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1., Historical Background

The theory of groups in the first half of the nineteenth century played =a
central role in the development of mathematics. In the theory of equations the
analvsis of substitution grouns on the roots of algebraic equations by J. Lagrange,
P. BRuffini, N, Abel, and E, Galois culminated in the proof of the insolvability of
the general quintic equation by radicals,

In geometry, the nrojective group, as interpreted by J. Poncelet and A,
MHbius, led to the creation of rrojective geometry as a structure independent of
Buclidean geometry. Also the non-Buclidean geometries of N, Lobachewski, J. Bolya,
K, Gauss, B, Riemann, S, Lie, and H, Helmhotz emphasized their own groups of
motions rather than the Euclidean motion group. Fven in Euclidean geometry
W, Hamilton, W, Clifford, H., Grassmann, and A, Cayley were investigsting new
invariants of the group of rigid motions. |

Thus the study of transformation groups and their invariants was well
established in 1872 when F. Klein announced his vrogram at Erlangen to cast all
geometry in this intrinsic form,

In 1869 S. Lie wrote some notes on canonical forms for first order, non=-
linear, differential equations. He continued working, sometimes in conjunction
with F, Klein, until in 1874 Lie obtained the basis for their differential
invariants. The classical formlation of this theory is found in Theorie der
Transformationgruppen, S. Lie and F, Engel, in three volumes, 1888-1893,

The results immediately aprlicable to differential equations are in



Differentialgleichungen mit Bekannten Infinitesimalen Transformationen,
S. Lie and F. Scheffers, 1891,

A simplified English version of this latter is

An Introduction to the Lie Theory of One-parameter Groups, A. Cohen, 1911.

Also an important contribution to the classical theory is found in the text by
L. Bianchi, 1903 (reprinted in 1918).

The study of abstract (as distinct from transformation) Lie groups was
pursued by W, Killing, E, Cartan, C. Chevalley, and L, Pontrjagin., A survey
of this modern theory is found in the texts on Lie groups and Tovological
Groups, respectively, of the last two authors, In recent years important work
on Lie groups has been done by A, Gleason, H. Yamabe and many others. The text
on Iransformation Groups by D, Montgomery and L, Zippin returns to the analvysis
of transformation grouvs, but uses the modern techniques of global topological
groups rather than the local groups of S, Lie,

Later in this course we shall deal with the monodromy group and with the
Galois or rationality group of a linear differential equation. The former
concept was introduced by B. Riemann in 1856 in a paper on the hypergeometric
equation and then developed by L. Fuchs, L, Schlesinger, D, Hilbert, G.D.
Birkhoff, and quite recently by H, R8hrl, The rationality group was invented
independently by E. Picard in 1883 and E, Vessiot in 1889, Recently this

theory has been incorporated into differential algebra by J. Ritt and B, Kolchin,

2. Examples of Different Types of Differential Egquations and Transformation

Grouvs,

2
An ordinary differential equation, say in the real plane K , is geo-

metrically a family or network of curves, the solution curves of the eguation.
We say two such differential equations are the same, or of the same tyve, in

case a oné-to-one differentiable map, of the domain of definition of the first



equation onto the domain of definition of the second equation, carries the first
curve network onto the second. That is, we change both dependent and independent
variable and seek a simplified canonical form for the differential equation.
The canonical coordinates, in which the differential equation is to assume the
simplified form, is to be found from a study of the internal symmetries of the
solution curve family. Technically, we find transformation groups, say acting
on ?QE' , for which the curve family is an invariant (that is, the family as a
unit is an invariant -- the individual solution curves are permuted about undsr
the transformations). Using these transformation groups we try to bring the
invariant differential equation into a simplified form from which it can, for
example, be integrated by quadrature alons.

The classical theory of S. Lie is purely local and refers to a region in
the plans ?Qi . For the first part of these lectures we follow the methods
of Lie.

Examples of types of differential equations (no proofs).

el y 2
1 j—f\z :(:—3-) is not squivalent to d_?:L = O

A x*

(that is, no local diffeomorphism (x,y)—= (u,v) carries this equation to

dE £ ¥
d—ja = Qh )i However, lé == A(T«Jé} '6;3 is equivalsent to '6" =0
it A =0,
i
2. Lé} = -;(% +Tam léfis not equivalent %o LeH = PO é; + QU Lér + R(=) )

4

/
S ‘-6 = 'F{‘E_J'a)is equivalent (lacally) to la =0 .
2
Examples of transformation groups on &,
, — TR . :
1. Tt _ a E‘j* 'é (‘branslatlnns), Ta 'T“_t - T$+_t is the
xX —= %, =X
group property. An invariant of the geomstry under this group is a curve

o
family Lé" - -?(-—x) , Which is integrable by quadratures lé = ‘a“ + S‘Q{T) ar



Here the slope £(x)

~l-
is independent of y  and hence y'= %(x)is invariant
under this translation group.

X< —= X,

Lﬂﬁht -n%t

. | (rotations) Thes sy =0 _
A Vo= Y, = X Auat *jca:;"t ’ Ttz g
y = xy
Invariants of the geometry are curve families - - = 'L%l-'r 2
*eyy R
- /
Note: tan V' = L5 where
X or N Y !

is the angle
between radius vector and solution curve —

this is invariant under a rotation
about the origin.

x, —» }-f.._,h = %% E_.t e E—
; ORI * (dilations),
'~:.J —= ‘j1 = ‘*:[ 2.

e ' = ‘ext

Invariants of geometry are vy’ = Erkjf;,ﬁ , homogeneous differential eaquations,

b, T ° x—nxk:u-*r“t_

AT OX,. = X
and R 1'
DR (D |

'j—-p-\f\:\j-‘ri

(two parameter commutative group of translations with general group element

e Rs ). Invariant of geometry is \J” = Rl\‘[fj . Here
QLHJ»ﬂJ\er - Qt*j‘) is invariant under the rigid translations of the grourp.
Let v = V' 80 v’ = Swv) , integrate by quadratures to find V()
and \ = guuhdxz 5
" [ %\ @ b X
5e (\jj H{\‘:h ] 2 (Q | ()’) }g..é\-\bc_iﬂ (general linear group).

This is a non-commutative

L parameter group, & LRQIRS acting on

R-‘l—-
X, = 0%t by + d =

6. ~ affine group on =~
N, = Coxd :_%:: - [

This is a 6 parameter non-
commutative group.



= < {lﬁ

?r '?{ — ml1+ &E'j'd-ﬂ‘

3 y = Gy X+ Qg + &y Gy Qs oy + 0
PX+agy ros 7 ayrragy raq /|1 a8 aq
(projective group of 8 essential parameters)., Take R"ﬂ-g—&’j near origin of R”

and use only projsctive transformations near the identity -- this is local trans-
formation group. Invariant of the geometry is La” = O , solutions are all
linss,

A% + 3 ;
8. Z-»Z = with complex numbers o & — B = O

Y2 + &

This is the 6 (real, essential) parameter conformal local transformation group

—

g
on a plane region. Invariant of the geometry is f;_[ ( Ve ,_&:'2 )3f1 ] = G]

curve family of all circles and lines,

5. EXAMPLES OF ABSTRACT GROUPS

Definition. A group G is a non-empty set of objects together with a binary

law of composition satisfying:

1. There exists a uniqus slement O such that

O+ 0 = 0+ & = O ( ov 3.-4‘-3."&..-1'.:.-;_{:-:&.)

2. For sach O. there exists a unique elemsent ( — ¢~ ) such that

O+ l=80) = (~a)y+= = O (ox 3 &' 3: &ilri‘I&:A)
3. (c+b)src= o+lbsrc) (o (akde = albe) )
The group is abelian or commutative if &+ b = o + a (or % = ba_in

the multiplicative notation),

Ex&.mpla g3

|
1. The real wumbers with addition R . Same as positive reals F:‘I+ using
multiplication,

Definition. A function W: G->H (into H ) such that \M%.%i) = W(g) N (q;)




is a homomorphism of & into ., If h is one-to-one onte & , then

= |

n {s also a homomorphism of G onto H
Exercise. h (Og) = On and Hh-a)-=- (i\Lﬁ,\, . Also R — Fiﬂ,. by
Lillay' s & is an isomorphism,
2., The circle =3 , complex numbers £ with |Z2l= | under multiplication.
5 2 = with vector addition.

i, Set of 21l linear transformations of R onto Rﬁ , plck basis in Rﬁ, then
this is isomorphic with G LW, R) gy 5@:5“‘-_ Ciw | det. L(:Hi) £ 0.
5, All affine transformations of line = ' K= Qxt+o o =% O "
Tsomorphic with subgroup of G L(Z,R) of form &t "‘: ) ‘

Definition. A subset H C & which forms & group under the composition law

of & is a subgroup of G,

“ '« . T . g o
6. All affine transformations of = , X —~ X = {:L-5 x..‘l‘l+ S det Lml‘ii }
ai b*
isomorphic with subgroup of GLin+ 1, R) of form ( \ b )
i Qo \ 4

7. All linear transformations of R with Euclidean inner product preserving
length. Pick orthonormal basis in R , then isomorphic with On) ; A= (a thj

with Q_..G_ . = & or N = & " Subgroup with dek =\ is

2 Y H-E ('
O 4n ) or DO0LW) ,

8, All linear transformations of Hﬂ with Minkowski inner product. Pick

¥

orthonormal basis of R, then isomorphic with Lorentz group in)

= G-E e il | o &1 = -
CL'I 0.”.1 P * ¥ ﬂ"‘-ﬂ i V7 - = + ' —
= A o L
Ay, Qurz + * - Gaw Fu+ Gz Fr 0 b O
, : with "
‘ . = z
- G"'-"ﬁll J'l- QHL i L - @ -}n &E“ - l
&“ i E'H 2 # - " \1“\&
and each pair of rows orthogonal,
.;...- ?J : - G""' a‘- i + G" {:t. & ¥ " —
1 J A :_1|i A2 il 'll" T G_#“ EL:!“ Q.
Subgroup preserving orientation ( det = + 1 ) and future time sense &, 7|

is proper Lorentz group L o 5
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9. All linear transformation of vector space « where two transformations

are considered the same if they have the same action on a set of rays through
the origin (on vprojective svace P ). Pick basis, then this is isomorvhic
with QL+ R )Y/ ey P& Uwa v, RO wvhere C (w11 ) are scalar matrices.

Let N be a subgroup of (& . Then c(31 A~ %L in case the (left) cosets

ﬂ‘hu N and OMI\J "coincide" is an equivalence relation which yields the

coset decomposition of o o

If f%rdc%" ig the coset N , for each 9 &, then - is
normal (or invariant) in & and we define the quotient or factor group
as follows:

The elements of & /N are the left cosets of N  and the composition
ig well-defined by Loﬁhmu&m = % e N . Also G —~ G/ W by
CE — g9 N is a2 homomorphism of & onto & /N

Ifr A &= H 1sa homomorphism of & onto ™\, then —E'\LtLD‘} = ™ is

a normal subgroup of ( and G /n  is isomorphic with N 4in a natural way.

These results are all contained in Pontrjagin, Topological Groups, Chapter I.

10, All quaternions with uni{t norm L+ %) 4+ ¢ 5.1: dk where ‘- '{': J&'ﬂ’- o

(and cyclic permutations). Also the real coefficients satisfy o+ W4 &L 4= |

This grour is the spinor group Spin 3.

Note, Z¥ach of these above 10 examples are Lie groupvs. They bear s natural
ceometry, which is that of the curve, surface, or manifold and (103&113 near
the urigin) the points and their group multiplications are given easily in
terms of a finite number of local coordinates,

Note that < and <K' are locally isomorphic (technical definition later)

and this is also the case for O, (3 ) and Spin 3.

11, All homeomorphisms (one-to-one and bicontinuous maps) of plane region

o c R° onto © form a group — not a Lie group.



12, Consider the torus 7T°(3,,92.) with &, 1in S' and 9, iw ' and

componentwise addition, that fg T = ¥ This is a Lie group locally

=
1

jsomorphic with the plane K~ Consider the subgroup N of T° corre-

sponding to the line v = V. x in 2~ . Then N 1is a one-to-one continuous
image of = in T° and N is dense in 7~ . Let © be the smallest group
in 1° containing N and a point Pe TN . Ten "\ 1is not a Lie

group for it is connected but not locally connected,

4, One-parsmeter transformation groups on B e

. . —r
Definition., ILet < be an open set of R, Por each © & %™ let \‘« be

s homeomorvhism of = onto O

whihe (23

FULENTN

W 'l\‘lajﬁﬁ‘j“?'/' *

Agsume ©lx,%x,N) and WLlx, K, y) € ¢c® 4n 2'x O and. e LT Veui
that 1is

f‘e”‘-?-,*Q"-""‘-—J":""_k_._\‘11"4)i_“;-f'i. 1\\ - QLS “'J?"‘JH_’JB

WS, wla,x, 1), Wl ,xi4)) 7 TG A A B )
for all = T ¢ w ! and (x.,%) < S .

Then the functions i< X ,4) W (A..%,y ) define a one-parameter transformation

eroup of R' actingon O .

Note. A one-parsmeter transformation group 1is degscribed by a homomorphism of

= into the group of homeomorphisms of O . Thus T, = ° (identity
map of ) and 1y e, =T }1 .
Examples.
1. x. —= X on O - R~ , translation group.



Fe o= % .:v,t on &~ , dialation group.

dx ¢ 3y _
Definition. A differential system (or vector field) L. ﬁ = ¥y ?;J%_ = B
in ) in O < K~ 4is ecalled an infinitesimal one-parame ter transformation

group on I .,

Remark., Let W' x=8Gu) \= 4¢,4) be an infinitesimal transformation group

on ~ and assume that each solution curve is defined in ® for all —w«< ©— < o

(this is always the case if J is a compact manifold). Let @LthD;jD‘y]w(_tjx,,J'jﬁ)
‘| )

be the solution of L through (x.,4,>at T = © . Then OLE, %, ) | 40 Lk, 9 )

define a one-parameter transformation group '} 'Tt’{ on O , which we say is

generated by L . TFor certainly «lx,x, %) Wl x W) & 7% in

' x © . Also

e

=

-_ {‘I:Jk'g* {;'J"’:-u_,"".u\J = 1::; r\. (0 ;‘-h{:.-:‘: L J-’!'ﬁ ‘_ '!-I"‘xkj'[“_?;\‘lt'h) F—u,‘:’ju))

e

>
EP AL T U PRI A e R S PR PR IE S S

Thus, for each fixed T ,

My -
@USH % %o, %e) = QLS§)

IS .
WES+ &, % im\l' = S

4

is the unique solution of U through

'!'_r.{}'il..__t} ':If-'u..u‘-_glq ..‘:l —_ H..|I

Wht, %, %) = Y,

at S = 0;

Thus we have
e LS4 % | T T
" W | 4, . ¥ %{'n \)

j e

WSttt , %o ,4,) = WIS % ,4,)
which is the required group property.



-1 =

1. %x=o, Y =1 generates the translation group.
2, %=-y, Yy =x generates the rotation group.

3¢ X=X \1 - ﬁ generates the dialation group.
I|

4, % =o,Y =\y* Thas solution through ¥, e > O of %X=X%o, N7 ']%#___-E:
which is defined in RE only for el = . Thug this infinitesimal trans-

-]

formation group does not generate an entire transformation group but only a

local transformation group.

Definition., Let © be open in R® and let th;,ﬁLﬂULtjiﬁg’} be in ¢ 1in

a neighborhood of = % & in R'x O and satisfy
LS, thjij“j),kaij\j‘}\) = t@{.&’rtﬁwtﬁ}
Y Ls, @ e, %) ,wttiii‘j‘ﬂ = Wtk ;xy )
wherever defined. Assume that for each compact set K C S there exists a

te > O such that for (ti< +, and (x,q)e K the map

I b & @t %Y )
T ) — ( )

is a homeomorphism of K onto some K, W, . Then the functions

Q L M), W L%, ) define a local l-parameter transformatlon group on 7+,

Note, We identify two such local l-parameter transformation groups ECF',, qj§
and I Q" .‘\U*K in case they coincide on some neighborhood of o x 8 in

L
R'x @ . It is easy to verify that @ o, »,4) = x| WLo,x 4) =j and that

o\
T =( T, ) Wherever defined.

Theorem 1. Fach infinitesimal l-parameter transformation group on S generates
a local l-pasrameter transformation group on © ., Also each local l-parameter
transformation group on & is generated by one and only one infinitesimal

one-parameter transformation group.



AT

Proof.,
e (WL Soss= Rme{31ﬁ':.{%uu;j) is an infinitesimal l-parameter transfor-
mation group then ©(A,x,4),V (%t ,%Y) , vhere Q@ L, %o,Y,) W u—.,y.ﬁr\j,,‘)

is the solution of U through (¥, y4,)at © = o 1is a local l-parameter

transformation group.

