on [a,b].

PROOF': Choose the § corresponding to € = 1 in the definition of absolute
continuity. Now let A be a partition of [a,b]. By adding more partition
points if necessary, we can split the partition into K sets of intervals, each of
total length < §, where K is the largest integer < 1+ (b—a)/0. = t < K
= T < K. QE.D.
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Corollary 8 f absolutely continuous on |a,b] = f' exists a.e. on [a,b] and
18 tntegrable.

Lemma 30 If f € L'([a,b]) and F(t) = [! f(7)dr + F(a) fora <t < b,
then F' is absolutely continuous on |a, b|.

PROOF: let {(¢;,t;)} be n disjoint intervals in [a, b]. Then

iy b

n

> IF(H) - | / r)dr

i=1

<Z/ \dT—/|f )| dr,

where S = U", (¢;,t;). Recall that given € > 0 there exists ¢ > 0 such that
m(S) <d = [¢|f(7)| dT < e. QE.D.

Lemma 31 Suppose f is absolutely continuous on [a,b] and f'(t) = 0 a.e.
Then f is constant on [a,b].

PROOF: let €, 6. be as in the definition of absolute continuity for f. Choose
¢ € (a,b] and let E = {t € (a,c¢) : f'(t) = 0}. Since f' = 0 a.e., we have
m(E) = ¢ — a. Now choose € > 0,7 > 0. For each ¢t € F there exists an
arbitrarily small interval [t,¢ + h] C (a,c) such that |f(t + h) — f(¢)| < nh,
— By the Vitali covering theorem we can find a finite number n of disjoint
intervals {I = [tg, tx + hx] = [tx, 7]} such that m(E — U_,I;) < d.. Label
the t; so that ¢ < txy1. Then defining 79 = a,t, 1 = ¢ we have

< <1 <tL<m<- - <t, <Th < Tht

and Y p_g [tk+1 — 7| < 0. Now

n

kﬁ:\f(ﬂc)— Z T — te) < n(c—a)

and Y3, |f(tks1) — f(7x)| < € by the absolute continuity of f. Therefore,

£(©) - f(a)| = Ié[f(tkﬂ) — f()]

+§:[f(ﬂc) — F(t)] < e+ n(c—a).

Since €, are arbitrary, = f(¢) = f(a). But ¢ € (a, b| is arbitrary, so f is
constant on [a,b]. Q.E.D.
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Definition 36 If F(t) = [! f(1)dr + F(a) for some f integrable on [a,b],
we say that F is an indefinite integral on [, b].

Theorem 39 F is an indefinite integral on [a, b] if and only if F' is absolutely
continuous on [a, b].

PROOQF: If F is an indefinite integral then F' is absolutely continuous by
lemma 30. Conversly, if F' is absolutely continuous on [a, b] then, by lemma
29, F € BV on [a,b] = F(t) = Fi(t) — F»(t) where Fy, F, are monotone
increasing, = F'(t) = F|(t) — F5(t) a.e., where F}, F; are integrable. There-
fore F' is integrable on [a,b]. Now set G(t) = [' F'(7)dr, a < t < b. Then
H(t) = F(t) — G(t) is absolutely continuous and H'(t) = F'(t) — F'(t) = 0
a.e. = H (t) is constant on [a,b] = H(t) = H(a) = F(a). Therefore,

F@—fﬁmwzﬂ@

Q.E.D.

Corollary 9 An absolutely continuous function is the indefinite integral of
its deriwative.

Corollary 10 (Fundamental theorem of calculus) The following are equiva-
lent for a function F on the interval |a, b]:

1. F s absolutely continuous.
2. F€BV and F(t) = [} F'(r)dr 4+ F(a), a <t <b.
3. There exists a function f € L'([a,b]) such that F(t) = [} f(T)dT+F(a).

Lemma 32 If F(t), G(t) are absolutely continuous on |a,b] then

PROOF: Given € > 0 choose > 0 such that for any collection of n disjoint
intervals {(t;,t;)} in [a, b], satisfying >, (¢} — t;) < § we have

(3

Z F(#) — F(t)] < e, z G — Gt <.
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Let M = maxcq{|F(t)|,|G(t)|}. Then

n

2 PG () — F(t)G (k)| = i |F(t)[G(t) — G(t)] + G (&) [F(t;) — F(t:)]]

n

< MY IG(E) - Gt + MY |F(E) - F(t)] < 2Me.

Q.E.D.

Theorem 40 (Integration by parts) Suppose F is absolutely continuous and
g is integrable on [a,b]. Set G(t) = [' g(T)dr + ¢, (c a constant) and f(t) =
F'(t) a.e. Then Fg and fG are integrable on [a,b] and

PROOF: F' is measurable and bounded, g integrable = F'g is integrable.
G is measurable and bounded, f integrable = fG is integrable. F G abso-
lutely continuous = F'G absolutely continuous and (f(¢)G(t))' = F(t)G'(t)+
F'(t)G(t) if F and G are differentiable at t = (FG)' = Fg + fG a.e. =
F(b)G(b) = [X(Fg+ fG)dr + F(a)G(a) =

Q.E.D.

1.6 Orthogonal projections, Gram-Schmidt or-
thogonalization

1.6.1 Orthogonality, Orthonormal bases

Definition 37 Two vectors u,v in an inner product space H are called or-
thogonal, u | v, if (u,v) = 0. Similarly, two sets M, N C H are orthog-
onal, M L N, if (u,v) =0 for allu e M, v e N.

Definition 38 Let S be a nonempty subset of the inner product space H.
We define S* by St ={ueH:u L S}
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Lemma 33 S is a closed subspace of H.

PROQF:

1. 8t is a subspace. Let u,v € 8+, a,8 € C, Then (au + Bv,w) =
a(u,w) + Bv,w) =0 for all w € S, so au + Bv € S*.

2. 8t is closed. Suppose {u,} C S*, lim, ,o u, = u € H. Then (u,v) =
(limy, 0 Up, v) = limy, 00 (Un,v) =0 for allv € S = u € S*. Q.E.D.

1.6.2 Orthonormal bases for finite-dimensional inner
product spaces

Let H be an n-dimensional inner product space, (say H,). A vector u € Hisa
unit vector if ||u|| = 1. The elements of a finite subset {uy,---,ux} C H are
mutually orthogonal if u; L u; for i # j. The finite subset {u, -+, ux} C
H is orthonormal (ON) if w; L u; for ¢ # j, and ||u;|| = 1. Orthonormal
bases for H are especially convenient because the expansion coefficients of any
vector in terms of the basis can be calculated easily from the inner product.

Theorem 41 Let {uy,---,u,} be an ON basis for H. If u € H then
U = QU1 + QoUg + - - - + Qg

where a; = (u,u;), 1 =1,---,n.

PROOF: (u,u;) = (1u1 + oo + - - - + i, u;) = oq. Q.E.D.

is an ON basis. The set u; = (1,0,0),us = (1,1, = (1,1,1) is a basis,
but not ON. The set vy = (1,0,0),ve = (0,2,0),v3 = (0,0, 3) is an orthogonal
basis, but not ON.

The following are very familiar results from geometry, where the inner
product is the dot product, but apply generally:

Corollary 11 For u,v € H:
o (u,v) = (aquitaouot- - +aptn, Bru+Lato+ -+ Bptn) = S0 (u, u;)(ug, v)
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n

o [lull* = X5 (v, w)l”

Parseval’s equality.
Lemma 34 Ifu L v then ||u+ v||* = ||u||* + ||v||* Pythagorean Theorem

Lemma 35 Ifu,v belong to the real inner product space H then ||u+v||? =
l|lu||? + ||v]|? + 2(u, v). Law of Cosines.

Does every n-dimensional inner product space have an ON basis? Yes!
Recall that [ui,usg, -, uy] is the subspace of H spanned by all linear
compinations of the vectors uy, us, - - -, Up,.

Theorem 42 (Gram-Schmidt) let {uy, ug, -, u,} be an (ordered) basis for
the inner product space H. There exists an ON basis {e1,eq,---,e,} for H
such that

[u17u27"'7um] = [615627"'76777,]

for each m =1,2,--- n.

PROOF: Define e; by e; = u1/||u;|| This implies ||e;|| = 1 and [u;] = [e1].
Now set fo = us — ae; # ©. We determine the constant a by requiring
that (f2,e1) = 0 But (fs,e1) = (u2,e1) — @ so o = (ug, e1). Now define e
by ex = fo/||f2||. At this point we have (e;,e;) = d;; for 1 < ¢,j < 2 and
[Ul, ’U,Q] = [61, 62].

We proceed by induction. Assume we have constructed an ON set {e1,-- -, en}
such that [e1,---,ex] = [ug,---,ug] for k =1,2,--- m. Set fri1 = Umy1 —
a1e1 —Qgey —- - - — ey, # 0. Determine the constants a; by the requirement

(fma1,€i) = 0= (Umy1,€) — i, 1 < i < m. Set ey1 = fne1/||fma1l|- Then
{e1, -, ems1} is ON. Q.E.D.

Let W be a subspace of H and let {e1, ez, -, e, } be an ON basis for W.
let u € H. We say that the vector v’ = 31", (u,e;)e; € W is the projection
of u on W.

Theorem 43 If u € H there exist unique vectors ' € W, u" € W+ such
that v = v’ + u".
PROOQOF:

1. Existence: Let {e1, e, -, e, } be an ON basis for W, set u' = Y 7" | (u, €;)e; €
W and v” = u —u'. Now (u”,€;) = (u,€;) — (u,e;) =0,1 <1< m,so0
(u",v) =0 for all v € W. Thus u" € W+.
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2. Uniqueness: Suppose u = u' +u" = v” +v" where v/,v' € W, u",v" €
WE Then o/ —v' =v" —u" e WNWH = (v —v',u' =) =0 =
[|[u' — '[P = u' =, u" =2". QE.D.

Corollary 12 Bessel’s Inequality. Let {e1,---,em} be an ON set in H. if
u € H then ||[ul|? > 7, [(u, e)|?.

PROOF: Set W = [e;, -+, en]. Then u = v’ + u" where v’ € W, u" € W+,
and v’ = Y7, (u, €;)e;. Therefore |[ul|? = (v +u”, v +u") = [|[u/||*+||u"|]* >
[u'l]? = (u',u') + 32 |(u, e) . QE.D.

Note that this inequality holds even if m is infinite.

The projection of u € ‘H onto the subspace VW has invariant meaning, i.e.,
it is basis independent. Also, it solves an important minimization problem:
u' is the vector in W that is closest to wu.

Theorem 44 min,ey ||u — v|| = ||u — ¥'|| and the minimum is achieved if
and only if v =u'.

PROOF: let v € W and let {e;,es,-+-,e,} be an ON basis for W. Then

v =" e for o = (v,e;) and ||[u —v|| = ||[u — 7, wel]? = (v —
Sy e, u— 3 aies) = |[ul [P =30 aqu, ) — ) (e, u) + 00 ol =
lu — X7 (u,e)e] |2+ XM |(u, €) — o> > ||u — «||?. Equality is obtained

if and only if o; = (u, ¢;), for 1 < i < m. Q.E.D.

1.6.3 Orthonormal systems in an infinite-dimensional
separable Hilbert space

Let H be a separable Hilbert space. (We have in mind spaces such as £ and
L?0,27].)