—
|
|

Now let L"Ttri_mx.tjxﬂ‘j and W L+ ,%,4 ) be a local l-parameter

transformation group on S . Define the infinitesimal generator L of [_T£§

by .
- '- >y _
% '—'(iﬁ'iiyﬂ}j'}] :L#L‘:-L_,‘j‘) o = &;tlt:u_ %LK-‘\j\)'
— Y= o

\ and we mist show (where defined)

Thus ©, Lg_.xjkj"l. = RL*ﬂ,“ﬁ\i Iwitu,x,\j‘\= &QU{“J%
‘-QHL-E_Jw-LJ*ﬁ‘} = ‘?r\a‘-ilLt}HJ'j'}J@{\t:"{J\jj)
,-"*-lh’lg L-JEJ‘?;'&-) = abi\-{-ﬂl-:iu}i?.'ﬁ‘} J.ﬂ""r){.__;*:i‘.i:'}‘)'

Now QLS+ &, %) = QLS @t Y)Wk, x4))
W Lsat, % 4) = WL, @ie, %9 )Wl X)),

o0 <L h5+-t_,}‘=fj‘-3‘} = Q‘kiijklhﬁj}th,i,\j}\
Q, L""—:. X 1‘3\1 = Lﬂlqktjﬂj\j\)‘w k*"’!""]‘ﬂ)‘)f
o Q, Lrsyx, 40 = § L bk, WLE YY)

and similarly
WLk, %) = AL @UE, %M R %) )

as required,

The uniqueness of the infinitesimal generator of a l-parameter local

transformation group is obvious since distinct vector fields have distinct

trﬂjﬁctﬂriEEn Q,. E. D.

Note, The critical points of L are points of 8 where gth@ﬂiﬂi%h,ﬂ{}: Q,

Other voints are regular. A trajectory of W consists of a single point if

and only if that voint is a critical point of UL .
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Definition. Local l-parameter transformation groups ih i.‘._q on O and i lti
on Q' are isomorphic in case there is a diffeomorphism of S onto § and

o constant factor change in time scale in = , which carries the transformations

of i‘fti onto those of iT{E (where defined).

Remark. The only continuous isomorphisms of R' onto R' (or even local iso=-
morphisms) are t = <X for a constant € # © . One sometimes permits only

orientation vpreserving isomorphisms, < > 0 .

/
Theorem 2, Local l-parameter transformation groups ETJ; in § and i—rt{

f
in & are igomorrhic if and only if there is a diffeomorphism of S onto C

which carries the infinitesimal generator . of 1—{*_{ onto W/ , where C # o

/
and L. is the infinitesimal generator of {T{:’E iIn & i

=
o = i
Definition. The differential operator (on C C8)) W= 30,45 P39 oy
is also called the infinitesimal generator or "symbol for the generator" for

the local group generated by

o

¢ = SWY Y = 498D,

The local transformation group is often written

A
wut,u,sﬁ}: E,tu‘-,.;, ;W LR, B S N

Let Ut k=8ix,y),y=90y) be real analytic C° in O . Iet

) A

in O and define £ Li,x,4) = Hluwilexy), Wk ;,‘:f}vb‘ﬂ

"

-ﬂ:;'l Iq.._‘.l': '-‘"':'\} {; ‘\_I-!“

using the loecal group generated by W .

A

Then 6‘% = %, i{ﬁ_.\.eu_ ;:.%J\:_ and ‘%—% Xt:g. GRCMVERITITNE: a?_u,y;%um:u ~ 9

In fact, this equation could be used as a definition for LL.

Agsume BN
) = _i . Tw=
II - L | ] = ""'L- E"L"
o = - ~ =0

Then

pe e W=

té{;hk{ LP(ELLE}LEJng]‘];w szﬂj'ﬁ‘]‘)jm Ltj@LSJ&LJb ‘j,w Lsu"-'{-':r‘j ) >] E: o

- =
u_\__bj ‘-9\1 = Ss

& [ ]

—



,;I‘ﬁ-l
o - [ %S 3™ _ﬁimt*ﬁﬁx'&)ﬁ"it*%“J"éfl)]

or

= O
S =0 )
gq-"“'\.
o[ 53]
S, -
Therefore, by Taylor's seriss for small | t|
4 - & L £ 2 £° 3
'ti'x_‘.%‘]': L_HJ%')-}'tu -I-'Z.LL-L-’E’I +'?|ILJ.,‘?’I,+ P R
or
j‘\(t R}
"dx-*l'éj = € {:F"I"“J%j ’
A,
If we let —%(_1}433 = X

© ) = @b, y)
then @t  «

~ and also W(;tux”aj - gt%\a ‘
Note that the concepts of a one-parameter locel transformation group, its
inf'initesimal generator, and the symbol or operator

3
L.L:-;—ﬁﬁ-%:a"—

°4
all defined without reference to the coordinates in © and thus they are con-

cepts of differential geometry.

Ex&m?le. T

r X —» X . he s m:%__
- T g
A= XLVt - U Al t
Tt: ~ ﬂ has H:-%%:;t -]—-,lr_:%.._
- fada,
Y % % 4 oy b 3
T ! x> xE has U = '1.E%EL*+ 16 %%Ei |
g C
Example. H=.1_'%a+%%_‘é J. 'F-"-*-J%:"é-
Then uUx =%, 6 u%x = o=
4 J -
_ r
and tA!ﬁ = Lﬁ; LA % = BJ ' 3 iA“La ::!é
g Tt B 2
; = 1*"**""*‘*—%-14-,.. :_"Kﬁt
tu 2
= t &
c %“Lé+t%+_g_‘f"§,+“‘

Lat Ly = '?('RJLa‘j-%—a + %(‘Igta‘j 3—-

be the infinitesimal generator
o9
of a l-parameter local transformation group on

&
u = Cu=x) %Tx + (u%j%—%

«» Nota that

- 1O =

are



e o
Let (1 3 aea ( 9) be a diffeomorphism of d onto 8’ C R> or
] ‘w’L':-LJ'ﬁ'}

a change of coordinates in O . Then the infinitesimal generator

Lk, £ X o= §u,y)y | y = q\=Yy)

becomes, in the new coordinates,

\ S U S L o N 2N
Nk U & e R ¥, Y = 3x o Egcﬁ
or
e S L. > o N 2
W QK‘S; S\ %\ oy T &x.j; o N g\ =RV

Thig can be written

Tl = (\LLL&)%W*‘KLLW)P%#Vr

be an infinitesimal transformation group

Theorem 3., Let W= Qg—x - q %—‘j

in 8§ ., Let P < © be a non-critical point of ., Then there exist

local coordinates near P , (that is W(x,4) Vix,4) € o with
DL, V) =
Q = .
\ S0x ) ]# ) in terms of which Rl 3
Proof.

Consider the local transformation group @LE, %) ) w (k,%,M) generated

by W . Let L. be a line segment through P orthogonal to the trajectory of

the local transformation group through © and let w be the distance along L

© . For each point Q° (xy4) near P define w.(x,Y4)

measured from

as the intersection coordinate of the trajectory through Q with L and let

VEX ;M) be the value of 1 which carries this intersection vpoint along
the trajectory to & . Then (w,v) are local ( ™ with < inverse)

coordinates near P and the trajectories of the transformation group become

\ - 2
T.LL_—"LJ»..L"‘F:”J"-E' Eﬂu_é—v

+
Q. E. D.
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5. Invariants of one-varameter transformation groups on Fil.

Definition. Let W= -i—,_nr% E;j be the infinitesimal generator of a l-parameter

. ~2
local transformation group in & < K~ , A function Qe Cmté‘-) is in-
variant under the transformation group in case 4 (x,4) 1is constant along

each trajectory of 'L in & .

Theorem 4, £ (x4 € Cﬁiﬁ) is invariant under the one-parameter local

transformation group generated by A = ¥ %, X % %\3 y 1f and only if
w4 =0 1n O .

Proof,

A,
If & (x,y) is an invariant of & , then ALk x,4)= RLQLE Y)Wk Y))

24 ; .3;%1 2
is independent of T . That is, =hay) =0 . Bat |57 . we

Thus A for each Lx,ﬁﬁeﬁ .

Conversely, suppose W@ =0  in &

Then hg\L-‘:'+E|!‘“1\ju.j = E'LLLQL*’L*EJiﬁjhﬁuﬁiwkt*sjinlﬂﬂ‘iv

O LaAS, %o, No) = R LQUS, x,Y,) WS, %M%Y )
where = RUA ;% ,40), Ly, = W4, X0, %),
Then gi _

(B, o [udd,, - o
¥ =Y,
Thus <% s ‘F-a,‘jb3 = O for each U , where defined.
Q. E. D,

Definition. A differential equation ﬁ: i M; , where M (x,v) and
S i N Lk, Y

NCx,4) & Cm in ® and do not vanish simultaneously, is a differentiable

line element field in O 2

dw
Note, We often write a first order differential equation as J, = W(x,4)

but we mean & line element field where vertical line elements are allowed., The



slg=

d =
solutions of — = w(._:-f-ij) are C curves — not parametrized or sensed,

o %
D N M (¢Y)
Definition. A differential equation . = = - or
B ax N L";'j‘)

MO, d x4 NCx ) d\.l =0 in Oc R.E‘ is invariant under the local l-parameter
ou T enerated b = ¢ 2 2_ in case each diffeomorphism

group {l ‘tE Z y e R-u-:,\g‘l gk ?jk"‘-'"ﬁaé"j P

of an open set @‘G onto 5; c O , effected by a transformation of {Tt% .

carries the line element field of R in &_ onto that of D 1in S, .

Note, If W is invariant under ?Lth then the solution curve family of N is

mapped onto itself by each transformation of i"i‘t‘g , Wherever defined,

Definition, The manifold Z(8) of line elements of § 1is a differentiable
j-manifold which is diffeomorphic with O x %' , in a natural way. The pro-
jection ™ :JL(O)—~ O (onto) is differentiable and for each point T CP) is
the set of line elements based at © and this is diffeomorphic with S

A differential equation 1@ M(x,4)dx + N (x,y)ly = © (MZenZ> o0
in O ) is a differentiable surface in L(Q) above © , That is a differ-

entiable function L: O — [(®) such that T« = identity.

Remark, In £(Q) we can use local coordinates (x4 ) (where # = %3; is
the slope of & line element) and also another local coordinate system in
nb‘ta,in;.,d by interchanging x and \ in the coordinates in 6. A diffeomorphism
w=wlny)  v=vix,y) between open sets {9‘} 8, ¢ O induces a diffeomorphism
between "' O, and w' O, 4in FL(O) . In local coordinates the induced

diffeomorphism is (x,4 o3 — L-:-cp._u“cb‘j where

ANV xy4ix)) = . SN
CE = e B X ﬁ‘j’{
dhﬂ.kh,\-ﬁ_k_;'lﬁ éi... + 'i‘:'hE'_uu G
d % Q%

A local transformation group (i x,y), «¢t,x,4) 1B ® induces a local
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transformation group in ALS) by (x,4,®) — QLk,%,Y4), W, x oK), Tle, x ,Y4,%)

where, in local coordinates,

SWAL %,y ) oy
i P T
LL”J“;“‘jJ'@\} = b
EX 2@ ¢
= A X oY ﬁj

Theorem 5, Let n = Floudx aquey) S be the infinitesimal generator of a

-
local l-parameter group on S ., The infinitesimal generator of the induced

local l-parameter transformation group in of €O

is

'LL# _— #‘u._‘ﬁp.j\} %‘ 3 {3L11\jj§-ﬁ + E"“-.I\.*F;I‘j‘,'gf) ELE—G
where (in local coordinates)

: Sk Sa _ 2% R = o

- ki.,*ﬁJ{?'ﬁ - -5;1 = Krf"j T_—Di-) I\ QJ)G s

Proof,

The induced transformation group is @ LE%4), W LL %,y) and

Liex,y )= YN F 2e - W -
4 jkj? L@i*.q\aﬁ & ﬂlﬂn Kat ti___ = ’S;L‘L}I'jj’ J Ejt>—'ﬁ:;{} %Lﬁ '}%}
and
- TR \_ (,\@,ﬂr{;?.{i)i .
Thusg Jﬁxk*ﬂjkﬁjl@“)—_- 1'L%#- ]'T':Stj’?l} —;'E‘IK-C-,_*L;?:‘
[

as required,

Q. E. D.

Note. '1&3 is called the once-extended infinitesimal transformation group.

Theorem 6. A differential equation D) MUxy)dy & Nk M) dy =0 M o

in & ) is invariant under the local transformation group generated by

e — -T—Lv_.u&";. S T %l‘ﬂ-"jjg'{j
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if and only if the surface D in £(8) 1is invariant under the local group

generated by U.f . This occurs if and only if the vector field of W is

everywhere tangent to the surface I . If, in local coordinates (x,Y,®)
™

in L&) , D is the surface § = wix,y) (or Witxy) = = ), then S 1s

invariant under U 1if and only if W ¥ - ww,ﬁﬂ = o at points of N .

Proof.
It is clear that 8 4is invariant under the transformations generated by W
if and only if W 1is everywhere tangent to the surface ¥ in ALEY
The tangent vector I, A £, is in the surface { = v (x\y) Just in case

P ew ) v ewgY R () =0 or Wl g-wing)l =a  on N .

Q' I. Dl

Example 1., U= %j }‘u.':%g leaves v ' = +(x) invariant.
2. lp = = e +:q.-c:}- -":-—xﬁg— +':-=-.—§- +L\%'§’Ej%
o Y o~ Sy AV S X >y (%
leaves ; -

I=*3 < FwEen?) or /= 377 » invariant.

¥ A ‘El L .j Y Jripﬂ 1|r_

,'.l
30 W o= x4y g—j W= 22y 3%3 leaves ' = r(Y/x ) invariant.
Theorem 7, Let the differential equation D% Mixy)dx + NUx,y)dy = 0
™ .

(MZeN® >0 in 9 ) %e invariant unde:® the transformation group

generated by A .= ‘:“fuﬁ\%; 4 %'&.ij\ﬁ\j %_S “ Assume the trajectories of

. L
W in O are nowhere tangent to the line elements of D , that 1sj

QM*%”#‘G . Then P i
M 4N

i{s an integrating factor for N , that is, _STJ () = %—H (4 N) .
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Proof.,

Wo verify («M), = (4M)_ near a point P e & and assume N Y) #O
near P otherwise 1'\'1('{,;) # O and interchangs the roles of A and 3 and
use other local coordinates in d (&) .

/
"Now WU [——P +-E1-}—-] =0 log }3 in the subset of ELLG’) lying above a

neighborhood of & . Thus

: ‘——;(%L) *‘é%é ) + %ﬂ”%a"g'ﬂ“? - ’Cés”ﬁji: =

z|Z

S
3 (M 3 (M i - My o
”CTan( N) * 8 'aBQN) = %1"‘[%%"‘;1)( N) _(;3( Nﬂ) =e
identically ‘in ('1‘,%) near P in O ., But this is just the assertion

(e M) = CM)y . Q.E.D.

Remark. The condition that S M dx + N c’xa is (locally) independent of the

path does not depend on the local coordinates in which the differential
M o % + Ndlé is expressed. Thus near PE€C  select local coordinates
(Etill called {‘I_J la‘) ) so that 'LL'—‘-%. Then N("?!_J'-é} e L& near P and

— E—E—_—T&%; = W (%) or M{"{,é,):-—wiﬂ) N("{,E) . Thus we must show that
1""6
|

= T is an integrating factor for — Wi(x) Ntﬁ-"éjM + N(ﬂ_ﬁa?dﬂg:c}'
70
But certainly — W) do +£Q§ is locally exact,
Exampls.
1. Linear differential equation j_% - POy = Q (%)
=y ¢
Group W= e S iy %__
S
/ "Spd_ﬁ. - 'i:'c.j-.:"';{
Y= e %_ﬁ - Py e S 9
Integrating factor § P d o
A= €

2. Bernoulli egquation d S
q ﬁ-“f‘ pf'ﬂjfgj — Q{-?:\}{_ér ; S#:C]Jf
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Group U = [MJF S{.E—IJ ?E:t'].:ﬂ:-:j Laﬁ-%%-
= g 1)PA
U= [ﬂﬂ‘-'? SLE-—L‘) PE'?():QI_ Lf%.%ﬂ + [(5-—#] p{ﬂj% egts ) "': 5“3 S(b-uj‘?imj%‘_?
-3
4 erp (-5 Pendx
3. Homogeneous equation ,a" e F‘(Lé/i)
Group WU = 1%‘:‘1 oy %—g
w = -%; + 4 Eé
(=% F + !a)
4, Variables saparabla Lé*' - cﬁ-”‘“*"(g)
GI‘C}UP d = Li_yc _} ;#
3 I U_”ﬁ(aj a—f*\?a_p
Integrating factor .« = ——
'-Pféﬁ

Theorem 8, Let | M(-Iifé)ﬁi}_ﬂ* Nﬂ.a: a)na NSobe invariant under the transformation
group generated by b= $Eﬁjfaj% -+ 3(‘{,6‘1 %‘é‘ in © ., Let PEC 1pe a

non-critical point of "W . Then in a neighborhood of P there exist local

coordinates (canonical coordinates of W ) in which we obtain

aE", Wl vy - AL = O or ?LI = = if W) =0 |

Proof.

Taks local coordinatss Wl%),Nix4y near P so that U= % . Then
the slopes of the line elements of & do not depend on V , If the line ele-

ment of & at P is parallel to the N -axis, write du= o
Q.E.D.

Here K can be "solved by quadratures” in a coordinate system determined by

the infinitesimal group W .
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6. Canonical forms for certain second order differential equations,

A first order differential equation

:} ,. W(!',b?) ox + M('{J}t)gi}/ = (ME.,LME)Q v O )

is locally equivalent (under change of local coordinates in € ) with fﬁ =@
Not all second order differential equations )Jﬂ' _ WCH;?;}") are so
equivalent to y“= o .
Let ~ be a point in % < =<  and let £ 'x(¢t),y(t ) andf.* ?fﬁ),ﬁ(t)

define

LD

be differentiable curves through ~ at #=-0 . We say © and
the same line element at =~ in case they have linearly dependent, tut non-zero,
tangent vectors at ~ . If & and (.21 have the same line element at /~ ,
choose new coordinates CX,6 ¥y ) so that (£ . V=¢(x) and E : ?: 9'3 (¢) pass
through /~° X=o0,y=0 . We say & and E define the same curvature line
element in case ¢co) and ¢ “to) are equal. Thus, in apvropriate coordi-
nates near /% , a curvature line element has four coordinates x,y p=y /=Y’
The manifold 4K (©.) of all curvature line elements of 9 1is a differ-
entiable A-manifold, diffeomorphic with &, 5’ , .o’ 1in a natural way,
There is a differentiable projection ¢! K (8 )+ (@) such that "T-?"‘fh_ﬁ"/a,(]’ﬁj

is diffeomorphic with /' for each point ( x., Yoii s ) in f(dﬂ) .

Definition. A second order differential equation, written y’_ | (x yy')
)

is a differentiable map w: S —~ k(¢(©) , where s is open in (o) .

such that ¢-w  identity on S .,

TS, S,y 18 Soeuntace: In K (& ) lying above an oven set < <. 7(9)

A diffeomorphism of open sets & — f_ﬂz in /¢ induces a diffeomorphism
of <(&,) onto £(f,) and also K(J,)onto A(&, ). In local coordinates,

Lx, V) ~-~=.s---(e:—-:i:’rwf,*;-h'j Vf'x,y_}) induces o — V% +_V‘>"t’? and
E’LE{ + L{l:l.l P
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., —m= [{: Lt + E,{_.:’I; lﬂ‘_/)l’::' VR.'K + & ‘h’rxyaﬂ £\ y I?:: = v}' IL)* ( /1 Vy{}ﬂ)‘r#xﬁt+aﬂgyﬁ'#{f};?}?:‘! #yfﬁ-ﬂth?‘ﬁyif]j_i

5 & \ g i?—
Thus an l-parameter local transformation group, generated by «= H-:u',ffﬁ} r,_,'f*‘-.,-f./);},
on (9 , induces a l-parameter local transformation group on (&) with infini-

tesimal generator 1.°

|

= =4 > ' .
L = + 39}’ + ﬁ{’ﬁ;ﬁﬁﬂ’igﬁp ‘f,,é{'x;x,ﬁ,ﬂ/}cf;—u

where A(x,yp) = 314- {f"y‘?{;}{;ﬁ* f'}ﬁc;';— and
L (x,yp.r0) = Ax tAY P +(7£F Pﬂx ~1fy§;-}ib

or

{J{ingﬂ.fb) = ?Hf * EF (Z'g.ﬁy -7&:‘;{ ) “'ﬂgf"z(jyy' r?_v‘ﬂx}/) ‘;&,yﬁ!*ﬂ(gy"gé "SJFF)

Definition. Let y'= wix,y,y/) be a second order differential equation over

S © L(S) and let «U-= ﬁfxiyjfj,{ v-'—;f‘rngj;, generate a local l-param-

eter transformation group f}’;f in 7S CJ ., Then y’”:wgﬁ:_,y;w) is
invariant under X (or under the transformations generated by 2. ) in case the
curvature elements of the differential equation are carried onto curvature ele-
ments of the same egquation by the induced transformations of {?E;J? , wherever

defined,

Theorem 9. Let }"”= i/ (x,y,y') be a second order differential equation in K(&/
over an open set O C L10) . Let &= fffa)')i *"gfxiy)‘%, generate a local
l-parameter transformation group {'{f in 75 ¢ & « Then VY% w i, Y,y )
is invariant under {F?;:f? in case 7= /(2 +§§3-/ r‘#f&, ﬁi_.,é,é'%’_} is every-
where tangent to the hyper-surface of ;7= w/cx,yy’) in K(Z). 1In local
coordinates (x,Y, gﬂjm) this occurs if and only if 23,’*’(;3_, = ,:,_}(ﬂ;;_,yjﬂ::) = D

wherever /Jo = wix, Y, ) o

Hr

Bxample, Y= [P(x)y '+ Qi) y + Rlx) in C™° over -=w<x<®,

o sy <@, —co<y<c oo . Let «©(x) be a solution of the
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homogeneous equation and define the local transformation group by U = o) _-;'_'i#

¥ = = 74"
Then /(L7 - BRI + @”{x}gﬂj" @”Eﬂfh . Then L' [r - f'ﬁfxim*@cx)_y 'ﬁ?mjz

= T@x) QRQUX) -p'(x) Plx ) + p”¢x) = o,
Thus, near each point CEJ}L@:}} = af(’,a?z) the differential egquation is invariant

under the local transformation group generated by <L

Example, Consider VYy"_ XYy +Tan y’ in (x,y)e€ Ze and /p/ < T/z

Suppose in some subregion J c R < » the infinitesimal transformation group
Cls= J—’wjy,)g; &= 9 E“*y‘)j_'} (not the identity mup) leaves ;/'#-_xy.,b z;% y"
invariant, Then
ﬂyf=A3+{Exﬂjyﬂ&)mw%ﬁﬁfﬁfﬁ=*%x+?m$w'ﬁl)
P2 (gyy -2 "":fy) - Lyy 7 + (Y tlangp) (2y -2 4 -SAyplz O
In (x,y, ») in §

This requires: -y /- xg t It xy gy —exy L = o

ix=%° , sy -SLy=8," Ly=o

ijy" -;f,,,.-x = Iy -Jf’y = O,

Fry _E"ﬁ“}"iﬂs 'ﬁ':-"f Jﬁbf'“z"f”:?ﬂ'

1]
o

Then = f'(x), §=91y) .+ But £’z £ 8o £~0 and # = constant, Then

7 = constant, Then —y/_ 9= o which is impossible,  Thus Y= xy +Tany’
1s nowhere invariant under a local l-parameter transformstion group, Therefore
one cannot introduce new local coordinates in an open set in A ° » Hx,Y), VX ,y )
so that (near the slope ff = Jo ), this differential equation has & solution

curve family which is diffeomorphic with the solutions of V= "E?'ﬂ)vf.-fc;?r’n) v+ Rlu),

Examples. Consider " = w(x,y,y') invariant under
D
a.) 2{,:53 and 3‘{3:% *

Then v = wly’) | Set y’=Vv for quadrature.
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b, ) E{"::Ey ; C}'(a"":;y-

Then }a“’:wtxay") . But dﬁf—-f".ia‘y* 5“57 . Then
" (o -wix, ) - .- =w Th ' = tCx )
w, ( y#)) J =@ 80w ), oy SR G & and

solve by quadratures,

c. ) ZJ.-’*E}IME.:-"E;*)’;%,.
Then w = wi(x,y’) . But Ez::-x‘;,‘*yg-},emﬂm . Then
Uy, (r - W(“Ua*’})hfb_%'—mlﬂ where /U =w((x,#). Thus x'ilfﬂthﬂ
in ,fJ) . So w= ¥/ ., Thus Y= ¢y )/w  (or y?” = 0o ). Let

[l

Y!: v g0 VvV = “’?‘:Vj/x and solve by quadrature,

: % - =
d.) li:'%y,gffa‘?é?.

# 24 - _i;_ —
Then vy“= wix,y’)  But <« =¥ Sy P ;.-_:,};ﬁ:; ,,a;ug-w .
Then Exf(’{-|n;{fjﬁﬁ-;;)=+5ﬂ'%ﬂg? +F o= © where i = mx{xJ@)_
Then -F%? + W= O in ﬂx:&?) s Thus w = Clx/ ?ﬁ o
Then Yy’ = Cecx)y’ . Let y'=y 80 V'=cw) Vv and solve by
quadratures,

The pair of infinitesimal groups a.,) and ¢,) have non-tangent trajectories
whereas b,) and d.) have tangent trajectories, But a.,) and c.) are different
in that for a.) (% U] =24 -y, i, = O whereas for c.)
UM )] F U u, -ty = 4, - Also b,) and d.) are different in that for b.)
La,Up{ = Ui Uz — Uyl = O whereas for d,) L&, &, ]=d b, - 4 = «, .
It will be shown later that cases a.) b.) c.) and d.) represent all the
2-parameter local transformation groups on f?z » Thus a second order differen-
tial equation which is invariant under a 2-parameter local transformation group
in /%_"E has a cancnical form which can be "solved by quadratures.”
It 18 interesting to note that the cases b.) and d.) yield the canonical

forms VY= wix) and Yy = (&) Yy’ which are linear and which are known to be

equivalent to y"f = &
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In () there is a distinguished class of non-singular differentiable (non-

para,metrized) curves known as line-element unions, These are the vertical fibers

)

(xu,Ye, o) and also the 1ifted curves of non-singular curves in ° , that is

St

iE g

yee)d), P= y/;: . Thus all differentiable curves « (<), y(<), = <« J with

gtr > >0 and Y -px =0

Definition. A contact transformation of an open set S C L(O) 1g a diffeo-

morphism of & onto itself which (together with its {nverse) preserves the

clasgs

of 211 unions of line elements.

Rach diffeomorphism of & onto itself induces a contact transformation of

- V4 véf f
Z(B) onto iteelf, {'x,}",,;:’) — (J (X, M), ML Y %= ) .

..-"r_ w T _!ij

Let J: Cxyp)—=( X_(xuy;,a-r,rf?m;wgﬁj)f PCx,Y, o ) be a contact trans-

formation, in local coordinates. Then each union x(¢),y(¢), z(¢) with
52095+ 5 >0 and y -7 x =0 must transform to a union
Xl)= X(xe2)NE),pe) ) Yeg) , PCE) . Thus ¥V —~” X = © , 'his

is guaranteed if oy - pdx = ‘{“:xﬂ,,l,j,y,' [« ¥ - Pox | for a positive

function (cx,Y, ) .

—

Example, Let S Dbe —= < x,V, Vv o< e and let <  be
SXample

—
.
.

el Rt S

Gt

= @ e

— <
Ir O 1is a differential system A7 (x,yldx * AM(xiyledy =©  (M%nN©s0

in /9 ), a surface in an open set 5 < () ¢ then the solution curves

of L

in 9 1lift to element unions in O . In fact, the process of finding

the solution curves of 9 in & , consists in decomposing the corresponding

surface in . 1into the disjoint union of line element unions which then oro-

ject onto the solutions of J in o~ . A contact transformation of & onto

—

maps the surface of 5 again onto a surface 5 ® in & which is the
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anion of disjoint line element unions. On 9 ¥ this decomposition might be

easy and thean the inverse of the given contact trangformation finds the solu-

tions of 8 , as required.

Theorem 10, Let y“= wxy y/) be defined over an open set S c A(S) . Then
for each point ,o©o¢ _ , there exists a neighborhood ~N. < S and a contact
transformation of /V, onto itself which carries the solutions of y”=wix, vy v’

onto those of v =06 in Ao .

Proof.
Choose the local coordinates in S so that © is ( o, ¢, @), Then for

each point Q@ (x,y, ?}' near /~ the solution curve of the system
=¥ 2 —CI-;E—- wiﬁfs}‘/;&’j)

Ix = F, L

hits the plane x= 0 at the point Y, (x,Y,2), P (XY, 5’)*,

Consider the change of local coordinates in A/, Gx,y, p)—> (4,V, 3 ) where

e " D,
)’éir;hﬂﬂ):v—u?,@uﬁxmfjﬁ;‘:3 , w= -5’_#”/3%}': . It is easy
to check that x-o5,y- 0, p =0 corresponds to & —o y = © *’Z = O and
SCu, v, 5 )
that L4 '/F-‘ - . The first two equations guarantee that the
= Cx v, )
XM H S :{4
gsolution curves of vy’ w/ in A/, fit onto the lines du=f.d8 T 2 ,
&
that is, the solutions of ?1 - 0 The third equation specifies the
."_{

change x — )  along each solution of y“ = vv so that the map is a contact

transformation, cf. Lie and Scheffers Berihrungstransformationen, p. 83.

Q. E. D.

Note: vy - (y”)% is not equivalent to Y%= 9o under a contact trans-

formation, cf. Berfhrungstransformationen, p. 86.
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e Topological Groups.

Definition, A topological grour (; 1is a group which is also 2 Hausdorff space

and 1.) gl o w3 e Graels il
2.) ¥ = gt G~

are continuous.

Note. An equivalent definition merely requires the map x, iy — x 'y GxG =G

be contimuous (using the product topology on & & ).

Remark, For each 9 e (; » the maps

and « = x ! L = &
are homeomorphisms of ( onto & . Thus each point x of ( has a neighbor-

hood A/, homeomorphic with a neighborhood of the identity A = x7" A4,

¥

Example. I with vector addition,

77"  with angular coordinate addition.
!
S, Spin 3
Ly, @), Olw) , £Cn )

Qac,ay &%= ) with a # © ,

Example. [><1 not a topological group.

&%) not a topological group.

Definition. Let &, and C-?L be topological groups. An abstract homo-

morphism - 7 & > (,, , which is continuous is called a homomorphism, If

e
I

+ 1is also a homeomorphism of <, onto (', then £ 48 an isomorphism, An

7

isomorphism of (, onto itself is an automorphism. For each 3¢ (¢
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oy o K TP
7

is an (inner) automorphism of (= .
Definition. A subset 4/ of a topological group is called & subgroup in case
A/ 1s a subgroup of the abstract group & and, with the subspace topology,

4~ 1ig a topological grouv.

Definition. Let &, and &, be topological groups. Then the abstract direct
product group [, x (& o , with the product topology, is the product tovo-

L}

logical grouv.

/

Example. 77z Sx§ w o ws ’f (n factors).

Theorem 11, Let & be a topological group and V< G is an abstract sub-
sroup of (& . Then, in the subspace tovology, // is a tomological group.

e
—

Also # 1is a closed subgroup of & . If 4/ 1is normal or abelian, so is H

It is clear that #/ is a Hausdorff space and thus a topological sub-
eroup of & .
Let x € - and VY € # and let (/= be 2 neighborhood of

p—
f—

<Y . Suppose 4 N Hgz is empty. Then for X near x and

1L

M

Y near Yy with X< #/, j e H we obtain ;‘; e A1 Uz :
which is impossible. Thus Xy ¢ V7 S Similarly x ¢ ~ and so #/

ig a subgroup of & .

™
=
e

Agsume 4/ is abelian, Let «x¢ ,Jf Y and suvpose a/ff;a/}/--f :
Then separate xy and yx by neighborhoods Uxy end U, , respectively.

Then, for X near X andj} near Y , with $e H, o e H , We

i

obtain £, ; & U gty which is impossible. Thus /~ 1is abelian.
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Now 4/ 1is normal just in case the set # 1is inveriant under each inner
automorphism of & . But then the closure 4 1is also invariant,

Q. . D,

Theorem 12, Let # be a closed subgroup of the topological group & ., Then

the right (or left) coset space &/4 , with the identification topology, is

a Hausdorff space. Also the natural projection
. G = &S

i1s an open, continuous map onto & 4/ .