The idea of an orthogonal projection extends to infinite-dimensional in-
ner product spaces, but here there is a problem. If the infinite-dimensional
subspace W of H isn’t closed, the concept may not make sense.

For example, let H = ¢* and let W be the subspace elements of the
form (---,a_1, g, a1, - - ) such that a; =0 for s =1,0,—1,—2,-- - and there
are a finite number of nonzero components a; for 7 > 2. Choose u =
(---, 8.1, Bo, B1,---) such that 8; =0 for i =0,—1,—2,--- and g, = 1/n for
n=1,2,---. Then u € 2 but the projection of u on W is undefined. If W
is closed, however, i.e., if every Cauchy sequence {u,} in W converges to an
element of W, the problem disappears.
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Theorem 45 Let W be a closed subspace of the inner product space H and
let we H. Set d = infyewl|lu —v||. Then there exists a unique 4 € W such
that ||lu — @|| = d, (u is called the projection of u on W.) Furthermore
u—1u LW and this characterizes .

PROOQF: Clearly there exists a sequence {v,} € W such that ||u — v,|| = d,
with lim,,_,« d, = d. We will show that {v,} is Cauchy. let v # O be a vector
in Wand « € C. Then d* < |ju — (v, + av)|[* = ||[u — v,|[* — a(v,u — v,) —
a(u — vy, v) + |a|?||v||?. The right-hand side of this expression is a minimum
if @ = (u — vy, v)/||v||*>. Choosing this value we find d? < ||u — v,||* — [(u —
vn, V) [P/ [[0l[* = df, = [(u—vn, 0)[/[[v][*. Thus, [(w—vn,0)[* < [[v|[*(d}, — d?)
for all nonzero v € W = (v, — v, 0)| < (0 — u,v)| + [(u — vy, v)| <
||vH(\/d% —d?+ \/d?n —d?) — 0 as n,m — oco. Now set v = v, — v,. Then

||vm — vn | < \/d% —d?+ \/dfn —d? — 0 as n,m — oco. Thus {v,} is Cauchy
in W

Since W is closed, there exists @ € W such that lim,,_,,, v, = u. Also,
llu—a|| = ||u— limy_yoo vy || = limy, 00 ||u — vy|| = limy, 00 dy = d. Further-
more, for any v € W, (u — 4,v) = limy, ,00(u — vy, v) =0 = u — u L W.

Conversely, if u—% 1. Wand v € W then |[u—v||> = ||(u—u)+(2—v)||*> =
llu — a||> + ||& — v||* = d*® + ||& — v||>. Therefore ||u — v||?> > d? and = d? if
and only if © = v. Thus u is unique. Q.E.D.

Corollary 13 Let W be a closed subspace of the Hilbert space H and let
u € H. Then there exist unique vectors u € W, v € W+, such that v = u+v.
We write H =W @ W+.

Corollary 14 A subspace M C H is dense in H if and only if u L M for
u € H implies u = ©.

PROOF: M dense in H => M = H. Suppose u L. M. Then there exists
a sequence {u,} in M such that lim, ,,, u, = v and (u,u,) = 0 for all n.
Thus (u,u) = limy, 0 (u, uy) =0 = u = 6.

Conversely, suppose v 1. M = u = 0. If M isn’t dense in H then
M # H = there is a u € H such that u # M. Therefore there exists a
% € M such that v = u — 4 # © belongs to M+ = v L M. Impossible!
Q.E.D.

Now we are ready to study ON systems on an infinite-dimensional (but
separable) Hilbert space H If {v, } is a sequence in #, we say that 300, v, =
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v € H if the partial sums >F_ v, = u; form a Cauchy sequence and
limg_,, ux = v. This is called convergence in the mean or convergence
in the norm, as distinguished from poitwise convergence of functions. (For
Hilbert spaces of functions, such as L?[0, 27| we need to distinguish this mean
convergence from pointwise or uniform convergence.

The following results are just slight extentions of results that we have
proved for ON sets in finite-dimensional inner-product spaces. The sequence
Uy, Ug, -+ € H is orthonormal (ON) if (u;,u;) = 6;;. (Note that an ON
sequence need not be a basis for H.) Given u € ‘H, the numbers a; = (u, u;)
are the Fourier coefficients of u with respect to this sequence.

Lemma 36 u = )", a,u, = a, = (4, uy,).

Given a fixed ON system {u,}, a positive integer N and u € H the
projection theorem tells us that we can minimize the “error” |lu—Y"_, a,u,||
of approximating u by choosing «,, = (u, uy), i.e., as the Fourier coefficients.
Moreover,

Corollary 15 XN |(u, uy)|? < ||ul|? for any N.
Corollary 16 X2, |(u, u,)|? < ||u||?, Bessel’s inequality.

Theorem 46 Given the ON system {u,} € H, then > 2%, Bru, converges in
the norm if and only if Y21 |8.]* < oc.

PROOF: Let vy, = YF_, Buun. X2, Bau, converges if and only if {v;} is
Cauchy in H. For k > ¢,

k k
o = vl = | 32 Bauall*= 3 [Bal” (1.7)

Set t;, = >F_ |8a|?. Then (1.7)== {v;} is Cauchy in A if and only if {3}
is Cauchy, if and only if >, |3,]* < co. Q.E.D.

Definition 39 A subset K of H is complete if for every u € H and € > 0
there are elements uy,ug,---,uy € K and aq,---,ay € C such that ||u —
SN anug|| <€, ie., if the subspace cal K formed by taking all finite linear
combinations of elements of IC is dense in H.
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Theorem 47 The following are equivalent for any ON sequence {u,} in H.
1. {u,} is complete ({u,} is an ON basis for H.)

2. Bvery uw € H can be written uniquely in the form u = > 07, o,
= (U, Up).

3. For every u € H, ||ul|* = 22, |(u, un)[>. Parseval’s equality

4. Ifu L {u,} then u = 0.

PROOF:

1. .= 2. {u,} complete = given v € H and € > 0 there is an

integer N and constants {a,} such that |[ju — ¥, anu,|| < € =
llu — 3F_ auy|| < € for all k > N. Clearly X°°, (u, up)u, € H since

%y un)? < JJul[? < oo. Therefore u = 3% (u, up)uy. Unique-

ness obvious.

2. 2= 3. Suppose u = Y22, aply, &, = (u,u,). Therefore, ||u —

S anun|)? = |[ul? = 2k [(u, u,)? — 0 as k — co. Hence ||ul|> =

ot | (u, ug) .
3. 3.= 4. Suppose u L {u,}. Then ||u|]? =3, [(u,u,)|?* = 0sou = O.

4. 4= 1. Let M be the dense subspace of H formed from all finite linear

combinations of uy, ug, - --. Then given v € H and € > 0 there exists a
>N anu, € M such that [[v — SN a,u,|| < e Q.E.D.

1.7 Linear operators and matrices, Least squares
approximations

Let V, W be vector spaces over F' (either the real or the complex field).

Definition 40 A linear transformation (or linear operator) from V to W
is a function T : V — W, defined for all v € V that satisfies T(au + Bv) =
aTu+ Tv for all u,v € V, o, 8 € W. Here, the set R(T) ={Tu:u €V}
15 called the range of T.
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Lemma 37 R(T) is a subspace of W.

PROOF: Let w = Tu,z = Tv € R(T) and let o, 8 € F. Then aw + Bz =
T(au+ fv) € R(T). Q.E.D.

If V' is m-dimensional with basis vy, - - -, v, and W is n-dimensional with
basis wy, - - -, w, then T is completely determined by its matrix representation
T = (T};) with respect to these two bases:

n
Tvk:ZTjkwj, ,k:1,2,---,m.
7j=1

Ifv eV and v =73} ovi then the action Tv = w is given by

n

Ty = T(z akvk) = z osz'Uk = Z Z(Tjkak)wj = Zﬁj’w]' =w
k=1 k=1 k=1

=1 =1

Thus the coefficients 3; of w are given by 8; = >0 Tjro, j =1,---,n. In
matrix notation, one writes this as

Ty - Ty o%} b1
Tnl e Tnm Qm Bn
or
Ta=b.

The matrix T' = (7)) has n rows and m columns, i.e., it is n x m, whereas
the vector a = (o) is m x 1 and the vector b = (5;) isn x 1. If V and W
are Hilbert spaces with ON bases, we shall sometimes represent operators T
by matrices with an infinite number of rows and columns.

Let V, W, X be vector spaces over F', and T, U be linear operators T :
V - WU : W — X. The product UT of these two operators is the
composition U : V — X defined by UTwv = U(Tw) for allv € V.

Suppose V' is m-dimensional with basis vy, --,v,,, W is n-dimensional
with basis wy, - - -, w, and X is p-dimensional with basis z1,---,z,. Then T
has matrix representation 7" = (7}), U has matrix representation U = (Uy;),

p
ij:ZUfij aj:1’27'”7n7
=1
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and Y = UT has matrix representation ¥ = (V) given by

p
YIU]C:UTUIC:ZY'UC:EZ’ k:]-a?a"'ama

=1

A straightforward computation gives Yy = 327 UpiTjx, £ = 1,---,p, k =

1,---,m. In matrix notation, one writes this as
Un - Un Ty oo T Yin -0 Yim
: L : R = : R ;
Up - Up Toi =+ Tom Yo o Yom
or
UT =Y.

Here, Uispxn,Tisn xmand Y is p x m.

Now let us return to our operator T : V — W and suppose that both V'
and W are complex inner product spaces, with inner products (-, )y, (-, )w,
respectively. Then T induces a linear operator T* : W — V' and defined by

(Tv,w)w = (v, T"w)y, veV,weW.

To show that T* exists, we will compute its matrix 7*. Suppose that
V1, -, U, 1s an ON basis for V and wy, - - -, w, is an ON basis for W. Then
we have have

Tit = (Tog, wj)w = (vp, T*w;)y = T*;, k=1,---,m, j=1,---,n.

Thus the operator T*, (the adjoint operator to T) has the adjoint matrix
to T: Ty; = Tjr. In matrix notation this is written 7* = T* where the
stands for the matrix transpose (interchange of rows and columns). For a
real inner product space the complex conjugate is dropped and the adjoint
matrix is just the transpose.

There are some special operators and matrices that we will meet often
in this course. Suppose that vy, ---,v,, is an ON basis for V. The identity
operator I : V — V is defined by Iv = v for all v € V. The matrix of I
is I = (6;,) where §;; =1 and d;, = 01if j # h, 1 < j,h < m. The zero
operator Z : V — V is defined by Zv = © for all v € V. The n x n matrix
of Z has all matrix elemnents 0. An operator U : V — V that preserves
the inner product, (Uv,Uu) = (v,u) for all u,v € V is called unitary.
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The matrix U of a unitary operator is characterized by the matrix equation
UU* = I. If V is a real inner product space, the operators O : V — V
that preserve the inner product, (Ov, Ou) = (v, u) for all u,v € V are called
orthogonal. The matrix O of an orthogonal operator is characterized by
the matrix equation OO = I.

1.7.1 Bounded operators on Hilbert spaces

In this section we present a few concepts and results from functional analysis
that are needed for the study of wavelets.