Proof.
By the definition of the quotient topology, # 1is continuous onto /4 .
Let O ¢ & be open. Then p(®) 1is the set of all cosets in (/4
which intersect ~ in & , that is, ga'f/_?;[ ::f)] is the saturation of
O .  But g [pCo) | = HO = G _,, A & . Now A& is open
and hence '/ p(a) | is open in & . Thus r;b(f.@) is open in G/H
s0o ~ 1is an open map.
Let #% and #“y 'be distinct cosets of G/% , so  x & Hy . Let
Z =y 'x and we need only show that there exist open neighborhoods 4z of
Z and . of the identity < whose saturations (by right cosets of »‘/)
are disjoint. Suppose the contrary. Then there exists a seaquence (directed

system in case there is no countable neighborhood base at <= )

T E, e, -, b,
with 2. = 4 e or 24, = 2,¢e. ' _
Now e, — e and g0 A, — = . Thus 2Z< A/ or xe Hy
which is a contradiction. Therefore (¢ / 4/ is Hausdorff,

Q. E. D,
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Corollary. If N 1is a closed normal subgroup of the torological group 2 o
then the abstract quotient group &G/ns , with the quotient tovology, is a

topological group., Also the natural projection - & — G /N is an open

homomorphism onto &'/ A/ .
Theorem 173, Let 1 - & = H be a homomorchism of the tovological group
“  onto the tovological group 4/ . Then the kernel

N o= £le)

is a closed normal subgroup of (. . Also there exists a continuous one-to-

one homomorvhism w» . &/ — # , onto ~ , such that #£ = P 7’
Prﬂﬂf-
The function ¢  such that f= @ % is an abstract group isomorrhism.
let dCc 4/ be open. Then ¢~/ ,4)- " 2 ) {s open in G/A/ .

Thus -# is continuous.

Q. B, D.

Corollary. If £ is oren, ¢ is an isomorphism of &' /A/ onto 4 .

Theorem 14, Let 5 be a topological group and let A be the component of the

jdentity © of & . Then 4~ 1is a closed normal subgroup of o o

Proof.

—

A component is necessarily closed since K 1is connected if K is
connected. An automorphism of & maps e — @ and the component of

= again onto the component of <

Q. E. Do

Bxamples. GL,(n,R)=SL(n, R, Cil(nn)=S0(n) L,(n).
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Theorem 15, Let & be a connected topological group. Then each neighborhood

% of the identity < generates all of G (by finite products of elements

in L),

Proof.

Let = = LJ ‘. Mot (N G . Since = 1is the union of oven sets, &
is open in & , Let «xe = and take an open neighborhood ' of 2 80

) and W < WL . Then there exists Y ¢ Wy , where Y € =

W
80 y = Y, ViV with Veyedl o Then ViV, «-: )= WX and
x = w3l V, v+ vy . Thus £ 1is closed in G and & - &£ is orpen.
Since ‘= 1is connected, & - & is empty.

Q. B. D.

Theorem 16, Let < be a connected topological group, A discrete subgroup

AN is closed. If A/ is also normal, then ,/ lies in the center of & .,

Proof,

Let /¥ be discrete so that - is open in A/ . Thus there existe an

open neighborhood U, of & in ( such that AN U = e , Let
X € N . Then U, x intersects 7V , or V, X = Y, with Vv, < U, and
Y, € A . Suppose v, ¥ € . Then use a smaller neighborhood

4, c U, Vi € U, and write V; x =y, with v « U, , ¥, € N,
Thus, if 2/, 1is sufficiently small,

Then v, v,7'= vy, y e :
Vi h o= @ so VvV, = V- which is a contradiction,
Now assume /v 1is discrete and normel in £ . Now g % G‘?'”I c N for
each x< N and 3 € @ . But <cx e’ = x and S0 gxgl:-c
for each - sufficiently near < in 7+ Thus there exists a neighborhood
LL of < 4in ( such that g x = =9 for each - « L and
Xe AN . Thus 4 1is in the center of & 5 since Y 3¢nefd't'95

the connected qrevp G. q.E. D.



Definition. Let & be a topological group and X a Hausdorff space. Assume
that for each 7¢< &  there exists a homeomorphism of X onto X

7, . X — X x. == & (x,9 )

4 7J
such that:

T e = g = ;
1#) ?. "er - -?:?_Ifjg or ':Pfr’h:)dfa?;) CP(@(‘]{;;‘:J;;L).
~ is continuous (in both

2,) The function (g, x)>@x g/ CxE— &
is called a topological transformation

variables together). Then #° CxX—+~ X

group of ; acting on X by the function &
. then & acts effectively on X

If, in addition,

7 (identity)<= §='e

3-) 5 = =
Remark, The axioms 1.) and 2.) of ¢ . G x X~ X  4insure that /. = 7
e il 7 >
and E" = (75 ) . Axiom 3.) insures that 7, — & <> 7/ 7=
Definition. Topological transformation groups <« : &, X X, —=» X, and

are isomorphic in case there exists an isomorphism
(onto) and a homeomorphism » * X, — X, (onto) such that
(x,9,) € £ %G

4 - G-'z'x"zl_r}- 'E'?..-

I &

C—?#—-C.;E_

Foa

wgiﬂ;{ﬂuﬁ,}j = P, '{_dt#“‘("f; ), j:" rf"*‘l:{' for all

let ¢: Gxx—> X Dbea topological transformation group.

Theorem 17, &
78 is a closed normal subgroup

Then the set /V of 3-:-:" G for which ?{; -
ig then an effective transformation

N of & . Moreover G/ . X
group under /, = 7. .
Mj ;‘
Proof.
Clearly // 1is a subgroup of & . Also for a directed set gﬁ,—} r?

with ¢(x ,9,) = X for all ~¢ X , we must have ¥(x,2) = X

Thus // 1is closed in & .
define the action on X by

For each coset A/ g < &/
, that 18 g (x Ay) = @ x, 7/ This is well-defined
> .
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since if N4 = f’""/j , 80 25 & N we have

‘. G =5
3 cx NB) = @Cx, 4 )20 ,n3) =@ Lecx,9),n] = @ (x, 97,

Also ﬂ?(k;ﬁjf«q“): cp(’@{ﬁjf?"f)__,.;j)
= o ex,457),5), 4
= el @ik, 57 ) 4 )

— {P{:’{Jﬁ'ﬁ_v :@{ﬁft):x

/
1f j{-’ A/, Tus A/ is normal,
Finally suppose & (){JM;j = X for all xe X % Then o(x;5)= X
80 g”‘f:: A o Thus G/nv ¢ X is effective.
Q. E. D.

Remark, We shall usually consider effective transformation groups.

Definition. A topological transformatlon group

,_:P:{;x.&i—"g

is transitive in case for each pair xe X ye X there exists a 9¢ &

such that «wx,97=Y

Theorem 18. Iet & be a tovological group and A/ a closed subgroup of (G .
Then the grour ( acts transitively on the quotient space of left cosets

G/~ . If the only normal subgroup of & which is contained in A/ 1is the

identity < (that is, V/ 1is abnormal), then & / G/ is effective,
PI‘DDf-
For each 9. € G and coset g N define &( rﬁ-;"ﬂf; %)= 7t d N é

Then f-{giNJQ;éﬁ; J — ?Ej,;hf = r.rf?(lgwq r’\f#, g.;;, ,\l as required,
We miet show that f?;\;’ — 57:3 A » 1s a homeomorphism of é’/m’ onto

itself, This transformation of G’//\/’ onto itself is well=defined since

if 4N -2 A , then g = 4 1 and so ?Hﬁ?ﬁj:;’,é}p}vj:jfgjh/ ;



Also the transformation is one-to-one since: 9 N =9, 8N => 29 =9, AR

i = 3 s & r""-f} - _},ﬁ =
or ; H 7 50 I N
Also the transformation is continuous in the pair 9 ) gh/ since
0x( - G 1s continuous and 7, ! = y, 9N @ G= G/ N is
from GxG — G/ NV is con-

L'Ej"*uj )—"ﬂ-jg ;
is open, the map

continuous.  Thus (9, g ) —= 3.9 A
tinuous. Since the natural projection »° & = J/a/
{'3i..: ?ﬁ.;‘r)-—} }jrg ~/ is continuous. Moreover this map is a homeomorphism of C—:/,«;,f
onto itself since the inverse of the map /o .’ﬁf\f% 9 9 N is the continuous

is transitive,

T..J i
It is easy to see that the transformation group G .’ G/A/
£ A .

map A
For given jz\f and 7 f\fg take ¢, = 4 3‘ and then %9 N
Now let A/ be abnormal. The subgroup ,::f el which acte as the
tdentity on . /»/ 1is closed and normal in . . If 7« ~/ , then
i(h;) - &/ or j — AN R Thus ,-*{:“ c N . Since A~/ 1is abnormal,
Tus & ° C/a/ 1s effective,

", =(e ) °
Q. E. D.

The left coset space (. /A/ 1is called a homogeneous space since

Remarlk,

ar G/A  is transitive,

and the closed subgroup

Consider the rotation group O, (37 )
is topologically the

Example,
Nz(ﬂf Oaw ;)' Then the left coset space O (v) /N
actea transitively and effectively.

).
) and O_{_E'ﬂ') .-1‘ !
If ‘Ff”ngﬁ) is an

sphere <" '
et w: GxX—-=%x be a transformation group.
, then the transformation group

DEfinitiﬂﬂn
o B A

open map of G—- ® , for a fixed
KS -]

is called locally transitive at
is transitive, and if it is locally transitive at

If p:CcX>X
, then it is locally transitive at each point x ¢ X

Note o

e © X
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Note, If V' is a closed subgroup of the topological group (& . then (- G/N’

is transitive and locally transitive.

Theorem 19, Let . C'x L — X be a transitive, effective transformation
group, For each point xe¢ X , the subgroup A, < & such that o(x x/ )= x
is called the isotropy (or stability) subgroup for %X . Then A/ is a closed
abnormal subgroup of & , and A/, is conjugate to N}‘ in @ . Fix a

point = <« X and write fn"fz =~ Then & C';/M is isomorphic with

@ Ax¥X - ¥ , provided (/o is compact or 4: (X — X 1is

locally transitive,

Proof.

If p(xg9,)= x  for adirected system 7, — ¢ In (- , then, by con-
tinuity, Cﬁfﬁgj) - x so that ~/, is a closed subgroup of G

Take points x,y e X and write ‘F{x*gj =y or qﬁ{'y;g") e X s
since @, o x X — X is transitive. Then j ‘"“’3:3” E N’y ’ For

s

—_— qﬂi ff{:qg}{'hij__) MxJJjj

@ (Y, 3 N, ?") s <Ia5‘t} e:a}f";.—flb;'"__lj gf\fx

= @iy &) =¥ .
Thus fﬁfxg'ﬁ - M){ . By symmetry ;"ﬁ/y? & M 80 A/yc‘:j‘w} 3‘”
n.d. i ‘;"" = /: ®
/N B

P
Let »/ be a normal subgroup of (  whih lies in ;1.4 . Then

5.&?'5: N oo M}, » Then ;‘;’ acts as the identity onall X so f:f’— (e )
Thus each A/, 1is abnormal.
To define the isomorphism of ¢~ Z/x/ onto ¢° G x X - X  use the
identity automorphism of & onto & .. Map & /gy onto X as follows,

For each left coset # #/ of (/x/ there corresponds a point x & X by



SF=X | Alse 4f piz, k) = X 4 thenm (s 7l )=z 80

F ' E AS and PER AN » Thus the map 7Y : G/ —> X PN X

- —

is one-to-one onto X . By the continuity of ¢ , and since the natural

H{”/ﬁ,/ is open, we see that 7/ is continuous,

N

projection

7

If &/~ is compact, 7~/ 1s a homeomorphism. If «.  GXx2L =7 P
is locally transitive, then 7,/ 1s an opén map and hence a homeomorphism,
It is clear that the action (' 7 /4/ is the same as that of

-

w: (xX =+ xX . For write oz 4-)-x eand UY' = - A+ We must show
1,

that /. @i, 5) «— .V . But @ = /7y = @(y GJ and so

-'13{3"5_1;_) i g\ag A/ o Qn Ev Du

Example, G2G 80 G acts transitively and effectively on itself by lef?d

muzltiplication.

Examples. k,—.»i(’;;;,éﬁ*) acts on ﬂ«?h , not transitive,

O Cn, ) is transitive on A A .

fﬂf_f'-?’,,fc?‘} ,:..(“: - ¥

.' £ < __ ,

k ) on 1: - C:"‘:;(}jj’ﬂ?)/GLCH;R) _
A / _ 2 i

Definition. Topological groups & and ¢, are locally isomorchic in case

there exist neighborhoods / ~ . and . < ¢ of the identities such
that: there is a homeomorphism /'’ 4 — L, (onto) such that if «x, Y,
wi x my <y e wo s £0n), 29, £0a), PO e

and /vy ) = Fo) £ty ) LCx"") = +(x,),

Theorem 20, lLet A/ be a discrete normal subgroup of the topological group
G « Then pg & — G/ N ig a homomorphism onto the factor group &/ A/

and also # 1is a local isomorphism of & with & /A .



Proof.
Let W be an open set in ¢, such that W7 N=c . Let /{ be open
in (& with k2 'C W and write p(4)-=%' openin G/A . Now p
18 a homeomorphism between /L and 2 . TForif x yc U &nd
I

px)z p(y) , them xy'c,/ and hence xy = < oOF Xx=Y .
anl DI-

8. Lie CGroups.

Definition, A Lie group 1s a topological group < which is also a differ-
entiable manifold, and

1.) X,y —> XYy s G G =&

2:) x — x™ g >

are differentiable maps.

Remark, For each g c & we have
XN o—> ;}‘ X s g 2 I~ (e
J- cee .-H'_? J Eﬁ, : Q': e C;.

- | —
X = £ C;fé

are diffeomorphisms of & onto &

Definition. Let &, and &, be Lie groups. A (Lie) homomorphism / @ &

into &, 1s a contlnuous hamnmnrphiam which is a differentiable map. If
/  is a diffeomorphism of ¢, onto &, , then / is a (Lie) ismorphism.
An isomorphism of &, onto itself is an automorphism. For each ;‘ £ C:, '
Hgld g
"'{'? a X - ? < (?
is an (inner) automorphism,

Remark, Let & be a connected topological group, with a countable base

for the topology. Assume there exists a neighborhoed i/ < V of <« 1in
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¢, and a homeomorphism 4 of V onto an open ball G’ <c £~ , In
the local coordinates in V assume the group operations are differentiable,
that 1s, XL wuU ' C V and

e e IR afé(:f:x‘j o )/; N ‘j\/ﬂ) (f'=fx'5;""xb)J
and (X 1) = B e, S v, 2 ) for x,y € WL are differentiable
real functions, Then & 1s a Lie group.
To show this note that G 1s topologically homogeneous and thus & is

s topological manifold. Let 5 ve the family of local coordinate systems

obtained by right group translations of /. . Let g L and ?za, over-
lap at /~ . Then the transformation of coordinates near ~ corresponds to
the map «x ——r?:?’ x in 4 , vwhich is differentiable, Thus & 1is a dif-
ferentiable manifold, Use the fact that a neighborhood of & generates &

to prove that the group operations are differentiable,

Exemple. G/, (»/) . Near 7 use the 7° coordinates of k?‘;’h,( ¥ X H

real matrices) near O with A7 — M

Example. O, () + Near 7 wuse the WL};;—? coordinates of S near
with -~ S =S’ ., Then expS  1is one-to-one with a neighborhood of Z  1in

Oy (0(»w ) o

Definition., Let &, and &, be Lie groups. Then the topological direct
product group &G, x G 3 » wlth the product differentiable structure is a

Lie group.

Definition, Iet & be a Lie group and A~  a dffferentiable manifold,

Assume that for each j ¢ ( ‘there exists a diffeomorphiem of ;"*f'anntn e
“? EMT T o — #(.ﬂ})

such that:

l.) ¢ ¢ G« M —> A" is a topological transformation group.
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2,) The function (g,x) —=@x,J) 1 GxM'—~ /7" 45 gifferentiable
in both variables together), Then @ : G x M (Y igs a Lie
( ge

transformation group.

Definition. Lie transformation groups ¢ : &, X /7, —= 7 and
@, 3 G, x M, — Mf are isomorphic in case there exists an isomorphism

A r g, i, (onto) and a diffeomorphism o 2 f"ff,.” — ,n.ff (onto) such that

=y % )
wiox, 3 )] =, [vw),Agi | for 8l (x,g/ € M, X G, .

Definition, let G Ye a Lie group and A7 k g differentiable manifold,
Consider the differentimble manifold & x /7 K and let

Cx,9.) —* c‘.‘f’f#_.c?)