An operator T : H — K of the Hilbert space H to the Hilbert Space IC
is said to be bounded if it maps the unit ball ||u|| < 1 to a bounded set
in K. This means that there is a finite positive number N such that

||Tullx < N whenever ||u||ly < 1.
The norm ||T|| of a bounded operator is its least bound:

IT[[ = sup [[Tullx= sup [|Tullk. (1.8)

[[ull2<1 [[ull2=1
Lemma 38 Let T : H — K be a bounded operator.
1. ||Tullx < ||T| - ||ul|l for all u € H.

2. If S: L — H is a bounded operator from the Hilbert space L to H, then
TS : L — K is a bounded operator with ||TS|| < ||T||-||S]|.

PROOQF:

1. The result is obvious for u = . If u is nonzero, then v = |[u||3'u
has norm 1. Thus ||Tv||x < ||T||. The result follows from multiplying
both sides of the inequality by ||u||3.

2. From part 1, [[TSwl[x = |[T(Sw)|[x < ||T|[-|[Sw||s < [[T][-[|S]]-[w]]c.
Hence ||TS|| < [|T|| - [[S]].

Q.E.D.

A special bounded operator is the bounded linear functional f : H —
C, where C is the one-dimensional vector space of complex numbers (with
the absolute value
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cdot| as the norm). Thus f(u) is a complex number for each u € H and
f(au + pv) = af(u) + pf(v) for all scalars «, § and u,v € H The norm of a
bounded linear functional is defined in the usual way:

If]] = sup [|f(u). (1.9)

For fixed v € calH the inner product f(u) = (u,v), where (-,-) is an import
example of a bounded linear functional. The linearity is obvious and the
functional is bounded since |f(u)| = [(u,v)| < |u|| - [|v]|. Indeed it is easy
to show that ||f|| = ||v]|. A very useful fact is that all bounded linear
functionals on Hilbert spaces can be represented as inner products. This
important result, the Riesz representation theorem, relies on the fact that
a Hilbert space is complete. It is an elegant application of the projection
theorem.

Theorem 48 (Riesz representation theorem) Let £ be a bounded linear fun-
tional on the Hilbert space H. Then there is a vector v € H such that
f(u) = (u,v) for allu € H.

PROOQF:

o Let N = {w € H : f(w) = 0} be the null space of f. Then N is a
closed linear subspace of H. Indeed if wy, w, € N and «, 8 € C we have
f(aw; + Bws) = af(wy) + Bf(wy) = 6 , so aw; + Bwy € N. If {w,} is
a Cauchy sequence of vectors in N, i.e., f(w,) = 0, with w, > w € H
as n — oo then

[f(w)] = [f(w) — f(wn)| = [f(w — wa)| < [[f]| - [ = wal[ =0
as n — oco. Thus f(w) = 0 and w € N, so N is closed.

o If f is the zero functional, then the theorem holds with v = 6, the
zero vector. If F' is not zero, then there is a vector ug € H such that
f(up) = 1. By the projection theorem we can decompose uq uniquely
in the form uy = vy + wy where wy € calN and vy L N. Then

1 = f£(uo) = £(vo) + £(wo) = £(vy).

e Every u € H can be expressed uniquely in the form u = f(u)vy + w for
w € N. Indeed f(u—f(u)vg) = f(u) —f(u)f(vg) = 0so u—f(u)vg € N.

80



e Let v = ||vg]| 2vp. Then v 1. N and
(u,v) = (f(u)vy + w,v) = f(u)(vy,v) = f(u)||v0||_2(v0,v0) = f(u).

Q.E.D.

We can define adjoints of bounded operators on general Hilbert spaces, in
analogy with our constuction of adjoints of operators on finite-dimensional
inner product spaces. We return to our bounded operator T : H — K.
For any v € K we define the linear functional f,(u) = (Tu,v)x on H. The
functional is bounded because for ||u||z; = 1 we have

£ (u)| = (T, v)ic| < |[Tullx - [[vllc < [T - [[v]]x-
By theorem 48 there is a unique vector v* € H such that
fv(u) = (TU,, U)/C = (U'a U*)'Ha

for all v € H. We write this element as v* = T*v. Thus T induces an
operator T* : K — H and defined uniquely by

(Tu,v) = (u, T*0), veH,weK.
Lemma 39 1. T* is a linear operator from K to H.

2. T* is a bounded operator.
8. ||T*|[> = ||T|]* = ||TT*|| = ||T*T]|.
PROOF:
1. Let v € K and a € C. Then
(u, T*av)y = (Tu, av)x = @(Tu,v)x = a@(u, T v)y
so T*(aw) = aT*v. Now let vy, v € K. Then
(u, T*[v14v9))y = (Tu, [v1+v—-2])x = (Tu, v1)c+(Tu, vo)x = (v, TV, T vq)y

so T* (v + v9) = T*v; + T*vs.
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2. Set u = T*v in the defining equation (Tu,v)x = (u, T*v)%. Then
1T 0[5, = (T*, T*0)y = (TT v, v) < [[TT][c|[vllxc < [ITI}[T 0] l2]v]]x.

Canceling the common factor ||T*v||y from the far left and far right-
hand sides of these inequalities, we obtain

1T [ |3 < [T - o]l
so T* is bounded.

3. From the last inequality of the proof of 2 we have ||T*|| < ||T'||. How-
ever, if we set v = Tu in the defining equation (Tu,v)x = (u, T*v)3,
then we obtain an analogous inequality

[ Tullc < [[T*] - [|ulfs-

This implies ||T|| < ||bfT*||. Thus ||T|| = ||bfT*||- From the proof of
part 2 we have
1T 0[5, = (TT*v, v)x. (1.10)

Applying the Schwarz inequalty to the right-hand side of this identity
we have
IT*0| [ < [ITT|[xv][x < [[TT(] - [v]lk,

so || T*||> < ||TT*||. But from lemma 38 we have ||TT*|| < ||T||-||T*,
SO
IT[]* < [JTT| < ||| - ||TIf = [T

An analogous proof, switching the roles of u and v, yields

T[> < [|T*T[] < [T - | T[] = || T[]

Q.E.D.

1.7.2 Least squares approximations

Many applications of mathematics to statistics, image processing, nemeri-
cal analysis, global positioning systems, etc., reduce ultimately to solving a
system of equations of the form T'a = b or

Ty - Ty a1 I

: (1.11)

Tnl Tnm (6779 671
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Here b = {51, - -, Bn} are n measured quantities, the n x m matrix T" = (T}
is known, and we have to compute the m quantities a = {a4, - -, @, }. Since
b is measured experimentally, there may be errors in these quantities. This
will induce errors in the calculated vector a. Indeed for some measured values
of b there may be no solution a.

EXAMPLE: Consider the 3 x 2 system

3 1 0

11 ( “ ) = 2

1 2)\* Bs
If B3 = 5 then this system has the unique solution a; = —1, ay = 3. However,
if B3 = 5+ € for € small but nonzero, then there is no solution!

We want to guarantee an (approximate) solution of (1.11) for all vectors b
and matrices T. We adopt a least squares approach. let’s embed our problem
into the inner product spaces V' and W above. That is T is the matrix of
the operator T : V' — W, b is the component vector of a given w € W
(with respect to the {w;} basis), and a is the component vector of v € V
(with respect to the {vy} basis), which is to be computed. Now the original
equation T'a = b becomes Tv = w.

Let us try to find an approximate solution v of the equation Tv = w such
that the norm of the error ||w — Tv||w is minimized. If the orginal problem
has an exact solution then the error will be zero; otherwise we will find a
solution vy with minimum (least squares) error. The square of the error will
be
¢ = min||w — Tv|ff, = |jw — Toolf

veV
This may not determine vy uniquely, but it will uniquely determine b fTvy.

We can easily solve this problem via the projection theorem. recall that
the range of T, R(T) = {Tu : u € V} is a subspace of W. We need to find
the point on R(T) that is closest in norm to w. By the projection theorem,
that point is just the projection of w on R(T), i.e., the point Tvy € R(T)
such that w — Tvy L R(T). This means that

(w — Ty, Tv)w =0
for all v € V. Now, using the adjoint operator, we have

(w — Ty, Tv)w = (T*[w — Twe),v)y = (T*w — T*Tvg,v)y =0
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for all v € V. This is possible if and only if
T*Tvy = T w.
In matrix notation, our equation for the least squares solution ay is
T*Tay = T"b. (1.12)

The original system was rectangular; it involved m equations for n unknowns.
Here however, the n x n matrix T*T is square and the are n equations for

the n unknowns ay = {ay,---, o, }. If the matrix T is real, then equations
(1.12) become T"Tay = T™b.
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Chapter 2

Contraction Mappings and
Fixed Points

Let V be a normed linear space with norm || - ||. Let X be a subset of this
space and T a mapping 7' : X — X. (We are not requiring that X be a
subspace or the T be a linear mapping, only that 7’ map X into X.) Many
important applications of functional analysis are concerned with showing the
existence of (and finding) fized points of such mappings, i.e., points zq € X
such that T'zy = zy. A standard method for finding such points in practice
is to start with a guess o € X and then to compute recursively the iterates
vy = Tz,zy = T’z = T(Tz),x3 = T3z = T(T?z)---,x, = T"x,---. If
lim, ,o T™x = T, Where the convergence is in the norm, then it is easy to
show that Tz, = T+ and x is a fixed point of 7. This procedure will be an
important tool for us, particularly in the study of wavelets and of fractals.
However, in general the method won’t work; there is no reason in general
that the sequence of iterates will converge. This chapter is devoted to the
study of a family of mappings (the contraction mappings) where convergence
of the iterates is guaranteed. Most of the results are meant for use later in
the course, but we will give some practical examples.

Definition 41 T is called a contraction mapping on X if there is a constant
¢ such that 0 < e <1 and ||Tx — Ty|| < ||z —y|| for all z,y € X.

Example 6 let V = X be the real line, with the absolute value as norm, and
let T be the mapping Tx = cx + b, where x € R and b, c are real constants
with ¢ > 0. Now

[Tz —Ty| = |(cx +b) — (cy +b)| = |e(z — y)| = clz —y]
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for x,y real, so T is a contraction mapping provided 0 < ¢ < 1. Since the
form of T is so simple, we can find the fized points directly. Here Tyy = 1o
means cyo+b = yo or yo = IL_C if c#£ 1. If c =1 tnen there is no fized point
unless b = 0, in which case every point x € R s fized.

If T is a contraction mapping (0 < ¢ < 1) and xq is an initial guess for
the fixed point yo = l%c then the error is |xo — vyo|. Then after one iteration

the error is
|21 — yo| = |Txo — yo| = |Txo — Tyo| = c|zo — Yo| < |20 — Yo,

so the error has decreased by the factor ¢ < 1. Similarly at the nth step
the error is |z, — yo| = |xo — yo|- It follows that lim, . T, = yo and the
iterates converge to the fixed point, now matter what was the initial guess.
We say that the fixed point is attractive in this case. On the other hand, if
c > 1 then the equality |z, — yo| = c"|xo — yo| shows that the iterates diverge
and |x,| — oo, unless vg = yo. However, even in the latter case where one
has started with the fized point, the slightest error (say due to roundoff) will
cause |z,| to diverge to oo. We say that the fized point is repelling in this
case.

Example 7 Again let V be the real line with the absolute value as norm. Let
Tz =T(z)= %m—i—x:*. Again this mapping is simpole enoughthat we can find
the fized points directly. They are Too = 0,+3. Now T'(z) = 3 + 32 and, by
the mean value theorem of calculus, if v <y then T'(z) =T (y)+T"(Z)(x —y)
where T lies in the the interval (z,y). Let X = (—3,3). Then |T'(Z)| < 12 =
c<1forze X, and|Tx—Ty| < clx—y| forx,y € X. Further |Tz| < c|z|
soTx € X forx € X, and xo, = 0 1s an attractive fixed point. That is, if
xg € X then all z, € X and ©, = Too = 0 as n — oco. A similar analysis

shows that j:% are repelling fized points.

Theorem 49 (Banach contraction principle) Let X be a closed subset of
the Banach space V' and suppose that T : X — X is a contractive mapping
with constant c. Then T has a unique fized point xo, € X. If x € X then
Too = limy, oo T"x and

cn

17" = zool| < €"[|lz — oo < 5

|| Tx — x|

—c
PROOF: Let z € X and set 2,41 = Tz, = T""'2, n=10,1,---. Now

|Zn41 = znl| = [[T2n = Tona || < cllon = 2pal| <0 < Pflzn — @0
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From the triangle inequality we have

||xn+m - 3371“ = H(xn-km - xn+m—1) + (xn-f—m—l - xn+m—2) paliie (mn-f—l - xn)”

m—1 m—1 )

<5 tnsgis = tnagll € 3 oy — o]
=0 =0
Cn
< I
1 _c||$1 ol

or

T
1—-c¢
Thus given € > 0 one can chose an integer N, such that ||z, 4m — 2| < € for
n > N, and all m > 0. This means that the sequence {z,} in X is Cauchy
in the norm. Since V' is a Banach space, i.e., is complete in the norm, and
X is closed, there is a vector x,, € X NV such that lim,_,, £, = Tso.. Now
|Txoo — Txy|| < €||Too — Zn_1]|. Since z, = z it follows that Tz, — Tz,
asn — o0. But Tz, = 2,11 = Too S0 Txoo — T, and x4 is a fixed point. if
we let m — oo on the left-hand side of (2.1) we get the estimate

||Znsm — 2| < [|z1 = o (2.1)

Cn

1200 = zall < T llz1 = 2oll-

—C

The fixed point is unique, because if {z,}, {z] } are sequences converging
to fixed points z, 2., respectively, then

|Too = T || = [[TTo0 — Ty || < cfTo0 — |

with 0 < ¢ < 1. This is possible only if zo, = 2.
Finally we have

T2 — 20| = [|T(T" " %) = Tl < ¢l |[T" 2 — zo0|

<< Ax = ool

Q.E.D.
Note that though we have stated and proved the contraction principle for
Banach spaces, the same proof carries over for complete metric spaces.
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Corollary 17 Let X be a closed subset of the complete metric space M and
suppose that T : X — X is a contractive mapping with constant c. (That is,

p(Tu, Tv) < cp(u,v), 0<ec<1

for all u,v € X, where p(-,-) is the metric on M.) Then T has a unique
fized point ue, € X. If u € X then uy = lim,_,oo T™u and

n

PIT M, ) < plu use) < -

p(Tu,u).
Here,
TW =Ty, Ty =T7(TM™y), n=1,2,--

Corollary 18 (Collage theorem) Let X be a closed subset of the complete
metric space M and T : X — X a contractive mapping with constant ¢ and
unique fized point u,, € X. Then for any u € X,

1

PROOQF': By the triangle inequality,
p(u, too) < p(u, Tu) + p(T'u, uss) = p(u, Tu) + p(Tu, Tuoo)

< plu, Tu) + cplu, us),
so (1 —¢)p(u, us) < p(u, Tu). Q.E.D.
This simple consequence of the Banach contraction principle has imortant

applications in fractal image compression. We shall explain this (and the
term “collage”) later.

2.1 Newton’s method and the contraction prin-
ciple

Newton’s method for computing the zeros of functions is a good example of
the contraction principle. Let f(z) be a real-valued function on the real line
that has two continuous derivatives. We are looking for a root of f, i.e., a
point & such that f(Z) = 0. In Newton’s method, which is geometrical, we
consider the curve y = f(x). Then the curve crosses the z-axis at the point
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(%, f(Z). Let zy be an initial guess for the root. To improve on the guess
we construct the tangent line to the curve y = f(z) that passes through the
point (xg, f(zo)) on the curve. This tangent line satisfies the equation

y — f(@0) = f'(z0)(z — 20).
The tangent line crosses the z-axis at the point

(o)
f!(@o)’
and we take x; as our improved estimate of the root . Now we repeat this

procedure with x; to get an improved estimate x5, and so on. Thus we have
a sequence {x,} such that

1 =29 —

T =Zp— T, n=20,1,---
n+1 n fl (.’,Un)
We need to give conditions that will guarantee that the sequence will converge
to a root of f(x), and will provide information about the rate of convergence.
We cast this as a fixed point problem and apply the Banach contraction
principle. Choose the Banach space to be the real numbers with the absolute

value as norm, and define the operator 17" by

f(z)
Te=T(z)==x )
We will not yet fix the domain X, but it is clear that we must require
f'(z) # 0 for all z € X. Then & will be a fixed point of T, (TZ = ) if
and only if f(Z) = 0. To get the growth rate for the iteration we compute
the derivative of T'(z):
ey = £@"@)
[ (@)]?
Since T'(Z) = 0, in the neighborhood of the root we will be able to select a
decay constant ¢ < 1, so the root is an attractive fixed point. In particular
let X =[2 — 1,2+ r] where |[T'(z)| <c<1forallz e X. (If f/(2)# 0 we
can always find an 7 such that the inequality holds for the given constant c.)
Then if u,v € X, the mean value theorem gives T'(u) — T'(v) = T"(a)(u — v)
for some 4 € X between v and v. Thus |T'(u) — T'(v)| < clu — v| for all
u,v € X. In particular

3

|zp — 2| <cltp 1 — 2| <--- < Mrg— 2| < |z — 21

1—-c
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Thus if y € X then so are all of the z,, € X and z,, — & as n — oo.

The convergence of the Newton algorithm is actually much faster than
indicated from the contraction principle. This is due to the fact that T'(z) =
0. We can, indeed, prove quadratic convergence. Let C' = sup,¢ X|%| and
assume that C'is finite. By the mean value theorem there is a point z,, € X,

between z and z,,, such that

f(@n) = f(2n) — f(2) = f'(@0) (20 — 2),

so0 T, — & = f(z,)/f'(Z,). Furthermore, the mean value theorem applied to
f'(x) yields a point Z,, between z,, and %, such that

fl(xn) - fl(jn) - f”(j:n)(xn - jn)

Then
finss = 81 = [(Bnrs = 20) + (30 = )] = | 22) = T80
— S (o) = @) = e () = 7))
~ (o0 = &) e = D)502)] < Cla — 3

Thus |T,41 — 2| < Clx, — &[> and the convergence is quadratic. This means
that the number of digits of accuracy in our approximation roughly doubles
with each iteration.

2.2 Contractions and iterated function sys-
tems

Contraction mappings are very useful tools, but their dynamics appears to
be boring. Starting with any point z in the basin of contraction X, repeated
iteration with the contraction mapping 7" inevitably leads to the unique limit
point z, € X. If we were to consider points = outside of X we could find all
kinds of interesting dynamical behavior: periodic systems, chaotic systems
(sensitive dependence on initial conditions) etc. However, in this course we
shall not go that route. We shall stick with contractions but consider a
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system of contraction mappings where a rich dynamical behavior (with lots
of applications) emerges. The individual contractions can be very simple
(we shall usually restrict to linear affine transformations); the richness of the
approach emerges from forming systems of these simple maps.

Let V,, = R, be the space of real n-tuples v = (vy,---,v,) with inner
product (u,v) = >°7_; u,vy, the usual dot product. Let X be a closed subset
of V, and T = {11, - - - T,.} be a finite set of contraction mappings 7; : X — X.
Starting with any z € X we can apply the maps in 7 to z, in arbitrary orders
and including repetition, to obtain points of the form T; T;, - - - T; . We can
associate a word i1is - - -7 to each individual mapping of this form. Each
letter i, in a word is taken from the alphabet {1,2,---r}. The set of all
possible points T3, T, - - - T;, « as 4112 - - - 4 runs over all words in the alphabet
is the orbit O(x). What we are desribing is an iterated function system or
IF'S. Our main interest is in the structure of the orbits of the IFS.

The contraction mappings of an IFS can be arbitrary; in practice most
examples are linear affine transformations. A linear affine transformation
T:V, =V, is defined by Tv = Av + b where A is a real n X n matrix and
b is a real n-tuple. In components, (Tv); = >p_; Ajpvx + b, 7 =1,2,---,n.
Then [|[Tv — Tul| = ||A(v — u)|| < [|A]| - ||Jv — ul]|, so T is a contraction
mapping if the operator norm of A is < 1. Thus if ||A|| < 1 the fixed point
equation (I — A)z = b has a unique solution = = x, i.e., for fixed A there
is a unique solution z;, for every b. This means that the rank of the n x n
matrix I — A is n, so (I — A)™! exists and z = (I — A)~'b.

Among the linear affine transformations there are two classes that will be
of special interest to us. The first class consists of isometries. An isometry
Tv = Ov + b has the property that ||Tu — Tv|| = ||lu — v|| for all vectors
u,v € Vp, i.e., T is length preserving and ||Ov|| = ||v]|. Since

1
(uv) = 7([Ju+o[* = [fu—v[]*)

it follows that (Ou, Ov) = (u,v). Thus O preserves length and inner prod-
ucts. But the dot product (u,v) = u-v = ||u]| ||v|| cos@ where 6 is the
angle between the vectors v and v. Thus, isometries preserve both length
and angle. (Since isometries preseve length they are not contractions.) it
follows directly form the property that (Ou,Ov) = (u,v) for all u,v € V,
that the matrix elements of the matrix O are characterized by the equation
Y i1 OkjOxe = djp for j, £ =1,2,---,n, ie., O is an orthogonal matrix.

The second class of linear affine transformations of special interest in this
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course is the class of similitudes. A similitude Tv = Av + b has the property
that there is a fixed positive constant r such that ||Tu —Tv|| = r||u— v|| for
all u,v € V,,. It is easy to show that if 7" is a similitude then Tv = rOv + b,
where O is an orthogonal matrix. It follows that 7' is a similitude with
scaling r if and only if T = 7T where T is an isometry. (A similitude with
scaling factor » < 1 is a contraction.) Thus similitudes preserve angle and
the ratios of lengths. They are the similarity transformations of Euclidean
geometry, i.e., two geometrical objects are similar if and only if one object
can be mapped 1 — 1 onto the other by a similitude.

A general linear affine transformation 7' : V,, — V,, given by Tv = Av+b
is uniquely determined by its action on any given set of n + 1 points v; =
(vj1,+++,0jn), § =1,--+,n+ 1 such that the points don’t all lie on the same
hyperplane cyvy + -+ - + v, + 8 = 0, i.e., such that det £ # 0 where E is
the (n + 1) x (n + 1) matrix

vip o v, 1

Un+1,1 *°° VUntin 1

If we are given that Tv; = w; for j = 1,---,n + 1, then Av; + b = w;.
Defining the (n + 1) X n + 1 augmented matrix

(%)

and the (n +1) x n matrix W = (w;) where 1 <j<n+1,1<k <n, we
see that the conditions on A and b can be written in the form FA' = W so,
since F is nonsingular, A’ = E~1W.