J
be a differentiable map from an open neighborhoed of = x /7 : in §xM”
into A7 . Require

1.) @(¢x,9,),4 )= aglx, gag,,) wherever defined and

2.) for each compact subset K < A7 7 there exists a neighborhood Ak
of <« in & such that the map :}‘ " = @(x,3/ 18 defined for each ¢ /A
and 7€ N and furthermore T-;q is a homeomorphism of K<  onto

some f(’? e Then ¢ : &G x M — o7” 18 a local lLie transformation

group,

Note, Identify two such local Lie transformation groups ¢ : & «+ A7 T - Ar”
and ¢ ; G x /7 "~ 7”7 in case they coincide on some neighborhood of cx A7
in G x M7 . It is easy to verify that g(x,c) = x for all xe A7

and }j_, = (’E ) ;. wherever defined,

Definition, Lie groups &, and G, are locally isomorphic in case there
exist open neighborhoods & and &, of the corresponding identities with a
diffeomorphism 4 of I/, onte 4, such that f defines a local isomorphism

between <, and &, as topological groups,

3



Definition. Let <.~ &, A M:T" ﬂﬁh amd

‘iﬂE_f GL‘H ME‘I o ‘I'ﬂ“"'?‘;-]

be local Lie transformation groups. Assume there exists a local isomorphism
£ of G with G, and a diffeomorphism ¥ : A" — At (onto) such that
w[cﬂ.frug,lj = @ Ly, ), ,f(;; Tk for all f’ju x; ) in an open neigh-
borhood of <, x A7 in G, x M7 . Then the two local Lie transformation

groups are isomorphic.

!

Note, If G =R and M" is an open plane set, then these definitions coin-
cide with those given for one-parameter transformation groups. However here
we have the new problem of finding (up to local iaﬂmnrphinm) all n-parameter
(or n-dimensional) Lie groups. This will be done through a study of the one-
parameter subgroups of a Lie group & and through the infinitesimal group (or

ILie algebra)" of & .,

Definition., A Lie subgroup A/ of a Lie group ¢ 1is a submanifold of &

which ig also a subgroup of the abstract grour & .

Note, A/ mey not be closed in & and the manifold topology on A  may

not be the inherited topology of <&

Theorem 21, ILet & be a Lie group and let v(<) be a tangent vector at the
origin, Let v be the vector field on & defined by right group multiplica-
tions, that is Vx) = JKx VY (e) . Then v 1is a differentiable, right
invariant vector fileld, The integral curve of vV through ¢ 1is a one-
dimensiocnal subgroup f 2(¢) f, in fact, a homomorphism of < "into G , and

the other integral curves of Vv are right cosets of 2_ jft,ﬂ’? . Turthermore

° g (¢ )1’7 {s the unique (connected) l-dimensional subgroup of & whose tangent

vector at the origin is “e) . Thus there is established a one-to-one



-

correspondence between right-invariant vector fields of & and one-dimensional

(connected) Lie subgroups of & .

Proof.
Let /{ be a neighborhood of = with local coordinates (x) so that
Zz“=¢(xy)t = ,é""(xj XY e,y
The vector v(e) 1s, say v;i,;- . ""V:ﬁ%h . Then at w 1n &L the vector

v(w) 1is represented by the curve ¢(¢). where (o) = v° . Thus we con-
o

gider the curve

wite) = £ PO, -, gUE) @, e, W),
The components of V(w) are g_f"@j_w) V;f' #~ _"-_“'f_t (o, ©2)+ O
> xd e J)/J ’

Thus Vv is differentiadble in (L .

Now near a point 7¢ G use the local coordinates of %9 ., The vector
field v 18 clearly right-invariant. Since JEE is a diffeomorphism of ¢
onto < carrying W to U g 1 we see that v 1s differentiable everywhere,

Consider the integral curve ;{'f-) of v , through ¢ at 2 = ¢ , Then

the tangent vector to ?{-H 1s a vector of the field Vv . Thus, in the

local coordinates near <« ,

%;L?’—ﬂ = i’%e( 0, 90)) 9d (),
In Pontrjagin, theorem 46, it is shown that g (t) -glu) = ?(t-f . ) and
hence 2‘? (+ )f is a homomorphism (which ies a local isomorphism) of < f
onto a one-dimensional subgroup of & . 1t is also shown that each one-
parameter subgroup of & , with the initial tangent vector Vv , satiefies
the above differential equation and thus coincides with 2_ yl (t‘_Jf .

Q. E. D.

Definition, For each tangent vector v at = in a Lje group G 1let j5cof
be the one-parameter subgroup initlating at v . Define <xpo v = g, (1 ),

Then exp 7. — (; 19 a diffeomorphism of a neighborhood of the origin
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in the vector space 7. onto a neighborhood of = in & . For each choice of
basis in 7= we thus define the canonical coordinates (of the first kind) in a
neighborhood of < in Q@ In canonical coordinstes the one-parameter sub-
groups of <  all have linear equations ;5( €)= a't ,

/1t 1 small,

Bxample. Let & - G’L[n,ﬁ?) . Then canonical coordinates are defined by the

map <xp M, > 5L L,OnLR) » in a neighborhood of the zero in the linear space of
: Z

all //x»n real matrices /77, . Thus (;_E . ) i{s the one-parameter sub-

o &
group in (/. ff'f-,n‘?) , otherwige described by E-(a.f o )

Theorem 22. A closed topological subgroup /V of a Lie group & 1s & Lie
subgroup of & . A Lie subgroup of & which is a closed subset of & in-
hepita its topology and differentiablg atructure from & . In fact, 1if A/ 1s
a closed Lie subgroup of ¢ then there exist canonical coordinates (x‘j -r-,x”)
in a neighborhoed U of < in G such that ~No» ZL is exactly the locus

A

’ , -+ ,x"= o . The coordinates (x/, RZ, .9 b s ) can then be

o = .g; xaz o
used to make the quotient space of (left) cosets G/~ into a differentiable

manifold. The natural projection . 4 — &G/ is a differentiable map,

Note. Dim & =— dim &/ = dim G/ A

Theorem 23, Let ~/ be & normal, closed Lie subgroup of a Lie group & .
Then G/A 4s & Lie group. Also let L &= 4/ be a homomorphism of
onto a Iie group ~ . Then the kernel

N STe) © &
ig a normal, closed Lie subgroup of (z and there exists a (diffenmarphium)

tsomorphism « : &/A — H (onto) such that #= ¢z .
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Theorem 24. Let w:Gx/"— /7" be a Lie transformation group. Let A/

be the subgroup of & which acts as the identity transformatiocn on r"” .

Then // 18 a normal, closed Lie subgroup of & and G x M7 — M7 s

an effective Lie transformation group.

Prﬂﬂfl

We need only check that g (5, ftfg ] = ¢(x;3 /) 1is differentiable on

G WM e AT wvhich is clear,

Qt E. D.

Theorem 25, Let < %be a Lie group and A/ a closed Lie subgroup of & .

Then the topological transformation group & x c/n = (/A 18 a Lie

transformation group. The action is transitive and 1s effective 1f and only

if the only closed Lie subgroup of ( which lies in N 18 e,

Proof.

There are no non-trivial normal topological subgroups of G inN  if
and only if there are no non-trivial normal, closed Lie subgroups of &z in

/\/ . - Q'l E_- D.

Theorem Zﬁ.

is transitive, effective.

let w: G x M7 —» Ar"”7 be a Lie transformation group which

Aggume, for a point Z<« ? » the map

G=>M70 3 — 2,9 ) carries the tangent space at < onto the tan-

gent space at =z . Let ~ be the stabllity subgroup of = . Then

GCx G/ — G/n/ 18 isomorphic with o [ &< M P

Proof.

Since > G M"—i4" 1g transitive, effective, and also locally

transitive there exists a homeomorphism 7 of the space of left cosets
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onto /7" which makes & x G/ —= G/ and ¢#. GxM7 —= M  1g0-
morphic as topological transformation groups. ifg need only show that

is a diffeomorphism, But % is differentiable and carries the n-dimensional
tangent space at ( M) in G/~ onto the n-dimensional tangent space at =
in N~ Thus ‘;ﬂ"’ differentisble near 2 . Using the transitivity
of . Crx M — AM” we see that 1/) ig a diffeomorphism,

Q. E. D.

e _I_!i_ﬂ_ Llﬂhrﬂl N

A real linesr algebra is a real linear vector space (possible infinite

dimensional) together with a product between vectors such that

VIGUt Cpw) = GV + G Vvw

(Cu+t Qu)v = CQuv + C,wV (bilinear).

We do not require commutativity uv=v« , OT associativity (uv)w = wlvw)

or the existence of a unit <« such that £ v = v e & :

Definition. A Lie algebra /. 18 a real linear algebra such that

fw,v] = ~[v,u] (anti-commtative)

[Cuvi,wl+[Tvwin] e [Cwu], v] = O (Jacoby identity).

Note. [« u =0 for all e/ o The only commutative Lie algebra is the

trivial multiplication [u,v] = @ .

Examples.,

1. The Euclidean vector space F?J using vector cross product,
2. The set of all »x ¥/  real matrices )?ﬂ,, with[ﬂ,f31=ﬁ5- RA.

3, The unique l-dimensional Lle algedbre 2! with Iy u_] = O
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Theorem 27. Let ™M ' be a differential manifold. let L (N“) be the

real linear space consisting of all differentiable (contravariant) tangent

vector fields on M“ « For two such vector fields “,V def'ine the Lie

. Lo A
product, Lundt = '%:*iw* = %_:'i W (in local coordi-

nates). Then L (M) is a Lie algebra,

Proof,
We first must show that 3—"—"—1 J $oL ’,a_\,f_“ L..._.i is a vector field (inde-
By xd
pendent of the choice of local coordinates). Use any Riemann metric and the
L ¢ L
tensor covariant Idsriva;iuta Ea_ii = ’%_:i + %.—fi } v R . Then
¥ . i ¥ A
[u.l.\r‘]"‘ = ‘*J‘%—Ej —u’ﬁ . Also one can show that L u,v ] is the

"Lie derivative” of W along N . That is, K U = L, e UPY — w(P)
+—= o =+ ——

where P, is the trajectory of the one-parameter group generated by N

and T,  is the induced transformation of the tangent space at P, onto

the tangent space at P, . Thus L[u,v] is a well-defined bilinear

ﬁrnduc‘b on the set i(h“)xiim") into ?'LLH") . Clearly [L&J*ﬂl!: —L\JJH] x
Also the Jacoby ‘identity is easily verified by a direct computation.

QF E- Dl

VA _
Definition. Let M be a differentiable menifold and & ( ™M") - the Lie

v
algebra of all differentiable vector fields on ™ » A finite dimensional

" v
subalgebra of d(M") 4s called an infinitesimel transformation group on M,

Definition. Iet L, and -4 be real Lie algebras. A homomorphism

Ly L, — L, is a linear transformation from L, into L., such that

-FE‘EH,H]) = [‘F‘{H)J #{\J‘j]

If T is one-to-one onto L , then f 1is an isomorphism of L, onto L, .



Remark, The direct product of two Lie algebras is a Lie algebra.

Definition. A gsubalgebra K < L , & Lie algebra. is a linear subspace
which 1s closed under products. Turther K& 18 an ideal of L in case

[ek] < Kk ' for every L. & /L ;

Theorem 28, If K 4is an 1deal in the Lie algebra L then the (additive)
cosets of 4 form a Lie algebra /| /(¢  under

[ (Lork), (Lo2k)[ = [4,, ]+ K .
Moreover the natural projection »: [ = //k : 2 —» 2L+ Kk is a
homomorphism of / onto L /K . Algo it L. 4, — L, 1s a homomorphism
of the Liak algebra ., onto the Lie algebra ., , the kernel

Kk, = £7%0) < ¢,

is an ideal in £, and there exists an isomorphism ¢ : L/x, — L, .

Example. Let . be a Lie algebra, The smanllest subalgebra containing all
the commutators (u, v/ is an ideal /L y f-_] » the commtator sub-

algebra of [ (or first derived algebra).

Theorem 29, Every 2-dimensional Lie algebra is isomorphic with
a,) Lu,v] = 0

or
b.) Lu,v] = V for a basis of vectors . VvV ,

4

Every 3-dimensional Lie algebra is isomorphic with

ﬂ-) rf__g,i HE—J — EJ'J EUJ; I{JJ -0 ' Eulg'{'{.i} = O Eﬂmmt&tﬂr 1E g ™
b-) X:ﬂ-ﬁjff&]:ﬂ; i:":'!’.'i,f{g]:ﬂ; [ua_gfijj= 2

commutator has dimension
G-) [Q,;HII:{;J [H,Ju:j :_ul; [HL;ME-] = O 1.

d'.-) 651',;#3}.:&)(6;{,;3,{31: E.L,J [EJ;J L{j]:‘ (_*_,u?_ (C#—tﬂ')
commtator has
e.) (u,uJ =0, Cu,Usl=wiu,, (4 y;]= Uy dimension 2,
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£.) Cauy]=0, Curupd=uthttsy, (] = -t tanlty Gl rea) ax)

. kil — . T T gy e N — . i S o e - - - — - — ——y e B s S W -l e S sk ol il S - i i - . —

g. ) CH.f,QJ: u Ca,,us] = au, ;E"’r.,.. %_] = kg commtator is alll

h.) ‘f‘:‘hqt—? - E'{.?J £H£Ja3]= 4 / [‘:“SJ U] =%z

Proof.,
Let .. be a two dimensional lie algebra and take a basis ;v . Then

Laju] =0, LV,v] =0 gng we need only specify [u ,v]= @ us+ bV . It

a=b = ¢ we have the unique commutative Lie algebra. Suppose 4« or b

is not zero, say &b #£0 . Replace v by v = S.;:v sol«v]=zbu.

b
Now i-aplaca W by u,= f;- w 80 Lu,u J=v, as required for the
second case,

Next let /. be 3-dimensional. First assume the commutator ideal f_Ff’-J, L{
is zero, Then, for a basls k, w. » We have
Cajen]=o, Cantsl=o, Ca,u,] =0
Next assume that (¢, L] 1s 1-dimensional. Choose a basis of | 8o
that [u u,] =« ,0u,us7=4 w, lnu,] = ¢ w, where =% 25 FE> 0

If «-p4 -0 , change the scale of ;,, 8o that (u., us] = W, . 'Thus

Loy tyJ=0 [, us] =0, Cus, by ] = &, . It g#£o0 (otherwise
interchange names of i and () let 4 = Uy - % Ly to get [u, w,)= O,
Ctti; ] =gley _fghﬂ_‘_:_j = ¥ i, . Finally change the scale on

4 g <
t{3= p u, to get [uu”;]za—' [u-.;“g]:u: ,[L{:}U_;]:ﬂ' ”

wheve Y,”z Ef,_-% i©,.,
These two cases are distinct since H, is distinguished (up to a constant

mltiple) as the generator of [ L ;L] and in the first case /A, annihi-
lates L by Lie products,

Now assume [LJ L,] 1s 2-dimensional. Choose a basis so that U, U,
generate [L‘,L] . Then we can require [H,_‘, U, :l = O or else

Lu,u)\-= U, . We show that the case [u,,u._._]—: W, 1s impoesible

here, Write [ul_, “5]= C.l; a, + C:; “:_ ) [uj‘, u']f- C;. ui* C.:I QL .
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i
Use the Jacobi identity to obtaln <.; = €, (f_:, = O , But then [/, r’_] is
not 2-dimensional, Thus we can assume (&, «,] = ¢© . Consider the matrix

representing Lie multiplication of E Ay £ by any element not in [ ., L,

gay Vv = c:,u,+buz+flh3;;;;£g . This matrix {s
/
Cv,w,] = c<(Ce,un, ¢+ {::;IL«.?_)
P, PU 8 g ioae syt plhl

Thus the matrix is

/C:,, CEI
c AY = ¢
/ C’E

Case 1,) ,ﬁ] has simple real eigenvalues, Choose a new basis in

[¢,L] so that g = (:\ Q ) A A, #©O.

B o g
Thﬂn, takﬂ c =/ ’ and W'ltﬂ EQFJHLI :'-ﬂ;fl_r:f:f'j) U,I :-h:ul'_.l Cﬂjiul} - :'\zUz..

Change scale of &, 80 A= and >, # © . Thus

Euf;qzj.-:-.ﬂ; C’:ﬁfjfffq",j':a;ﬂ. C#3;u1}=hlkljﬁzﬁﬂ.
Thege are distinct for distinct values of Ap HE O since the ratio ‘:"%/}t,

is determined by the algebra. The normalization ) = / fixes '}1 .

!

Case 2.) /4 has a mltiple elgenvalue. Choose a new basis in [ 4, L J

so0 that ﬁ:/:i)‘,);ﬁﬂ.

Then LH.JHLJ:GJ fﬁjju,]:?\a,%ﬁa;;{a‘g;d@_‘(= )l'{'frg.

— L T =
Let i, - S‘:—QS . Then [, uzl= D,E‘fJ;M:_T:g‘H‘J\ U )L lts Uz Tz Uz

Then let &, = f‘ (4, .+ Then "—r“:,a'z.]:ﬂj:aj,, u,J:'L{;FJLJgg{j al_?zaa.