In two dimensions, where most of our examples occur, an affine trans-
formation is uniquely determined by its action on 3 noncolinear points:
V1, Vg, U3 — W1, Wy, ws3. Thus T maps the triangle Avivovs onto the triangle
Awwews with vertex v; going to vertex w;, and 7" is uniquely determined
by that action. If 7" is a similitude in two dimensions then, it is almost
uniquely detrmined by its action on 2 distinct points v;,v9. Indeed suppose
Tv, = w1, Tvy = wy. Then for any v € V5 we must have Avivov ~ AwwoT.
There are just 2 possibilities for Tv. In one case T is orientation preserving
(det A > 0, i.e., obtained by translation, rotation, dilation alone) and in the
other case T is orientation reversing (det A < 0, i.e., involves a reflection).
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Example 8 The Cantor set. Here we choose X = [0,1] with the usual
FEuclidean metric, and r = 2. The first contraction mapping is Ti(t) = t/3
fort € [0,1]. Here the fized point is t; = 0 and the contraction factor is %
The second contraction mapping is To(t) = t/3 +2/3 for t € [0,1]. Now the
fized point is ty = 1 and the contraction factor is again % We start with the
set Ag = X = [0,1]. Note that T1Ag = [0, 3], T2 Ao = [3,1], so that the affine
transformation Ty maps the interval [0,1] to the interval [0, %], whereas T
maps the interval [0,1] to the interval [%, 1]. For any set A C X we define

the set TA by TA =TI AUT,A. Then

1 2
A =TA;=10,- -1
1 0 [0a3]U[3a ]a
1 21 27 8
Ay =TA; =[0,=]U[5,2]U[5, 5]U 5,1
2 1 [O’Q]U[9’3]U[3’9]U[9’ ]a

and so on. Note that we are, in effect, repeating the “throw out the middle
third” construction of the Cantor set C. Indeed it isn’t difficult to show that
C 1s the unique fized point of the contraction mapping T':

C=TC=TCUT,C

and that A, — C in the Hausdorff metric as n — oo. This expression
exhibits the self-similarity of C' under each of the contraction mappings T}
and 1.

Example 9 The Sierpinski gasket. Here we choose X = [0,1]* (i.e., X =
{(z,y) : 0 < z,y < 1}, with the usual Euclidean metric, and r = 3. With
v = (z,y), the contraction mappings are

1 1 1 11
Tw= (57, = Tw=(c2+=, =
1 11 1
T3’U = (§$+ Z, 53/ + Z\/g)

The contraction factor for each map is % and the fized points are (0,0), (1,0),
(%, % 3), respectively. Notice that these fized points lie on the vertices of an
equilateral triangle Ay. Starting with the set Ay, note that the equilateral tri-
angle T Aqg lies within Agy, has sides parallel to those of Ag, but with half the
length, and shares the verter (0,0). The same can be said of the equilateral
triangles Ty Ay and To Ao, except that the shared vertices are (1,0), (3,3V/3),
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respectively. Here, Ay can be decomposed into 4 congruent equilateral trian-
gles. It follows that Ay = TAy = Ty Ay UTyA) UT3A, is the original figure
with the the middle triangle remowved. Iterating this map we get convergence
in the Hausdorff metric to a unique fized point A called the Sierpinski gasket
(see the figure on my web site). Then

A=TA=TAUT,AUT;A

Again this expression exhibits the self-similarity of A under each of the con-
traction mappings T;, 7 =1,2,3.

Example 10 Spleenwort fern. Here we take X = {(z,y): -3 <2z < 3,0 <
y < 10}, with the usual Euclidean metric, and r = 4. The contraction
mappings are

n(o) = (S (o) (1) e
n(s) - () () (on) e
n(n) = (65 ey (o)- (1) e

n(s) = (oo o) (3) o5

The fized point looks very much like the black spleenwort fern. (See the
image on my website.) This IFS needs some explanation. The fized point
of T1, (z,y) = (640/241,2400/241) ~ (2.6556,9.9585) is the tip of the fern.
T is a similitude that maps the entire fern to the part of the fern starting
at (0,1.6), i.e., the portion that omits the bottom leaves on the left and right
hand sides. Ty maps the fern onto the bottom right hand leaf, reversing
orientation. T3 maps the fern onto the bottom left hand leaf. The degenerate
affine transformation Ty maps the entire leaf onto the stem from (0,0) to
~ (0,1.5934) ~ (0,1.6). The fized point (0,0) of Ty is the base of the stem.
This example, produced by Barnsley in 1984, produced some excitement,
for it held out the promise that IFS could play an effective role in image com-
pression. The IFS in this example is completely determined by only 24 num-
bers. Yet when the algorithm is iterated it yields a fized point of great com-
plexity that is a realistic representation of the black spleenwort fern. (Even
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better in some sense because the fractal has self-simularity.) In contrast a
graphics file depicting a black spleenwork fern would be of the order of a
megabyte and would not display self-similarity at all resolutions. We shall
see that wavelets are a better general purpose tool for image compression
than are fractals. However, for certain special purposes fractal image com-
pression s astounding.

Now let us return to a general iterated function system 7 = {Ti,---T,}
acting on a closed subset X of V,,. Rather looking at the orbit of each point
x € X separately, we will start with a compact set A € K(X) and construct
the set T'A where

Our strategy will be as follows:

1. We will show that the metric space K(X) with the Hausdorff metric
dy is complete.

2. We will show that T'A is a compact set, i.e., TA € K(X). Thus we can
consider T as a mapping from K (X) into itself - T : K(X) — K(X).

3. We will then show that 7 is a contraction mapping on K(X), with
respect to the Hausdorff metric dy. Here the points in this metric
Space are compact sets.

4. We can then iterate the mapping 7" and investigate the behavior of the
iterate 7™ A as n — oo. By the contraction mapping principle 7" has a
fixed point /i, a unique nonempty compact set to which all the iterates
converge.

5. Since A is a fixed point of T" we have

TA=TAUT,AU---UT,A. (2.6)

6. The limit set A with the property (2.6) is called a fractal. Note that if
the contractions 7, are similitudes then (2.6) shows that each compo-
nent TyA of A is similar to A itself. This self-similarity is particularly
striking when the components T, A are mutually nonintersecting.

We begin our theoretical development by pointing out the following (easily
derived) relation between the Hausdorff metric and the distance between a
point and a set:
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Lemma 40 Let A,B € K(X). Fore >0 let
A= {z € X : dist(z, A) < €}.
Then dy(A, B) < € if and only if A C B and B C A..

Theorem 50 (Completeness of Hausdorff metric) If X is closed, the metric
space K(X) is complete.

PROOF: Let A, be a Cauchy sequence of nonempty compact sets in K (X).
We must show that there is a nonempty compact set A € K(X) such that
dy(An, A) — 0 as n — oo. In analogy with Fatou’s lemma of integration
theory, we define

A = Mg>1Uisp Ay = N1 D

e A is nonempty and compact: The closed sets D; D Dy D --- are
monotone decreasing. For anu € > 0 there is a postive integer N so
that dy(A;, A;) < e for i,57 > N. Thus A; C (An)e, for ¢ > N. Thus
A C Dy C (An)e and since Dy is bounded. It follows that D; is
compact for all # > N, ao A (the inersection of a decreasing sequence
of nonempty compact sets) is compact and nonempty.

e dy(ay, A) = 0 as n — oo: Since dy(An, A;) < € for i > N we have
not only A; C (Ax). but also Ay C (A4;)., so

A C(AQw)e C ((Ai)e)e = (A)ae-

If we can show that A; C (A)s then it will follow that dg (A4, 4;) < 2e.
If we choose a; € A; for fixed i, and j > i we have dy(A;, A;) < € so we
can find a; € A; such that ||a; —a;|| < €. Since all these points {a;} lie
in the bounded set (Ay). there must be a convergent subsequence a;,
such that a;, — a as k — oo. Then ||a; — a|| < e. Now a;, € D, for
all j > n, and since D, is closed we have a € D,, for all n, or a € A.
This means that dist(a;, A) < € for any a; € A;. Thus A; C A C Ay,
so dy(Aj, A) < 2efor j > N,and A; -+ A as j — oo.

Q.E.D.

Now consider again a general iterated function system 7 = {T3,---T,}
acting on a closed subset X of V,,. For any compact set A € K(X) we define
the map 7': K(X) — K(X) by
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In particular from the results of section 1.3.1 se see that T;A is a compact
set since Tj is a continuous function and then T'A is compact since it is a
finite union of compact sets.

Lemma 41 If Ay, -+, A, and By, ---, B, belong to K(X)

dH(A1 u---u Ar, Bl U---u Br) S max{dH(Al, Bl), e dH(Ar, Br)}

PROOF: Since A = A, U---UA, and B = B;U---U B, are compact, there
exists either an a € A such that dist(a, B) = dg(A, B) or a b € B such that
dist(b, A) = dy (A, B). Without loss of generality we can assume the former
is true. Then a = a; € A; for some j =1,---,7, and we have

dH(A, B) = dist(aj, B) = dist(aj, Bl U---u B,,«) < dist(aj, BJ)

< maX{diStaleAl (al, Bl), e 1diStar€Ar (ara BT)}
< max{dg(A1, B1),---dg(4A,, B,)}.

Q.E.D

Theorem 51 Let K(X) and T be defined as above where the Ty,---,T, are
contraction mappings on X with contraction constants cy, - - -, ¢, respectively.
Then T is a contraction mapping with respect to the Hausdorf metric on

K (X), with contraction constant ¢ = max{cy,---, ¢}, and there is a unique
compact set A (fized point) such that

A=TA=TAUTAU.--UTA.
For any B € K(X) we have the convergence estimates

Ck

—C

PROQOF': Once we demonstrate that 7" is a contraction mapping with con-
traction constant c¢, the convergence estimates will follow immediately from
the Banach contraction mapping theorem (theorem 49). Let A, B € K(X).
From the supremum property of the Hausdorff metric, given any a € A we
can find a b € B such that ||a — b|| < dy (A, B), hence

ITja = T5b]| < ¢jlla —bl| < ¢;du(A, B).
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This shows that sup,¢ 4 dist(Tja,T;B) < cjdg(A, B). A similar argument,
starting from a given b € B shows that sup,.p dist(7;b0, T;A) < ¢;du(B, A) =
deH(A, B) Thus

dH(EA; TJB) S C]dH(A, B)

Then from the preceding lemma we have

S max{dH(TlA, TlB), ey, dH(TTA, T,«B)}
< max{cidy(A,B),---,c,dy(A, B)}
= max{cy, -, tdu (A, B) = cdy(A, B).

Q.E.D.

Given a IFS T, we know that from any initial compact set the iterates
of the system will eventually converge to a unique target set. Now we look
at some of the details of that convergence and consider the effect of chosing
different initial sets. One way to proceed is to start with an initial set A such
that TA C A. (This was the case with our Cantor set and Sierpinski gasket
examples.) Then each of the iterates A; will contain the target set A and
the target will gradually emrge by subtraction of points.

Lemma 42 If T is a contraction of K(X) into itself and A € K(X) is
an initial set such that TA C A, then the fized point of T is the set A =
Nk>oT " A.

PROOF: A simple induction argument shows that T**1A C T*A for all
k > 0. Then by theorem 51 the sequence {T*A} is Cauchy with respect to
the Hausdorff metric and T*A — A, the uniqued fixed point as k& — oo.

Further from the proof of the Hausdorff completeness result (theorem 50)
with Ay = T*A we have

A = meIUjZijA = ﬂkonkA.

Q.E.D.

Of course, we can start with any nonempty compact set A and end up
with the unique fixed point A. However, the rate of convergence will be
affected by our initial choice. Note also that if y is a fixed point of one of
the contractions T}, i.e. Tjy = y, then y € A. Thus if v € A then it will
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remain in 7% A for all iterations. To strengthen this result, recall that starting
with any x € X we can apply the maps in 7 to z, in arbitrary orders and
including repetition, to obtain points of the form 7; T;, - - - T;, . We associate
a word w = 4119 - - - 1 to each such mapping. Each letter 7, in a word is taken
from the alphabet {1,2,---7}. The set of all possible points T;,T;, - - - T}, x
as 41ig - - - i, runs over all words in the alphabet is the orbit O(z). Now we
can state the further result

Theorem 52 For each word w = i1iy - - - 1) there is a unique fized point x,,
of the mapping T, = T;,T;, - - - T;,. Herex,, € A and the set of all fixed points
T, 08 W TUNS over all words, is dense in A. Further, if a € A, then O(a) is
dense in A.

PROOF: We carry out the proof in a series of simple steps:

e T, has a unique fixed point x,. Indeed is easy to show that a k-fold
product of contractions is a contraction, and if T" has contraction factor
¢ then T,, must have a contraction factor no greater than c*.

° I, Eval. Note that f9r any r € X we have T£ — Ty as k — o0o. Choose
z € A. Then T,; € A for all k and T,; — x,,. Since A is closed it follows
that z,, € A.

e The set B = :[xw}, where w ranges over all words, is dense in A. Note
that T*A = A for all k > 0, so

/i = TA = Uizl,...ﬂ«TiA

A = TQA = Ui’jzl,...,rTiszzi.
etc. Hence

v

A=TFA=Uj 4yoipe1, o d TOT? - T A

Thus for any a € A and any k > 0 we can always find a word wy of
length £ and an a; € A such that a = Ty, ak. Since Ac V,, is compact,
it is also bounded: there is an M > 0 such that ||z — y|| < M for
all z,y € A. Now, given € > 0 choose the integer N so large that
c¢NM < e. Then for any a € A we can find a word w of length N such
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that a = T)ya’ for some a' € A. Let z,, € A be the fixed point of T, so
Ty € B. Then

lla — x| = HTwa, — Tyzu|| < CNHaI — Ty|| <
and B is dense in A.

e If a € A, then O(a) is dense in A. Indeed, it is elementary that 1)
TO(a) C O(a), 2) Oa) C A and that B = O(a) is compact. By
continuity, 7B C B. Thus we can apply lemma 42 to obtain A=
Nk>1T*B C B. Hence B = A.

Q.E.D.

We see from this result that if we start out with an intial set with only
one point A = {a} where a € fvl, say that a is a fixed point for one of the T},
then all of the points in @(a) belong to A and O(a) = A.

Clearly, the IF'S process can be used for image compression of very special
images that are obvously the fixed points of such processes. How do we
recognise these fixed points? Given a general image, can we approximate it
by the fixed point of a some iterated function system? Can one do this on
the fly, by an algorithm, to obtain practical real-time image compression?
We shall obtain partial answers to these questions.

First of all, we will use the Hausdorff metric to decide when one set or
image is “close” to another. In practice one might wish to employ other
metrics, but that will not concern us at this point. Our fractal image com-
pression problem can initially be stated as follows: Given a compact set C'
and a tolerance € > 0, find an IFS 7 such that the fixed point Ap of T
approximates C' to within tolerance ¢, dgy(C, fvlT) < €. We can solve this
problem theoretically. Among the practical issues that arise are 1) how easy
is it to automate the solution, 2) how fast is it, and 3) how much compression
is achieved, i.e., how many paramters are needed to define the IFS.

The collage theorem (corollary 18) sheds some light on this problem. It
says that dg(C, /ulT) < ﬁd;{ (C,TC) where cr is the contraction constant of

T'. Thus if we can assure that cr is always bounded away from 1, say ¢ < %,

then if we choose 1" such that dy(C,TC) < § we will have dg(C, Ar) < e
and a solution to our problem. Thus we can focus on finding contractions 7’
such that TC ~ C. (Note: dyg(C,TC) is called the collage distance.)

The following result shows that we can’t expect miracles to occur using
this procedure, i.e., we can’t expect that dy(C, flT) will turn out to be much

less than dy (C,TC).
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Theorem 53 (Anti-collage theorem) Let X be a closed subset of the complete
metric space M and T : X — X a contractive mapping with constant ¢ and
unique fized point us € X. Then for any u € X,

1
oo > — aT :
pu, tio) > ——p(u, Tu)

PROOQF': By the triangle inequality,

< (U, o) + cp(too, 1) = (1 + €) p(Uoo, )

50 (14 ¢)p(u, us) > p(u, Tu). Q.E.D.
Thus for fractal image compression we have the estimate

1 . 1
< <
o dn(C.TO) < dy(C,Ar) < =

du(C,TC).

Now how do we choose an IFS T to make dy(C,TC) small? Here is a simple
approach that will work. The set T'C' in this construction is an example of a
“collage” of C'. It is the union of shrunken copies of C.

Theorem 54 Let C be a compact set m V., and let ¢ > 0. Then there is an
IFST ={T\,---,T,} such that dy(C, Ar) < e.

PROOF: let ¢ = €/2. Since C' is compact we can find a finite set of points
Co ={ec1,---,¢.} C C such that the balls

BE’(CJ):{UEVn:||u_CJ||<€I’ j:]_’-..’/r}

cover C:
CCB= BEI(Cl) U BGI(CQ) J---u BEI(CT).

Then we can find an R > 2¢ such that B C Bg(6) where 6 is the zero vector.
Define the IFS by

!

Tj“:ﬁ(

u—¢j) + ¢, j=1-,r
Note that 7} is a contraction, and a similitude, that shrinks the distance

between any point u and ¢; € C uniformly by the factor ¢ = < 1

€
2R 1
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Furthermore T'c; = ¢;. Now if u € C then u lies in one of the balls B.(c;),
so dist(u, TC) < €. Further, if v € TC then v = Tju for some j and some
ue C,so

6,

dist(v, C) < || Tju = ¢l = o

[lu =]

6I
< gpllull+lgll) <€

Thus dy (C,TC) < €, 50 dy(C, Ar) < 2-du(C,TC) < 3¢ < e. QED.

Our approach to generating the fixed point, i.e., set, of an IFS has been
deterministic. It is somewhat awkward in that for each iteration of the
contraction algorithm one must keep track of many points. There is an alter-
native probabilistic approach, Barnsley’s so-called “chaos game,” in which
one needs only to follow a single point in each iteration. Given an IFS
T ={T,---,T.} on the space X start with any vy € X. Then pick a num-
ber 7; from the set {1,2,---,r} randomly and compute v; = T;,vo. Iterating
this process, for N = 1,2,--- let v,41 = Tj,, v, Where ¢, is chosen ran-
domly from the set {1,2,---,7}. If vy is chosen so that A = {vg} belongs to
the attractor fvl, then the points v;, perform a random walk on the attractor,
and with probabilty one, form a dense subset of the attractor. Even if v,
doesn’t belong to the attractor, the points v;, will come arbitrarily close to
any point of the attractor, with probability one. We shall not pursue this
approach because it would take us into realms of ergodic theory that are
beyond the scope of this course.

2.2.1 Fractal image compression and IFSM

The preceding section suggests a fixed point method whereby images can be
compressed via computer, but it is oversimplified in that it represents images
via shapes alone. A more realistic model of a image would be to think of it
as a photograph made up of pixels. Each point (z,y) in the photograph lies
in the range 0 < z,y < 1 so the space is X = [0,1]?. Let’s assume that the
pixels are laid out on a 512 x 512 array (512 = 2°), and that each pixel has
an associated discrete grey scale level chosen from among 256 = 2% values
u(z,y) = 0,1,---,255, where, say, 0 is white and 255 is black. Thus the
image is represented by the piecewise constant function u(z,y) on X. One
can think of z = u(z,y) as defining a surface over X in three space. The
problem of approximating an image becomes the problem of approximating
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the piecewise constant function u which takes integer values from 0 to 255.
To measure the accuracy of the approximation we need to choose a norm on
the function space. One possible choice is the L! norm for functions on X.
With this norm the error made in approximating the image v by the image
f would be ||u — f|| = [y |u(z,y) — f(z,y)|dx dy. The original image u is
defined by 2% x 2° integers, each integer chosen from 2% values. One wants
to approximate u by f, to within a given tolerance ¢, such that the amount
of data needed to construct f is, say, 10% of the amount of data needed to
define u.

Let T = {T1,---,T,} be a set of one-to-one affine contraction maps on
X, and let |Jg| be the Jacobian of the contraction map (z,w) = Tx(z,y).
A new feature needed for fractal image compression is a set of grey level
maps © = {¢1, ¢, -+, ¢,}. Each ¢, takes the affine form ¢;(t) = a;t + b;,
aj,bj € RY and maps the positive real line R™ to RT. The IFS plus the
grey level maps constitute an iterated function system with grey level maps
or IFSM. Associated with this system is a fractal transform operator T :
L'(X) — L'(X) and defined for each v € L'(X) by

(T) (2, w)) = éfj(z, w),

where the fractal components f;(z, w) are

o el )] () € T(X)
Jilz w) = { 0, (2, w) & T5(X).

Thus, if (2, w) is in the range of T}, i.e., if (2, w) = T}(z, y) for some (z,y) € X
(unique because T} is one-to-one), then f;(z, w) is u(x y) filtered by the grey
level map ¢. If (2,w) is not in the range of 7, then f;(z,w) = 0. Now a
straight-forward computation in multivariable calculus gives the estimate

ITu—Tol| < Cllu—vl, €= |la.
=1

Thus if C' < 1 then T is a contractive mapping on the Banach space L'(X).
The Banach contraction theorem implies that there exists a unique fixed
point 7 € L'(X). Indeed, for any u € L'(X) we have ||[T"u—u|| — 0 as n —
oo. This is the basis for a deterministic algorithm to generate approximations
to w.
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We conclude that the fixed point @ satisfies the equation @ = Tu, or
— I —
(z, w) = 3 ;[u(T (2, w)]
j

where the prime denotes that for each point (z,w) the sum is taken over all
values of j such that (z,w) is in the range of T;. We see that the graph of @
satisfies a self-tiling property in the sense that the graph is a sum of distorted
copies of itself.