Case 3.) A has complex conjugate elgenvalues H = ( _; f ) J 5-; O

Then [ HIJHLJ; = {qﬁja.f]:ﬂ{ui*(g“-z.; l.c‘f-‘fjji-{g:{ = —GBU,+ XUz,



Change scale on «; 80 %3 = U 5

4

.
&
S

LM.JﬂJl}:dJEQJHuijz %-y;#ﬂfzjih%JQlI: ’(-(;F'e

“L, .

Thus

L] =0 *’CQ&;“*]:ﬁb;+£41JEﬁf§J£fﬂ)=-{_,g, tuli, » 8ll Teal -

The complex mumber « + ¢ /3 , up to a real miltiplier, ie determined by
the algebra, If we normalize 23 = / , then « is fixed,

Finally assume [ ¢, L.J has dimension 3., Then no independent elements
commite — for then [ £, L] thas dim less than 3. If there is a real sub-
algebra of dimension 2, take a basis so that

Eurjul]:hii[“;JHJJ:HI“FJGHI L‘L f‘djuJJ {Ql‘_;d":f} "‘fs;“.r +{8L Hz*%u-s -
From the Jacobi identity we find o,=¢, 2, +A, = o, ¥2(r-38;) = 9.
Now o, £ © for otherwise («, v, ] = =, 4, = o L4, uz] and Z:.LJLI
does not have dimeneion 3. Thus 4, =/ £ ..o . Thus

Cu,usd=u , Lunug] = U+ o Uz Luy Us] = Bt ol lpt s, #2 # O

/ /
La ¥ Then ZC{IJ{{;-? -_ D(Laz- 7 {ﬁfxgﬂj = ,{_J_:;
- & d{;

—

P =y
Let u; = 37+ £'u - o
(replace 4, by -4, to make o, >0 ), Let o = &¢, Uz = Hz, 3
and take @ o, = 2 . Then
CEJJEEJ = E'}-l J galjagjzj‘al; Eal; uuj}-_—aji

Next assume [.«_’JLJ is 3 dim and / contains no 2 dim subalgé'bra.

Then one can show that the nnique algebra is

Cu y,]=“s Luz usd =, Cus u, 1=tz .

Q. E. D.

Theorem 30, Let ¢, be a n-dimensional Lie group, The right invariant
vector fields of & , under the Lie product /«, yJ y form a n-dimensional

Lie glgebra,




Proof.
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Let «« and Vv be right invariant vector fields. Let cxly e, %) pe

local coordinates in an open neighborhood K/ of « in &G , For each
point § ¢ G consider the neighborhood W, and use the local coordi-
nates in W? defined by the diffeomorphism ‘x/ < W?r . If the
components of . in ¢ H'J,, £ e Ji") are w® then the components of (o in

(8

w‘§ are algso % . In fact a vector field 1s right invariant just
case it has the same mumerical components in each such coordinate system in
each such W? .
Since [y, v] Lo gd 2y
same components in W/ as in W’? i Thae [ Jvf is right invariant,
Thug the right invariant vector fields of (  form a Lie algebra

A-(G) . There is an isomorphism of the vector space 7. onto the

vector space of 4. (G ) since each tangent vector at < generates

exactly one right invariant vector field. Thus dim .ﬁ’fq (G )—‘- L
Q. E. D.

Note If right invariant vector fielde 2. and v of a’ﬁq(c;‘) are

represented at the origin by curves. #(¢J) and w(<¢) , then C « + ¢V
is represented at the origin by the curve «w(c £) w(c, 2 ) . Also
Cu,v]e is represented by the curve X (S) where
Y (t?) = ()W) olt)” we t}-f . Thig is proved in Pontrjagin's text
(Thm, 66) and is useful in computing the Lie product, or commutator, of
vector fields : and VvV in o ( 5/ . Tms if & 1is comm-
tative, so is the Lie algebra ﬁi"}(G) commutative,

The Iie algebra of £ (r, R) is 77/, with the Lie product
[ﬂiﬁj:ﬁfg—ﬂﬂ . Tms for any subgroup of C:i(*:f,f?) the Lie

algebra will be a subalgebra of /7, .

in

50 VI - 5w we gsee that [«,v] has the
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Example. Compute the Lie algebra of the Lorentz group /(¢#) . Choose coor-
dinates ""EJ' (¢, = /,2,5,4 ) near O , valld near 7 . Thus a matrix in

L(4) near 7 1s

/ X1y Xz X3 X4
Xz
Kﬁﬁ I+ ){53 Xzq
A4l X 42 X 4.3 I+ Xaq [Je

These x,;j are subjected to the 10 defining equations of L (4), namely

/I o

ATA T =T , where J = (-a I). Choose a curve «x., (t.) , through Z at

Vv

£ = © , with initial tangent vector &£, 6 = %(;) . Differentiate the

j
ten defining equations of L (#) , with respect to Z , and set < = o .
In this way we obtain the subalgebra of }77,., corresponding to L (¢)<GLlin, f"?)

The Lie algebra of /(+) consists of all real matrices of the form

( o a,, Qg G4
g e Cag G
\ "115 -,z Oy g_ﬁ*
Q& -G« =334 0 .
Theorem 31, Let G be a Lie group and Al ) be its Lie algebra. For

each Iie sabgroup N of & , the vector fields of fi}( & ) which are tan-
gent to A/ form a2 subalgebra JRC#) < ﬁ (G') . Also al.;ch subalgebra
of I (&) corresponds to exactly one such (connected) Lie subgroup of
G . Thus there is a one~to-one correspondence between connected Lie sub-
groups of G and subalgebras of A @G ) . Farthermore a connected subgroup

N is normal in <& 1if and only if 7 (A7) is an ideal in 7. (g )

Theorem 32, Two Lie groups &, and &, are locally isomorphic if and only

if their Le algebras are isomorphic. For each n-dimensional Lie algebra L

there exists a unique (up to Lie isomorphism) simply-connected Lie group &
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with o{’ e C({ ) {somorphic to L . If a connected Lie group 4~ also
has the Lie algebra & , then A = G /A vhere A/  is a discrete

normal. central subgroup of & .,

Example, Compute all connected Lie groups of dimension 2.

Case 1.) [«,v] = ©, commutative Lie algebra., Simply-connected
commatative Lie group is plane ~ ° with vector addition. Let A/ be a dis-
crete normal subgroup of <° . Then, after an automorphism of RE VY
congists in the integral multiples of one vector, or of two independent vectors,
Thus there are just 3 groups, <°, S'x R IJ 54 x 8 . In general a n-dim.
commitative Lie group is the product of eircles and lines.

Case 2.) [«,v]=v , Here the simply-connected Lie group is
G4 )= (j fb)'with a>o ., The Lie algebra of GA, (/) is the subalgebra
of 7773 with basis = (2 :)J vV = (:, Z) and fE,FJ = — L « The center
of G4,c:)  consiste only of the identity £ . Thus C4, (/) 18 the

only Lie group for this case,

Note. It #and & are endomorphisms of & vector space ‘/ (linear transfor-
mations of \/ 1into itself), then so is (4, B8] = 7 E5-8A an endomorphism
of V . This defines the Lie algebra of endomorphisms of V ., |

For [4,2]= [ 4] and [C#8lc ]+ [(Bc]A] + [tc,41,8] = ©° -
If 2 finite basis is designated in V , then this Lie algebra is a subalgedra
of Jir. .

Definition, Let L be a Lie algebra. For each £< L consider the linear
endomorphism of the vector space Z into 1tself by M, £ —~ (¢ L] .
The map ./ — M, {s a homomorphism of /[ onto a Lie algebra of linear
transformations of the vector space [/ into itself., If [ 1is n-dimen-

sional and we pick a basis in L , then £ — A7, is a homomorphism
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of L into the matrix Lie algebra ", . This is the "adjoint representation”

\

of L. . We check that £ — M

o is a homomorphism of L into the Lis

algebra of endomorphisms of L .,
C,R)rCp Ry corresponds to the endomorphism

/QQ e [CJ"QI +C, “'e"l;'ja..l = g [—Q‘J"%] +QLE’EEJ}Q] =(Q"M‘£'l+ C‘Zmﬂi)"kf

Furthsr Y,E’,J £,) corresponds to the endomorphism

,QQ =¥ {-[‘E”‘EZ]J/&] S [ﬁlthiJj?j]_ [ff*’[?"&al-} :(prnm‘ﬁi_ M,E?_M,EI)}J\ ’

Thus the adjoint rapraséntﬁtiun is a homomorphism L — el L ;

Remark. The adjoint representation is an isomorphism of L into the Lie algebra

of endomorphisms of L just in case L.  has no center.

For the kernel of tl&.,é' L —» EL L L. consists of those Qe L for
which [ 2, k]l =0 forell kel , that is, those L€ L for which
[..EJ,Q{_{ = [ 4] for all & € L

Example. Take Cujuj: N oas L . Here the center is émp'ty. Use the

o =

A O « Thus the

e O ¢ .
basis U.J\J e Then W — (‘a | and \J'—".l-(

Lie group with L is the smallest subgroup of GL('ZJ R) containing

Eup[ﬂ.(f,?)-!- b(g-ﬂ})} _ Here E"-K? (Z-b :I + (Z _E + —21'-]' ‘:_:)24 @

| - &2
Thus ex (5’ -b - ( | b o ) » This group is isomorphic with G A+(I) .
o al = | 4 o _

10. Infinitesimal Transformation GrﬂuEs,

Definition. Let CP',-G.:: M = M" be a Lis transformation group, or only a local
Lie transformation group. Let the Lie algebra Lo (G) of & be repre-
sented by the tangent space at € , For each vector N & ﬁR(G‘) consider
the one-parameter subgroup %w({':‘ c G with initial wvector ) « Then

AN (td acts on M by CP('XJ %u(t)). For each peint X, & MY
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consider the curve @(=x, %qt_t)) in M" and let V(= V) be the

; c
tangent vector to this curve, that is \JL{T,J\J\j = -'%TC.E— t-x.Je) :

The vector field \(("!J V) is differentiable on M (since f-PL('E_,%uLt}‘)

is differentiable in M = X QI }o Thus we map 3\9‘ (G) into the linear

space of differentiable vector fields on " + Call the image a4, & i (Mﬂ) .

v
Then J\  is called the infinitesimal. generator of W' Gx M —> M .,

Theorem 33, Let @: Gx M"—=>M™M™ be a local Lie transformation group and let

A < L (M"Y be its infinitesimal generator., Then the map Iﬁ(ﬁ-] — [\

is an homoerphism of the Lie algebra iﬂ.( G) onto the Lis algebra A. .

If %' GxM"—M" is locally effective, then ip‘LG‘) — A is an
isomorphism.

Proof.

We first show that [\  is a linear space in p: 3 g s ) and that

iﬂ(G)—ﬁ-J\ is & linear transformation onto A :

Consider the vector C,V,+ C, N o € iﬁfe). Consider the l-parameter

(+) ) and compute (in local

local transformation group CP(T*J gr:,u +CyVg
LAY

: {
coordinates) VE (6N, + V) = %_‘f-(-x_,e.u ,

Use canonical coordinates of first kind near € in G 30

-~

’ ( ‘ ) o -
Sev vc0, (8 = (€94 Q)L Thon, wriving P, T, 2)

VL (1‘; C,\J,+ ciuﬂ) - %—%(1.}&} (Cl\ln& 43 E"iwi‘i) s
Thus

!
L - |
\/ (T; Cl”;"'caug) = ¢,V (%,V,) 4 Civttq-’u'l) ‘

Thus [\ is a linear space, and Efﬂ(G)-—#ﬁ is a linear transformation.
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Now assume . G x A77— Ay is loecally effective (for a local transfor-

mation group this means that there ie a neighborhood of < in which the only

. group element yielding the identity transformation is = — octherwise there is

a l-parameter subgroup which acts as the identity), If v — V ex ,ZV)I=E O

then for each x , @(x,9,(¢))=x andso ¢p. GxM7— M" 18 not
effective, Thus the kernel of 7, (G) — / is zero,
It 1is shown that 77, (s )— / preserves the Lie product on p. 288,
PontrJjagin, Q. E. D,
Example. Projective local transformetion group on plane.
a, x + b + C Q b + Caz -
X, = 2 ' QAR St el Y %
A,x + byy * Cp 3 az;x +b Yy + <3 .

This is a local transformation group. Coordinates in projective group are

G‘.I —3 114:-..{1 ‘I‘:'I- C.
G-l bl:' .‘k_[‘%"f. {ll
Q.
3 b =
E Ca-—" .

Find basis for 1, infiniteeimal generator of projective transformation

This consists of 8 vector fields in ~° .

group .
x FlAix + b,y +6)ET e Evlan i 7
;= = ¥+ byt e, )52 - x(aq Lv )St+ -
g !+ (Gyx + b5y ) ST e, | JXTL‘-’yJ
and
J(l_x .
Y e ofy X 4 &,y%c,, c‘é‘sxl-gﬁx‘}/ o 0(5:‘1)_
Y_S*_;’ = Aix r@BY G magny —byylse OCSE).

Thus consider the vector fields |
< =
U = Cotx 4oy #6 =X i) By + Cuxeey +G 2any-4y2) 3y



Thus a basis for /] consists of

3 A = ] = 2
aﬁ;';x; az_'; Y s = X 3% ) H'ﬂ-""-?}’:
-
"
Us = ¥5x , Uy=3Sy, %3= xStrysy,%s=>Yox1) 2y

Or in Iie's notation:
Ponel o BBt E nd B LEATEP BT §o ~ TR Ed -
The affine transformation group on /(?E is generated by

I Y DI PRI &

Note, The one-parameter transformations generated by the members of A

generate all & x M7 —» A" (for a commected group & ).

Theorem 34, Let A7 be a differentiable manifold and /| an infinitesi-
mal transformation group on A/ ” . Then there exists exactly (up to 1so-
morphism) locally effective, local Lie transformation group «:. G X M 7
for which the infinitesimal generator is A . If there exists a Lie trans-
formation group generated by A , then there exists a unique effective Lie:
transformation group generated by ,4 P This is alwaye the case if MH is

compct,

Corollary. If there exists a Lie transformation group generated by A :

then /] generates a unique locally effective ¥. &G X M Y e B where

g

. 18 simply connected, The locally effective transformatlion groups
generated by A are exactly E/,t-\-; x M7 > AT where X 18 a

gt

diserete normal subgroup of ( which is contained in the discrete normal

subgroup 4/ ylelding the identity transformation,
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Theorem 35, Let ¢ ! G, x M,”-—-.- /v{” and
- 72 "
4"':. - G:. * ME T Mz
be locally effective, local Lie transformation groups generated by /| ¥ and

A, o+ respectively. The local Lie transformation groups are isomorrhic 1f

¥ n
and only if there exists a diffeomorphism of M onte Mz_ carrying /lir

onte A, .

Corollary. If ¢ ° G « M — M",JF'r
. - 7
C?L - G-‘l X Ma —r Mz_

are effective transformation groups generated by A, and /\, respectively,
then they are isomorphic if and only if there is a diffeomorphism of A onto

ft«ff carrying A, onto A, .

Thus all problems concerning Lie transformation groups can be referred to their

infinitesimal generators,

Definition, Let /) be an infinitesimal transformation group on a differ-
entiable manifold A7 H. For each point ~F e N 7 1et A P be the subspace

of the tangent space at /~ which is spanned by the vectors of /A . ILet

= Mmax dene Ap and . It 4 -, , then
P O £ eV 4o, AQ' o
Q is an ordinary point of A . The set of ordimary points is open

in M”. Ir a&a’m-f".@-c Ju o them Q 18 a ceritical point of A . It
Lern Ng = O s then @ 1s & fixed point of A . It afao'ﬁ/ia_:)u.
then we say that /| is locally transitive at Q .

Now let /1  be the infinitesimal generator of a 2-dimensional locally
effective, local transformation group on ':‘E’a . In the neighborhood of Feml
an ordinary point of /] , we shall choose local coordinates to display

in a certain canonical form.



Cage 1. /I i commtative,
a.) A 1is locally transitive (map of tangent space of < ¢ & is

onto tangent space at /~° ). Then there exists a basis for A of vector

fields of the form  ce(x,y) Z (in appropriate local coordinates

near ~ ) with o #0 . Put [mcﬁf:@y};‘ja '.Eféf’ = o 80 4 =@)).

Now change coordinates X = and then has a basls
ge by X ,[ s A

PP .
b.) A  1is commutative but nowhere locally transitive. Then take a

basis for A  in the form 2, Wix,y) s (we agsume that /| contains non-

zero vectors). Then [p, p(x,y)p] = -¥ p=0. Tms ¥ = Wiy?