Note: In order that 7 be useful for image compression of an image defined on
X, we want (z,w) € X to lie in the range R; of some mapping 7. Thus we
require U;I2; O X. On the other hand for simplest analysis of the image it is
to our advantage to make the overlaps between pairs of sets R; as small as
possible. It is usual to require that the sets overlap only at their boundaries,
i.e., only on sets of measure zero. Then the fixed point function @ will lie in
the same L'(X) equivalence class as a function for which there is no overlap.

Example 11 We revisit a simple example in one space dimension: the al-
most perfect sneak, see Example 3. This is a three-map IFSM with X = [0, 1].

Ti(z) = %x, b1(y) = %y
Ty() = Sa+ 1, da(y) =1

Ti(z) =3z +3, és(y) =35y+3.

Now Ty (X) = [0,3] and To(X) = [3, 3], so these two sets overlap at the single
point 5. Similarly To(X) and T5(X) = [2,1] overlap at the single point 2. [In
fact, due to the overlap at the points % and % and the iterations of the T map,
the fized point u(x) will differ from the almost perfect sneak at a countable
number of points, a set of measure zero. However, as an L*(X) function, U
lies in the same equivalence class as the almost perfect sneak.

How can one make this procedure into an effective tool for approximating
a given image u on X by the fixed point @ of T'?7 Note first that by the Collage
Theorem, corollary 18, if we can find a fractal transform operator 7" such that
the collage distance ||u — Tu|| is small, then ||u — @|| will be small, where
u = T is the unique fixed point of T. Thus we need to choose T such that
the collage distance ||u — T'ul| is small.

Assuming no overlap for any point (z,w) in the image there will be a
unique j such that (z,w) € R;. In order that v ~ Tu we want for any
(2, w;) € Rj,

u(zg, wy) ~ & (w(T; (2, w;)))
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where ¢; : R — R is the greyscale map associated with 7;. The basic strat-
egy is to fix the mappings T; and associated sets I; for all of our images,
and to use 2.2.1 to determine the greyscale maps ¢; appropriate to the image
u. Under favorable circumstances we could compute ¢; exactly by requiring
2.2.1 to be an equality. However, this isn’t possible in general. Indeed there
could be points (z;, w;), (2}, w}) such that u(T; (2, w;) = w(T; ' (2}, w}) but
u(zj, w;) # u(zj,wj). In that case ¢(u(T; (2, w;)) is undefinable. In prac-
tice, one requires that the greyscale maps belong to a restricted, parametrized
family, such as the affine maps ¢;(¢t) = a;t + 8; and use least squares to de-
termine the parameters «;, 3; from the given image u. If the procedure is
well designed, this will give us greyscale maps such that the collage distance
is “small,” in a sense that can be made precise. Then the distance ||u — ]|
will also be small. We need to transmit only the parameters ¢, 3; of the
greyscale maps. Then the synthesis algorithm will reconstruct the fixed point
u, a good approximation of the original image.
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Chapter 3

The Fourier Transform

3.1 The transform as a limit of Fourier series
We start by constructing the Fourier series (complex form) for functions on
an interval [—m L, 7L]. The ON basis functions are
1 int
en(t) = —=e L,
®) V2L
and a sufficiently smooth function f of period 27 L can be expanded as

> L inz int
f)y= > (%r% /_WL f(:v)er:U> eL.

n=-—oo

n=0,%1,--,

For purposes of motivation let us abandon periodicity and think of the func-
tions f as differentiable everywhere, vanishing at ¢ = 7L and identically
zero outside [—w L, wL]. We rewrite this as

o int 1 ~ T
t) = T —
f)= ¥ o i)
which looks like a Riemann sum approximation to the integral
1 [ . .
10 =5 [ fyeax (3.1)

to which it would converge as L — oo. Here,
F) = / F(t)e . (3.2)
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Similarly the Parseval formula for f on [—7L, L],

Trmrd= S e
[ rwrd = > S—Ii(3)

- n=—00

goes in the limit as L — oo to the Plancherel identity
on [ 1@)Pde= [ 1F)Pax (33)

Expression (3.2) is called the Fourier integral or Fourier transform of f.
Expression (3.1) is called the inverse Fourier integral for f. The Plancherel
identity suggests that the Fourier transform is a 1 — 1 norm preserving of
the Hilbert space L?[—o0, 0] onto itself (or to another copy of itself). We
shall show that this is the case. Forthermore we shall show that the poin-
wise convergence properties of the inverse Fourier transform are somewhat
similar to those of the Fourier series. Although we could make a rigorous jus-
tification of the the steps in the Riemann sum approximation above, we will
follow a different course and treat the convergence in the mean and pointwise
convergence issues separately.

A second notation that we shall use is

PN = = [ 50 at = —= O (3.4

Fal(t) = == [ seNax (35

Note that, formally, F*[f](t) = v2xf(t). The first notation is used more
often in the engineering literature. The second notation makes clear that F
and F* are linear operators mapping L?*[—oc, co| onto itself in one view [ and
F mapping the signal space onto the frequency space with F* mapping the
frequency space onto the signal space in the other view. In this notation the
Plancherel theorem takes the more symmetric form

[ 1roFd = [ IFAR) R

EXAMPLES:
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1. The box function (or rectangular wave)

1 if —nm<t<m
IMt)=¢ 5 ift=x+x (3.6)
0 otherwise.

Then, since II(¢) is an even function, we have

I(\) = VZr Al (\) = [ ~

o

T(t)eMdt = / " I() cos(M)dt

-0

2sin(mwA)

- /” cos(A\t)dt = — 2 sinc A.

Thus sinc A is the Fourier transform of the box function. The inverse
Fourier transform is

/ sinc(\)eMdA = TI(t),

o0

as follows from complex variable theory (or my wavelets notes). Fur-
thermore, we have

/Z TI(t)2dt = 2r

and

/°° | sinc (V)[2dA = 1

(from complex variable theory or my wavelets notes), so the Plancherel
equality is verified in this case. Note that the inverse Fourier transform
converged to the midpoint of the discontinuity, just as for Fourier series.

2. A truncated cosine wave.

cosdt if —nm<t<nw
ft) = —% ift=4n
0 otherwise.

Then, since the cosine is an even function, we have

foy = verFIfi = [

o0

f(t)eMdt = / i cos(3t) cos(At)dt

—T

_ 2Xsin(7))
BCERY N
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3. A truncated sine wave.

ft) =

sin3nt if — 7w <t<m
0 otherwise.

Then, since the sine is an odd function, we have
FO = VIR FIAI(\) = / F(t)e™Mdt = —i / " sin(3t) sin(At)dt
_ —6isin(})
o (9-4)2)°
4. A triangular wave.

7+t if —7<t<0
f)=¢ 7—t f0<t<nm (3.7)
0 otherwise.

Then, since f is an even function, we have

FO = V2rFIf0) = / °:O F(t)e Mt = 2 /0 " = 1) cos(A)dt

_2—2cos A

T2
NOTE: The Fourier transforms of the discontinuous functions above decay
as % for |\| — oo whereas the Fourier transforms of the continuous functions

decay as 5. The coefficients in the Fourier series of the analogous functions

F.
decay as %, n—12, respectively, as |n| — oo.

3.1.1 Properties of the Fourier transform

Recall that 1 - { .
FIIN = 5= [ F@e e = 0

Flal(t) = = [ aieax

We list some properties of the Fourier transform that will enable us to build
a repertoire transform from a few basic examples. Suppose that f, g belong
to L'[—o0, 00], i.e., [%°,|f(t)|dt < oo with a similar statement for g. We can
state the following (whose straightforward proofs are left to the student):
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. F and F* are linear operators. For a,b € C' we have

Flaf + bg] = aF[f] +bFlg], F'laf + bg] = aF*[f] + bF*[g]-

. Suppose " f(t) € L'[—o0, 00] for some positive integer n. Then

F"f6)IA) =

EAFOY.

. Suppose A" f(\) € L'[—o0, oc] for some positive integer n. Then
FHAFN](@) = dtn{f*[f]( )}

. Suppose the nth derivative f(™(t) € L*[—oc, 0o] and piecewise contin-
uous for some positive integer n, and f and the lower derivatives are
all continuous in (—oo,00). Then

FIFMA) = @) FIAN}
. Suppose nth derivative f(™()\) € L'[—o0, 00| for some positive integer

n and piecewise continuous for some positive integer n, and f and the
lower derivatives are all continuous in (—oo, 0c0). Then

FIF™I0) = (=)"F[£1(0).
. The Fourier transform of a translation by real number a is given by

FL (= a)l(N) = e FLfIN).

. The Fourier transform of a scaling by positive number b is given by
1 A
FIIOOI) = 3FA1(5).

. The Fourier transform of a translated and scaled function is given by

FIFb = a)l() = e P FIAG).
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EXAMPLES

e We want to compute the Fourier transform of the rectangular box func-
tion with support on [c, d]:

1 ife<t<d
R(t)=1¢ 3 ift=cd
0 otherwise.
Recall that the box function
1 if —a<t<m
t)=¢ 5 ift=x+x
0 otherwise.

has the Fourier transform II(\) = 27 sinc A. but we can obtain R from

IT by first translating t - s =1 — @ and then rescaling s — &s:
2 c+d
R(t) =11 t— :
(t) =I(—t—m—)
A Ar? . 2
R(N) = ——eimerd/[d=Agine( 2, (3.8)

d—rc d—c

Furthermore we can check that the inverse Fourier transform of R is
R, ie., F*(F)R(t) = R(t).

e Consider the truncated sine wave

sin3nt if —m<t<m
Ft) = { 0 otherwise
with 6isin(\)
. —67sin
A)=—2.

Note that the derivative f' of f(t) is just 3¢(t) (except at 2 points)
where ¢(t) is the truncated cosine wave

cosdt if —m<t<m

gty =< —3 if t = +n
0 otherwise.
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We have computed
i) = 2\ sin(mA)
TN =g Zaxny-

so 3g(A) = (iA) f(A), as predicted.

e Reversing the example above we can differentiate the truncated cosine
wave to get the truncated sine wave. The prediction for the Fourier
transform doesn’t work! Why not?

3.1.2 Fourier transform of a convolution

There is one property of the Fourier transform that is of particular impor-
tance in this course. Suppose f, g belong to L'[—o0, cq].

Definition 42 The convolution of f and g is the function f % g defined by

o

(f *g)(t) = / f(t - 2)g(x)da.

—00

Note also that (f *g)(t) = [°5, f(2)g(t — x)dz, as can be shown by a change
of variable.

Lemma 43 f g € L'[—o00, 0| and
[ gt = [ 1 @)lds [ Jg(e)lat.

SKETCH OF PROOF:
/O:o |f *g(t)|dt = /oo (/oo |f(z)g(t — x)|da:) dt

= [ ([ ot =oyit) f@)de = [~ lgtlat [ |7(a)lda.
Q.E.D.

Theorem 55 Let h = f xg. Then

~

h(A) = F(NG).
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SKETCH OF PROOF:
o) = [ ‘: [ e g(e = [ °:O ( / * Fa)glt — x)dx) "My

-0

= /_oo f(z)e™™® (/oo g(t — x)e‘i’\(t_w)dt) dr = /_o:o f(2)e”*dzg(\)

Q.E.D.