Let § = Yly) (choose an open get near ~ 4in which %,u"(y) # O 80
A becomes Tgb, Y l .
Cage 2. is not commutative,

a,) A is locally transitive at /~ . Choose a basis for /| of

the form 7, P (x ylF @afx;y)j with ¢ (x,y)# ¢ . Then
=

Ly Plrppigr Bl = = 28 g ""'?”zg 2.

Thus rﬁ:gﬂf{g} and ¢, = —y—ﬂ,Lx) .
Let X = fh :ﬁ to write- generators for /I as
° H(F)
j -xa;.-fyf-em))j » OT 2, xp * (/vuté;(x*))j .whera

/[~ = (x'u_,)/ﬂ) and ¥o Z¢ . Again change variables by x- ;Jy y- x_f 5(?)-:!5'.

X ?’E
Write /) as E?J X ,Lyz_
v.) ‘A  not commtative and nowhere locally transitive., Choose a

bagis for /|  of the form 3‘; Vix,y )7 with [g..w“:ﬂgJE -;:".f:j - 7.
Thus W = ~y + #(x) . Thus take a basis Z’(y*‘g(”)j'
Let E:!{j;’:)f-vg(x) to get U}yﬁl_

The problem of finding all transformation groups on the plane is very

complicated as evidenced by the following examples,
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Bxample. %, e 123, rena xh_; ye, ®, % is a basis for a trans-
itive infinitesimal transformation group on A?E . Yet the dimension is

_arbitrarily large,

Bxample, g, Xp.X°p , X7 g2  does not determine an infinitesimal trans-

formation group on ~ ’ gince the smallest Lie algedbra in 7 .‘E"u containing

these four vector fields is infinite dimensiomal. For 1f }, = x"”‘? for

20, then [ Un,ls] = Cs-r)U, , ., .

Definition, Let V be a differentiable vector field on a connected differ-

»
entiable 47" and choose local coordinates around a point APe M ge

) _ ¢ ¢ ,J I =3
Vi) = (a +.¢:J.x + ﬂ:ﬁkx "L“')p‘?xif
The lowest order of the functions o'/ %‘: xV J‘ﬂic s e at /P=0

1s called the order of V(x) at 2~ , If 2°= 0 , but some ca; £0 ,
then \/ has order 1 at /~ ., A Qm vector field can have order <O at
/~ but an analytic (#0) vector field (on a real analytic MH) mist have

a finite order. The order of V at X~ 1s independent of the choice of local

coordinates around ~ ,

Theorem 136. Let V and U be infinitesimel transformations (that is, differ-
entiable vector fields) on M‘H. It V has order 20 and L has order

@ 20 at / , then [u,v] hasorder > x +@-/ .,

oof
;: LI \l'll:u i.g tt ‘-: k‘:,, K.E-
Write V (x) = adj:*”J;(X cexX F e and u(-h)='bk:.---uﬂ_x et X .
¢ @";zpf__ Dt
Then EHJVJ = 2xJ ,._.;_;,__ ¥
8o the order of [«, v ( is 2 d+33 -/ .



Note: It might happen that [ «v{ = 0 and thus has infinite order.

n .
Definition, Let 7 be a differentiable manifold and consider the tangent
space /., at a point /~ ., The one-dimension subspace of 7- are called
line elements and the set of all line elements at 7~ 4s the line space Lo

at ~ ., Now Ly 1s a differentiable manifold since for each choice of local

coordinmtes (x' . .. ,,'x”') on M~ around A there is a natural basis
= -
(;-TJJ i v e i“ ) for /o and thus coordinates in 75 . These furnish

homogeneous coordinates (still cailed <X, .., x ) ) in Lp se that ZF is
diffeomorphic with the real projective space ~ . A change in basis in 75

defines a projectivity of Lo onto 1itself,

Definition, Let A be an infinitesimal transformation group in a differ-
ri
entiable manifold /7 7 g For each point Fe M consider the vector fields
of / which have order 2/ at /~ . This forms a subalgebra A, (~) of
A . Each member of A, (~) defines a local one-parameter transformation ’
¥ovp o MM Ltk P Fixed , and  Thus a one-parameler Tvansbormatisn
group on ZF ‘ i'hsreby we obtain a homomorphism of /, ¢ 7) onto an infini-

tesimal transformation group on £, , called the direction transformation

group O, at ~ .

Theorem 37. let /| ‘be an infinitesimal tranaformation group on a differ-
| | 5
entiable manifold A/~ and let P 7’ .,  Then the homomorphism /,/p)— g

can be expressed in local coordinates by

- 3 L Y2, — a1 2
Viex) = Cr:i:.],,:f + ﬁj-&ﬁ X et )50k | FxC
Therefore /[L- is a subalgebra of the infinitesimal projective transfor-
mation group on r= i

Note. A change of coordinates near 2 < v defines a projectivity of

]

-/
kg = y = onto itself which defines an isomorphism between two representations



of 0O, as a subalgebra of the infinitesimal prejective transformation group.

-1
Note,. The projective transformation group on /A 7 has dimension %%, ,

Theorem 138. Let A be an infinitesimal transformation group, locally transi-
H
tive at each point of a connected differentiable menifeld A7 . Then the

local transformation group generated by A is transitive on A7 & .

Let ~e M and consider the set K< /v § of all points which are
images of / under the local transformation group, Then X 1s clearly open.
It Q € K then there 1s a neighborhoed /¥ of & which consists of
images of Q. under A . Take /~ € Ka A « Then move ~ to /~/ and

&
thereafter to &G , under / . Tms K= M apd /| is transitive

on M . Q. B. D,
Theorem 39, Let A be a locally transitive (everywhere) infinitesimal

transformetion group on a connected differentiable manifold KV”. Let ~ and
® be points of A7 with corresponding direction transformation groups O.
and D3 . Then there is & projectivity of [, onto [, which carries Dp
onte Oy . ThusDp onl ,and D, on Lo are isomorphic transformation
groups and, for a correct choice of local coordinates near /~ and &) )

Dp and DQ are represented by the same subalgebra of the infinitesimal

projective transformation group on P .

Definition. Let /1 be an infinitesimal transformetion group on a differ-
»?

entiable manifold #7 , I, at Pe/? , Do 1is all the infinitesimal

projective transformation group, then we call A primitive at 7 . (The

term "primitive"™ is slightly different in the works of I-ia).
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Thegrem 41, Let A be an everywhere leocally transitive and primitive,
n
analytic infinitesimal transformation group on a real analytic manifold Mo,

Then, for each A< /7" , each member of A has an order <2 at /7.

[LaY

B(n) € meni-l + nEC+1)

Furthermore the dimension of /] is =

Proof,
g
Choose local coordinates near ~«< /A7 , eay (X, -+ X (3 :

Then /| contains » vector fields of the form

ﬁ;'ﬂ"*:. ;?L‘*'*.J...JFW*."
where p; = f—é . The reet of a basis for A can be chosen from A,(F) .
X
There is an independent set of »2 ; 4n /,(#) which maps onte Do .

We dlsplay these for the case 7 =2 @8 X0t Yt il Xpoyga
Now let U = S.p*+ s+ = for < > z be a member of /A of

highest order = at /~ . Then

.
O s
is of order S but of smaller degree in Y in X 5?‘5 . Repeat this

precess so that we can assume that <. does not contain Y. . Thus S = X .

s~/
Now [EF..-““E}”*}ZEB“*"'J: s X 7> ‘L)ZS.-;Z’L"'
is of order 2s-/ . But

= -3 z25-2
[onSTp b Yot o, Kop # Yo gt J s oS K bt
1g of order 2As-2 .+ Thus =25-2 < S apd S < 2z .

Now we complete our basis for /| by vector fields which are of order

2 at /~ . But the number of symmetric linearly independent bilinear forms

4 J .
B X e,k = L2007 1 Just ¥ [”(;f")] = ’?2-(:.*') .
Thus

Ly 1 & BCn) < n 4 i+ NCn+1)
2 -
Q‘llni

-

Note, For the plane X ° one can show that S(2) = &  and this dimension

ig realized by the infinitesimal projective transformation group. For f?‘f ¢
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B(1)=3 and all locally transitive analytic / are subalgebras of » |
Xp , XS .

For locally transitive / 1in the plane ~ - we can define the germ of the
infinitesimal transformation group near & point ~& ~ < by restricting the
open neighborhood of ~ in which we consider /| . Such a germ is isomorphic
with a local Lie group & acting on a quotient space & /A/ , where A/ 1s
a closed abnormal local subgroup of & . In other words the germ of /4
near ~ 1is specified by a palr /A4S ) of real Iie algebras where S is an
abnormnl subalgebra of <, The germ of A near ~ can be extended to a
global transformation group on a manifeld &~ g Just in case the abnormal subgroup
N determined by S , is closed in the simply-connected Lie group 5":
determined by < It is known that every such germ on = can be extended
to 2 global transformation group on /X7 c . However the corresponding
statement is false in <

The analytic, 1nca11r transitive, primitive, infintesimal transformation
groups on c each have a germ isomorphic with one of the follewing:

e Poj W X, Xp-ry o

SIS PR AR D PRT I

I p’?,f,’fﬁh Y, "fj;)fggﬂf*&"*lg)aﬂ”o‘”)’j)-

11. Differeptial Ipvarjaptg of Transformation Groups.
Definition. A fidber bundle consists of three differentiable manifolds, the

bundle space 5 , the hase space &7 }1 the fiber 4~ and a differentiable map
P S = Mh called projection onte /7, For each point << 117 there
exists a local coordinate system U(x) and a prescribed diffeomorphism of ()
onto (x)x F/ ., Using these "product coordinates® 7rcx) x < in

@"CU) the projection map is g,b s Uetx)x F —» Utx) )
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The set ' #) 1s the fiber above P and 1t 1g d1ffeomorphic with ~

Definition. Let = be a fiber bundle over the base N/ * 3 A cross-section
1s a differentiable map ¢: M " /3 (into) such that

7o ¢ = 1dentity on a7,

Remark. Assume there exists a Lie group &  which acts effectively on £ 5
G xF —> £ , and assume for each intersection of local coordinstes

L(x) 1 Upuly) there exists a differentiable map of (L Uz >G :Q"‘?Ef@)
Require that a point in the fiber above any Q € U, /7 UJe  should have
"product coordinates" ( xy , 7x ) eand (Y, , ,t“ﬁ ) where ij[g‘; ()£

Then (7 1is called the structure group of the bundle L B, M F, EF’} ;

Example, Let 7/ ©be a differentiable manifold and consider the set of all
(contravariant) tangent vectors at all points of p” . Call this set of
all tangent vectors 7 ( r™) . Coordinates defining the diffarentiahla
structure (and the topolegy) on 7 (A7") are defined for each coordinate
gystem (J(x) in A7 as follows:

For a vector \/ 1in the tangent space at @ < (/(x) write V= Vf:f%i
and take the X7 coordinates Cxij, .t -JXJJ v", bW -v”) « The
projection is V ¢ 7;_ = Pr: V—-a . Thus we have defined the
tangent tundle 7 ( A7 B over A7 . Te fiber 18 K~ 7,  The
transition functions are g;@) = %E c &L (nR) , and the

structure group of the TN?) i1s &G4 ‘-’*’?;4‘?) .

Example, A line element at /~ ¢ /M ”7  {s a one-dimensional subspace of the
tangent space 7~ . The set of all line elements at 2ll points of A7 " forme
the 1line element bundle L(A77) ., The fiber is the real projective space

| ;
P and (xé}-r.xsj Vo, e fﬂ,v”) , where the last coordinates
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are not all zero and are specified only up to a non-zero common maltiple,
yields the "product coordinates", The structure group of L A7) s

PG LOR) = G Lln, R )/(:I) . Note that there is no natural embedding
of the base space A~/ in L/ a7/ . Write the vrojection map

P, i L) — M7

Example. A curvature line element is a class of non-singular differentiable

3

maps of ¢ B e with (o) = ~ . Let (x! ..., x") be
local coordinates centered at ~ and such that the tangent vector to 4 has
a non-zero component aleng the x -axie, Say that -ﬂ'; and {1 are equiwvalent

(define the same curvature line element) in case the two curves can be written

Z ¥7

= 7 : ; ¢
v = o {HE)J , B - -’.';-"-‘}ff*"{./) gnﬂ_ J‘-'.'E:_‘ ﬂ_)ffff!)* 4 Y, Jlfl',-_-_ E/?r;,{".}

w

with ¢ “Co) = w““¢o) for ¢ = 2,% o.4 2 , The set of all

/!

»
curvature line elements at all points of /14}? ig the bundle space K( M ).

b
The 37 - & preduct coordinetes in ~<( A77/ are
= v ! vy i
.F & , ) -t “— ""H"':,. Fa \ ) . “F )
{'_J{JX ) N B ) ;:j:-,ajﬁjglfﬁi# . , @ o) .

Thus we have defined the bundle £( As%7) over A7 7 , Write the pro-

Jjection map /N K( t17) —> r7

Remark, Note that there is a canonical projection

P N A I AW S (and 7 e, = Fz ) s6 that

it

~( 277/ 1s a fiber tundle over 4« /7°/) with fiber X~ .

It £ 1 — /'f:f; is a diffeomorphism of A7 }nntu A7" , there is

Z

induced corresponding diffeomorphisms of < (A7 7} onto L") and alse

K( A7) onte K1)

oy b S g
Definition. A first order differential equation, written *,,'f = f”:}’)

7

on a differentiable manifeld A7 is a cross-section of /7 1into L(M”)_
£k y v’ ,

o

A second order differential equation, written 5—{
%

i
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is s cross-section from an open set (O < L( 17 ) tnte K(M7) | 1f

Cﬁ = (ﬁ" () , where {J is open In r" , then we say that
257 3
: : = £ YD is defined ever |
»

af it ¢
Definition. A first order differential equation 3 = 7 ¢* ¥/ on a aiffer-

entiable manifeld X7 " 41a invariant under a local transformation group with

infinitesimal generater / in case; for each diffeomorphism of an opeén
set (U cC A onto an open set 7y, C rM" , defined by A '
the induced map of L (v ) onte L (T )  carries the cross-section of

5_2_‘“ _ 1["’5(11};) above (), onto the corresponding cross-section above U, .
X

Z

o Ty ¢
Definition. A second order differential equatlion mza_ = £ (xyy,) ‘) over

an open set B &t AT) {s invariant under a local transformation greup
with infinitesimal generator /i {n case: for each diffeomorphism of an
open set U, < M 7 ente T, C r"7 , defined by A , the induced
di1ffeomorphism of f,"'(EJ; )7 g — gﬁb’ (U, ) 7 d maps the cross-
section of é;z.:= #QE(K.-}’_,}”) abeve ﬁ-"(L}')ﬂ& in K’(ﬁﬁ’) onto
the corresponding cross-section above 53}" C te) @ & .
Ilet \V Yea differantiabla_uctnr field (infinitesimal transformation)

on A . T™en V defines a vector field V' in LN and alse

v/ 1 x(amr”) . Fer \/ generates a local one-parameter transforma-
tion group ¢° R e M7 —> Mh . Each diffeomorphism (of open sets
U — W C A47 ) of this transformation group induces a diffeomorphism
of ﬁ_"( L) ——--ﬁ‘f(mf) , and also of ,ﬂ"’(?f) 2 F ﬁ"(W) .  Ths
there is defined a local one-parameter transformation group

2,1 Rw LCM7) == LEAT") and also

@, R x KI( p7)— K(OMT),

The infinitesimal generatoers of these local transformation groups are ‘\/'r and

v’ respectively.
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Definition, Ist »~\ be an infinitesimal transformation group on a differen-
tiable manifold A7 ' , Then each member Y e A  1ifts to a vector field
V' in L (A7) and v7? in K(AM?) . Dmswemap A onte A’
an L (L(r77)) ,and alsomap / ento A in 7 ( K( M), Ve
call /'l"r the first extension of 4 , and /tﬁ the second extension of A4 .
Theorem 41, ILet A 1be an infinitesimal transformation group on M7 .

Then the extensions A" and A" are infinitesimal transformation groups on

L(r1") and K( A”) , respectively. The maps
A — A
A — A"

are abstract isomorphisms of these Lie algebras.

Preof. See Lie-Scheffers, Differentialgleichmngen, p. 397.

¢ ¢
Theorem 42, let Ag: ;ff = £ (rjy) be a differential system on a differen-
" - n
tiable manifold A7 . An infinitesimal transformation group /| on M
f
leaves A/ invariant if and only if each vecter of / / is tangent to
tha cross-section 19 < E_(M”') . This occurs if and only if a basis for

y .
/ 11fts to a basis for A which 1s tangent to the cross-section 9 "

Hemark, 49 is invariant under /A just 1n case each local ene-parameter

transfermation group generated by a basis memder eof /| leaves Iﬂ invariant,

Theuraﬁ 43, Let 19 5 ;—#%: =4 if X ,yd,y’) be a differential equation over an
open set (J c L/ rM7) . Let /) be an infinitesimal transformatien

group defined on the open set . [ &/ of the differentiable manifeld A7 ,
Then A leaves 5 invariant if and only 1if /}” , defined on ﬁ“’ ( &) ;

consists of vectors tangent to the cross—section g ¢ K (/171 . This
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eccurs if and only if a basis for /| 1ifts to a basis for A  which is

tangent to the cross-section 19 .