3.2 L? convergence of the Fourier transform

In this course our primary interest is in Fourier transforms of functions in
the Hilbert space L?[—o0, 00]. However, the formal definition of the Fourier
integral transform,

FIIN == [ ftyeas (59)

doesn’t make sense for a general f € L*[—oc,0]. If f € L'[—o00,00] then f
is absolutely integrable and the integral (3.9) converges. However, there are
square integrable functions that are not integrable. (Example: f(t) = ﬁ)
How do we define the transform for such functions?

We will proceed by defining F on a dense subspace of f € L*[—o0, o0
where the integral makes sense and then take Cauchy sequences of functions
in the subspace to define F on the closure. Since F preserves inner product,
as we shall show, this simple procedure will be effective.

First some comments on integrals of L? functions. If f,g € L*[—o0, o0]
then the integral (f,g) = [, f(t)g(t)dt necessarily exists, whereas the in-
tegral (3.9) may not, because the exponential e **' is not an element of L2.
However, the integral of f € L? over any finite interval, say [—N, N] does
exist. Indeed for N a positive integer, let x[_n,n) be the indicator function
for that interval:

1 if —-N<t<N

X[_N’N](t) - { 0 otherwise. (3'10)

Then x[—n,n] € L?[—00,00] so [My f(t)dt exists because
N
/N [F@ldt = (1], xi-nwa)| < U Sflle2lIxi-wom ||z = 1 fl[z2 V2N < oo
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Now the space of step functions is dense in L?[—o00,00], so we can find a
convergent sequence of step functions {s,} such that lim,_, || f —ss||z2 = 0.
Note that the sequence of functions { fx = fx[—n,~]} converges to f pointwise
as N — oo and each fy € L? N L',

Lemma 44 {fy} is a Cauchy sequence in the norm of L*[—o0,00] and

PROOF: Given € > 0 there is step function sj; such that [|f — sp|| < §
Choose N so large that the support of sy, is contained in [—N, NJ, i.e
SM(t)X[_N’N}(t) = SM(t) for all ¢. Then ||8M—fN||2 = fiVN |8M(t)—f(t)|2dt S
JZ% Isu(t) = f(8)Pdt = [[sar — %, s0

F = Il =1(f =sm) +(spe = )N S f —small+[[sar = Fnll S 20| f—sml| <e

Q.E.D.

Here we will study the linear mapping F : L2[—o0, 0] — L2[—o0, oo] from
the signal space to the frequency space. We will show that the mapping is
unitary, i.e., it preserves the inner product and is 1-1 and onto. Moreover,
the map F* : L?[—00, 00] — L?[—00, 00| is also a unitary mapping and is the
inverse of F:

F*F =12, FF* =1,

where Ip>,I;, are the identity operators on L? and L?, respectively. We
know that the space of step functions is dense in L2. Hence to show that
F preseves inner product, it is enough to verify this fact for step functions
and then go to the limit. Once we have done this, we can define F f for any
f € L?[—o00, c]. Indeed, if {s,} is a Cauchy sequence of step functions such
that lim,, o || f — sn|[z2 = 0, then {Fs,} is also a Cauchy sequence (indeed,
l1$n — Sm|| = || Fsn — Fsm||) so we can define Ff by Ff = lim,,_,o Fs,. The
standard methods of Section 1.3 show that Ff is uniquely defined by this
construction. Now the truncated functions fx have Fourier transforms given
by the convergent integrals

U = o= [ £ Vet

and limy o ||f — fnllzz = 0. Since F preserves inner product we have

|Ff=Ffnllee = [|F(f=fn)llee = |[f = fnllee, so imy oo || F f = F fl[r2 =
0. We write

FIAN) = LimooFLAN () = %Q_W [ s N
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where ‘Li.m.” indicates that the convergence is in the mean (Hilbert space)
sense, rather than pointwise.

We have already shown that the Fourier transform of the rectangular box
function with support on [c, d]:

1 ife<t<d
Rea(t)=< 5 ift=cd
0 otherwise.
15 472 27 A
FlRedl(A) = —— —— ™D/ @=Igine (12,

V2r(d - c) d—c
and that F*(F)R.q(t) = Rca(t). (Since here we are concerned only with
convergence in the mean the value of a step function at a particular point
is immaterial. Hence for this discussion we can ignore such niceties as the
values of step functions at the points of their jump discontinuities.)

Lemma 45
(Ra,b; Rc,d)L2 = (fRa,b; ch,d)iﬂ

for all real numbers a < b and ¢ < d.

PROQF:

i N d ei)\t
= Jlim | <.7:[Ra,b] (A) / mdt) d\

ei/\t

= i [ ([, F R0 T e

Now the inside integral is converging to %, as N — oo in both the pointwise
and L? sense, as we have shown. Thus

(FRap FRea)io = [ FIRa) NFIReal (V)X

d
(FRap FRea)gz = | Ryt = (Rap, Red)r2

Q.E.D.

Since any step functions u,v are finite linear combination of indicator
functions R, 5, with complex coeficients, u = >°; ajRq; p,, v = 2 BrRe; 4,
we have

(‘7:”1 T'U)iz = z ajﬁk:(fRaj’bj’chk’dk)i’2

Jk
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= Z a]Bk (Raj,bj ) Rck,dk)L2 = (U, U)Lz.
Jik

Thus F preserves inner product on step functions, and by taking Cauchy
sequences of step functions, we have the

Theorem 56 (Plancherel Formula) Let f,g € L?|—o0,00]. Then
(f,9)r2 = (Ff,Fg)ir  fIIZ =11FF113,

In the engineering notation this reads

o [~ fwgtdt = [~ FNG)A

—00

Theorem 57 The map F* : L*[—0c0,00] = L?[—0c0,00] has the following
properties:

1. It preserves inner product, i.e.,
(Ff, F 9 = (f,9)s2
for all f,§ € L2[—o0, ).
2. F* is the adjoint operator to F : L*[—0c0, 00| = L?[—00, 0], i.e.,
(Ff:9)ie = (f, 77912,

for all f € L?[—o0, 0], §j € L} [—o0, ).

PROOF:

1. This follows immediately from the facts that F preserves inner product

and F[f](A) = F*[f](N).

(FRa,ba Rc,d)fﬂ = (Ra,baj:*Rc,d)L2

as can be seen by an interchange in the order of integration. Then
using the linearity of F and F* we see that

(Fu,v)i> = (u, F'v) 2,

for all step functions u,v. Since the space of step functions is dense in
L?[—o0, 0] and in L?[—o0, o0]
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Q.E.D.

Theorem 58 1. The Fourier transform F : L*[—o0,00] — L2[—00, 0]
s a unitary transformation, i.e., it preserves the inner product and is
1-1 and onto.

2. The adjoint map F* : L2[—o0,00] — L%[—00,00| is also a unitary
mapping.

3. F* s the inverse operator to F:
F*F = I, FF* =1,

where Ir2,I;, are the identity operators on L? and ﬁZ, respectively.

PROOQF:

1. The only thing left to prove is that for every § € EQ[—oo, oo| there is a
f € L*[—o0, 00| such that Ff = g, i.e., R={Ff:f € L*[—oc0,00|} =
iQ[—oo, oc]. Suppose this isn’t true. Then there exists a nonzero he
L2[—00, 00] such that b L R, i.e., (Ff, h);» = 0forall f € L2[—o00, oc].
But this means that (f, F*h) > = 0 for all f € L?[—00, 0], so F*h = ©.
But then ||F*h||;> = ||h||;> = 0 so b = ©, a contradiction.

2. Same proof as for 1.

3. We have shown that FF*R,, = F*FR,p = R,y for all indicator func-
tions R, p. By linearity we have FF*s = F*Fs = sfor all step functions
s. This implies that

(f*]:f: g)L2 = (f: g)L2
for all f, g € L?|—00, 00]. Thus
([F*F = I2]f,9)2 =0

for all f, g € L?|—00,00]. Thus F*F = I;2. An analogous argument
gives FF* = I;,.

Q.E.D.
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3.3 The Riemann-Lebesgue Lemma and point-
wise convergence

Lemma 46 (Riemann-Lebesque) Suppose f is absolutely Riemann integrable
in (—00,00) (so that f € L'[—o00,00]), and is bounded in any finite subin-
terval [a,b], and let o, B be real. Then
o
al_l)I_ll_loo . f(t)sin(at + B)dt =
PROOF: Without loss of generality, we can assume that f is real, because
we can break up the complex integral into its real and imaginary parts.

1. The statement is true if f = R,; is an indicator function, for
00 b —1
/ R, (t) sin(at + B)dt = / sin(at + B)dt = — cos(at + B)[2 — 0
% «

a

as o — +o0.

2. The statement is true if f is a step function, since a step function is a
finite linear combination of indicator functions.

3. The statement is true if f is bounded and Riemann integrable on the
finite interval [a,b] and vanishes outside the interval. Indeed given
any € > 0 there exist two step functions s (Darboux upper sum) and s
(Darboux lower sum) with support in [a, b] such that 5(t) > f(¢) > s(t)
for all ¢ € [a,b] and [’ |5 — 5| < 5. Then

/abf(t) sin(at+p)dt = /ab[f( t)—s(t)] sin(at+pB) dt+/ ) sin(at+3)dt

Now
| [17) ~ stnsinat + gyar < [ 170) sl <[5 -s) < &

and (since s is a step function, by choosing « sufficiently large we can
ensure

\/ )sin(at + B)dt| < <

Hence
|/ )sin(at 4 B)dt| < €

for « sufficiently large.
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4. The statement of the lemma is true in general. Indeed

\/ )sin(at + B)dt| < \/ (t) sin(at + 5)dt|

+|/ ) sin(at + B)dt| + | / t) sin(at + B)dt|.

Given € > 0 we can choose a and b such the first and third integrals
are each < £, and we can choose « so large the the second integral is
< 5. Hence the limit exists and is 0.

Q.E.D.

Theorem 59 Let f be a complex valued function such that
o f(t) is absolutely Riemann integrable on (—oo, 00) (hence f € L'[—o0, oc]).

e f(t) is piecewise continuous on (—oo,00), with only a finite number of
discontinuities in any bounded interval.

o f'(t) is piecewise continuous on (—oo,00), with only a finite number of
discontinuities in any bounded interval.

e f(t)= M at each point t.

Let A o
foy= [ rweat

be the Fourier transform of f. Then

L / T (e

=5 [

for every t € (—o0,0).
PROOQOF: For real L > 0 set

fut) = [ LL FN)ePdr = % / - [ / °° f(x)emdx] M)

—L —00

= % /_o:of(:v) [/_LL ei’\(t_m)d)\] dz = /_o:o f(@)AL(t - z)dz,
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where . .
Ar(z) = o /_L e aA = { % otherwise.

Using the integral

I:/ Smxdaczw/ sinc z dzr = z, (3.11)
0 0 2

which is proved in complex variable theory (or in the wavelets notes) we have,

o) = £ = [ Al =)l (@)~ f(t))do

| AL@If(t+2)+ £t =) - 2/ (D)]do
By HEL RS (R R

™

}sin Lz dx

The function in the curly braces satisfies the assumptions of the Riemann-
Lebesgue Lemma. Hence lim;, . [fL(t) — f(¢)] = 0. Q.E.D

Note: Condition 4 is just for convenience; redefining f at the discrete
points where there is a jump discontinutiy doesn’t change the value of any
of the integrals. The inverse Fourier transform converges to the midpoint of
a jump discontinuity, just as does the Fourier series.
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