Remark, ,J) 1s invariant under 4 Jjust in case each member of a basis of /|

leaves B invariant,

12. The Cemplete Transformation Group of a Second Order Differential System.

!

oy '
Theerem 44, Let 19 L 'J;'E- = o ( my,,v’) be an analytic differential

system defined on all L (/™ ") over a real analytic connected manifeld /Y "
The set /1§ eof all analytic infinitesimal transfermations on A7” which
leave QB invariant form an infinitesimal transformatien group of dimension

o & (H‘ﬁ)z —

Proof.

A calculation in locd coordinntes (see Li_e-Schaffern. Differential~
gleichungen, p. 401) shows that 4f V, and \, are infinitesimal transfor-
mations which leave <) invariant, then so do ¢,v, + C Vs and
C V,,\V; I ’ Thus /‘15 is a Lie algebra in g?’(’ﬂd’?) . By analyticity
two vecter fields of /.'59 which coincide on an open set of KV?’” are iden-
tical on M~ ,

Suppose there are CHHJE linearly independent vector fields

Vi aoW, b of / . Select n2 roints A -+ e , near /~ oen

y e

A7 , in general positien (noe 3 on same selution curve of {9 ) se that a
linear combinatien of V= ¢, V, + ”"G*Hu‘ \Km}L vanishes at each of the »°
points. This is possible since one need only selve #° linear equations in
the ( n+ 1)2 unknewns C, N TAF Coir s 1. Thus the lecal transformatien

group generated by |/ helds each peint 74,5 ... o, fixed. The

direction greup D}____ is a subgroup of the infinitesimal projective
7
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transformation group en the line elements at ~ , that is, on the projective

space - 2% But V' 1induces an element of ‘Dﬁ which leaves »°-/

directions fixed and tims V induces the -idantity transformation en the line
elements at /> . Similarly V induces the identity transformation on the
line elements at ~  F.. " R e

But every peint on A7 near /~
ig determined by the intersection of two selution curves radiasting from /7

and F;_ . Thus each point of i7”7 near /= is left fixed by the transfor-

mations generated by V . Thus V vanishes on an epen neighborheed of /= ,
T™hus \/ vanishes on all A7° ., But thie contradicts the suppesition that

V, c e VEHHJz were linearly independent. Therefere dim /| < (k4 L z

r J

Q. B. D.

Definition. A Je is called the complete infinitesimal transfermatioen greup

for ‘9 .

Z F

£ -
Theorem 45, let 4. = f(_’r.){, ¥’) tbe an analytic differential system

ol X

defined on all L ( N ) ever & real analytic cennected manifeld M7
Consider the group & of all real analytic diffeomorphisms ef /7 " onte
itself which preserves 1.9 . Tepologize & 1ty the compact-open topoloegy.
Then < 1s a Lie group of dimension SO b= Then the component of
the identity & _ of & , using amalytic ceordinates on (, , acts analyti-
cally as a transformation group G . X M A7 . Mereover

G e X M7 e AT is generated by a subalgebra of the complete infini-

tesimal transformation group /5 . If M”ig compact, (5. x M —— rg?

g

is generated by /Iﬂ .

Preef,
A preliminary analysie shows that (: 18 locally compact and acts
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continuously on /\/ 7.  Then see Montgomery-Zippin, p. 208 and p. 213. This
ig a very difficult theorem (has never been pruved) and includes the results of
Meyers=Steenrod that the group of {sometries of a Riemannian space is a Lie

group and also the theorem of Nomizu that the group of affinities of an affinely

connected space is a Lie group.

L
Now consider analytic differential equations 3 d_j; = F (x. )Y £
z S
in the plane < A ¢ 4 {s invariant under g and xj , then (locally)
A9 is of the form V’: ffx) ., as seen earlier, But such an equation

{s locally diffeomorphic with y“ =0 R

Cff}/ £ ¢ <
Theorem &ﬁ. If the analytic equation Y j T = (x:, V,Y ) in /?
is invariant under two linearly independent anmlytic infinitesimal transfor-
mations V, and \/E_ which have the same path curves, then 4_9 is

locally diffeomorphic with y” = o .

Proof.
The subset of /| g which consists of vector fields having the same path
curves as VY, i{s a subalgebra /1‘5,1! .
/

The locally intransitive groups on the plane are
1) Z} WA{K)Z'J-aﬁ n}@mtk;"z (/La..t'E)

2) 9, Y3, Wig, k) g (k24 )
3) g; 73; ')"Zf

L) ¢, xg

5) %

6) 7, 5§, V]
4 B aE

Under the coordinate change X = W )T = ¥ we note that 1) contains
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the infinitesimal transfermatiens ?J X 3 « Hxcepting the ene-parameter greup
5.), all the greups centain the pair $/ xj ~ or the pair 7 yf . 1§ 4 L9
is invariant under 7, xg then 4  is lecally equivalent te y”- w(x) ,
It 49 is invariant under 3‘, yj then 19 is lecally equivalent te
y“=Cw)y’, But each of these Y’=Ww(x) or y”. ctxly’ 4 is lecally equi-
valent te v = o (see Kowalewski, p. 356).

Theorem 47, Let /| be the complete infinitesimal transformation group for the

analytic differential equation ) : y”: f{xiy,y’) in the plane R Then

there is an open set in &< ° wherein /A 18 1somorphfc with exactly one of

the following:
1.) g
2,) ¢ §
3.) xp+¥i, B
b.) #. 9, J{f-f-‘ix-ir‘/‘/)g
5.) p, 5t P, 2XGH 1y
6. » 3, Ccrtyp + CC=1)yg  real cEFl, CFELT
7.) .3 V{F’*«-ﬁg-ﬁ}{“ﬂ.;yg) all real .|

8.) 1o XE P xG. NG, Kpiyg), Yixprysg).

Proof.
The only non- transitive infinitesimal group which is a complete group is
7 From the 1ist of all locally transitive infinitesimal groups in the

plane we discard all those which contain either a two-parameter subgroup having
a common set of path curves or else the subgroup p, 3 , Xp *75 (these are
admitted only by y“= o , which further admits the infinitesimal projective
group 8).

The two-parameter transitive groups p, 7 and  xp+ty 37 are

easily shown to be complete groups.
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The seven remaining candidates are

o ) ® 9., xp +Cxty)g

A F, §reps 2XF T X< §

r) g, 7% Cc+r)xep +(C—f)yj‘

S ) f’f*’yﬂ-lg*}”?*){j)

€) j¢y(x$+yj);3*”(*?*fj); xP-)3

) F ot n(xff)’g)Jj_"'}'("?*)’j)J_ }’f;"‘xg

Vo p-xlp trgl, g-yptyg), y¢-*§
and the infinitesimal projective group. A computation shows that 1f
v’ = f(x,y,y) admits any one of &), ), ) 1in the above 1list, then the
only possibility is y“=0 and for this the complete group is the eight param-
eter infinitesimal projective group. The remaining candidates <) 4) r), 5) are
all complete groups except for Y) when < =%V or C€=%3 , TFor in these
cagses of X)) the most general invariant differential equation is Yy’= ﬂ-y"%‘g

But the condition of Tresse states that the most general equation
equivalent to Yy 7 = o 18 Y7/ = Fix,y,y’) , Or

y” = Alxy) y*’J,L 3 Sx,y) y*'?-;i &'C(K,y,)yf i ‘5'(".*)’)
where
Dyy ~ 2 Cxyt By + 2PAx + AD, - 30 6y -38BDy —3C 8, + £ CCy = O

and

Cyy ~2Buyt Axx ~2ADy DAy *JAC, +3CHy +38Cy~6 BBx = 2,
Q. E. D.
Corollary. If O y'<fixyy") admits a 2 parameter intransitive group, or a

L, parameter transitive group, then J is equivalent to y"=a and has the

infinitesimal projective group as its complete group, .

Corollary. Ir O Y= Lex, KV9 has & transitive three parameter group as

its complete group, then 9 1s locally equivalent to exactly one of the
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following
1, v o= ot
2, y = Yyt ey
3. Y= y with real < #® 0,/,2,5

V2 -t g
e::l&” YJ real )\ .

.!,'.- y#r. {I-ﬁyfa)

List of all locally transitive analytic infinitesimal transformation groups

in the plane = up to local lsometry (Mostow)

0 a - g

e e e
2, P, g + X F

.23 XYY

Groups with l-dimensio directi 8

\ P AN ST i | |

2, 7 tXP s ARG +xEp

L= i -
"'_;vt/( E".{-J (/xt,)f) m"-"-fﬂw et Cpoind

7o, s ex)

ﬁ’,P.r ! XFJ X

2, 6% 3, C(cti)xp +(c~1) Y3 . 8ll real C

8, £ +Yxpiyg), Z*X(“F*)’E)fo')'z
o, P, X, xp, 3, V8 Y

10, # 3, X, 7Y

11, 2 XP, 2,3 |

12, FP- 3, YP-XF + Alxpt Yy all rea

P s XPtyg, YPp- 4

Ny s XPrYR ., Y poX

3 fxz_yszf-zxyj' ex ymo + t’y*"'.xa)f
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i pAx(XPrYE), gy (xpty3l, P X
g ¥
”Ei -x(xp-Y 3 ; "')’(r:f’*‘ Py Mg

Groupg with 2-dimensional directlion groups,
1 2, xg, axptyg, x(xP+V§)
2 S Zy Ky ¢, x% | AX P+ SY ;x(xff—syg) (s>2)

X pFrRrRY (i #1,5>0)

Groups with 3~dimensional direction groups — Primitive groups.

ll EE; E—" YF" J{é J HE;-)/E
“hj

2 ;,HPI}"F;HJ}/

ﬁf-‘j*’x‘ﬁ)yﬁix ..-y,: J(Iaﬁ?""V )J }’J(Rf'-‘L)/?) -

13, Solvable Ipfinitesimal Transformation Groups and the Solution of

Differential Eguations by SQuadratyrs.

Let / be & real Lie algebra. The commutator ideal [e,L]= L, is
the smallest subalgebra of [  which contains all the commutators of L .

Similarly we can construct EL,;;_,]= [, , the commtator ideal of ' K and

[LI{JLLJ = /—&:fr.' .

Definition. A finite dimensional real lLie algebra L  1is called solvable
(or integrable) in case there exists an integer /v  such that [f—;t,,im}#_ i

(the zero of L ).
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Bxample. ZEvery commutative finite dimensional Lie algebra is solvable. Both
2 dimensional Lie algebras are solvable, The Lie algebra of O, (3) (vectors
in J‘E'S uging vector crogs product) is not solvable. It is shown in
PontrJagin, p. 277, that if / is solvable there exists a basis \, \, --- V),
guch that §v.,vLJ- ; -JU.,_,} spane an ideal T ,_., in L .{r T *;VH;EE
spans an ideal UJ , in U, , and {V,J IR vh_ﬁ:f epans an ideal
s o in U, ,, for S= 1z, .., M-/ .
Theorem 48, ILet S 55{-_- -P‘.{;H Jsph m e y"") be a first order differential
system defined in an open set & of = . Let /1 be an analytie
infinitesimal transformation group leaving 19 invariant. Assume

1.) A  is solvable as an abstract Lie algebra

2,) dim A = n-

3.) the transitivity sets (integral manifolds) of /4 are each of
dimension W -/ .

,) the line element of 19 is nowhere tangent %o a transitivity
set of A .,

Then there exist analytic local coordinates (still called C(Xx,Y) '* ', }’”-'IJ )

in an open set &, e such that /) has a basis Vi, # ¢ty Ve ¢
where
¢ Loy O | 2
\/{5 = \’(SC.HJ y;*r ’J‘yﬁ ;);ch' 3 E-J\-F= {_.E_,"';H'Z* and \/H"f =5;y??"f

In such coordinates we write

: ; [ ] H_E . T - ' —
c?f‘_f’f{ = ’Quﬁx:ﬁ’f; R ) ¢ =1, [ FTGT~E

! rt -/ -2
oy = Fooew ]
s = #C-'J {‘HJ}!’J 3 Y )

J

~{

Thug in the manifold vy "-/= cons?.  (say ¥" = © ) we have the infini-

tesimal transformation group A(/) spanned by

&

=

= ;
/ - & ,

)
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1!) NG e af solvable ss an abstract Lie algebra

2.') ddm N(/) = »n-2

'3:) the transitivity sets of A(/) are each of dimension ¥ -2 1in
the 27 (defined vy y' '=9).

1&:) the 1ine element of

Typ'E: ‘ . p n-2 5 2, swie =L
Jois FE o= £ GRS YRR R LGy

is nowhere tangent to a transitivity set of (/) . Also J(/) ig

invariant under /(¢ r) i

Proof,
Choose a basis V., %, ~* V,., for A , none of which vanish in &y

and which yields the chain of ideals

{V':f?; LV, u,_[; ] Vi, Ve, fo, "L 1w, Ve, - - - ,,Vh,,.fy

described above for abstract solvable Lie algebras. Now each transitivity
J.
set of 2_‘«:; % JV,..,_,‘{ 1s an analytic G’f-') -submanifold of < 'J. By a
change of coordinates we assume that these trannitﬁityaneta are the hyper-
\

planes x = constant. Then each member of /| R'“Eha a zero component

along the x-axis. Turther change coordinates so that Vo, = ,:-‘?}jw-: .
Since E%ﬂa, S %_lf is an ideal in A , coordinates in &  can

be chosen so that each transitivity set of {V, Vi, e - -;\{Hf lies in a

hyperplane "L cansc# . Then O(/) and (/) have the stated proper-
ties. Q. E. D.

Bemark, Using A//) and J¢/) we can repaat' the construction in the theorem
to obtain A(¢-) and G(2) inag R ° . Finglly we obtain

u! f
J(r-2); Jf = ﬁf”_?__) (x,y7) invariant under xir’m:.:), Sau .;a'-, ' Then

Sy’ A
H(n-2): E_E = ﬁr ;:xl can be integrated by a quadrature, Then a

h-2
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sequence of quadratures (interspersed by the coordinate changes specified in
the above reduction) leads to the solution of O n R~ .

This entire reduction is summarized by the statement: A differential
eyster O in R, which is invariant under & solvable ( ¥ -/ )-dimensional
infinitesimml transformation group /] , can be =olved by quadratures,

Note that locally (9 can be written, after m change of local coordinates
in 27 , as EZ"_—_ o for c¢= /4,2 ++e,n-1 o Then the solutions are just
o

. J

the lines y‘; = constant, However, in the particular reduction specified in
the above theorem, the coordinate changes are determined by the structure of
the infinitesimal transformation group A ., In practice, this involves
solving systems of ordinary differential equations for the path curves of A .
Sometimes the geometry of /1 1is simpler than that of 1.9 and, in such a

case, the theorem might be of practical interest,

Lie Groups and Differential Equations — Problems,

l., The conformal local transformation group on the plane is

FE+ (3

Z——7 = o1 8 with complex <S-a¥ # o .

Write this local transformation group in terms of the real Cartesian
coordinates in R*, PFind a basis for the infinitesimal generator in
R*, Is the conformal local transformation group isomorphic with a

subgroup of the projective local transformation group? Discuss the
the nature of inversion maps with reference to the two local trans-

formation groups,

2. In the nmumber space R> show that the set of all differsntiable vector
fields is a Lie algebra by a direct computation based on the definition

P # ‘ ) -
Lu,v]c = j—:; v 1 2"l

Find the right invariant vector fields for the Iie group &° and
verify that they form a finite dimensional Lie algebra, Find a basis
for the Lie algebra 9?:2(;?5)-



-78-

Let & be a commtative connected Lie group and consider the effective,
transitive, Lie transformation group ¢:G«R'—g' . Prove that (=R
and that the transformation group is isomorphic with the group of trans-

lations of R'xR' — o7 .,

Find the most general second order differential equation Y= 4(x.,yy’')
in R° invariant under the infinitesimal transformation group

7,3, Xp +Cx+yjj 5

Verify that j 5 . '*;x“*}, Vg, 7, %F,(n>4) 18 a basis for an infinitesimal
transformation group on @< , For 2= 7 4s this isomorphic with a sub-
group of the projective infinitesimal transformation group?

Show that
a) 9
b) 7 3

c) xp+r3, 3

are complete infinitesimal transformation groups for some second order
differential equations in < € , Prove that the examples constructed are
not qualitatively equivalent to 7 - o.
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